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Abstract

The presented work introduces a new class of nonlinear optimal control
problems in two dimensions whose constraints are nonlinear Ginzburg−Landau
equations with fractal−fractional (FF) derivatives. To acquire their ap-
proximate solutions, a computational strategy is expressed using the FF
derivative in the Atangana−Riemann−Liouville (A-R-L) concept with the
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Mittage-Leffler kernel. The mentioned scheme utilizes the shifted Jacobi
polynomials (SJPs) and their operational matrices of fractional and FF
derivatives. A method based on the derivative operational matrices of SJR
and collocation scheme is suggested and employed to reduce the problem
into solving a system of algebraic equations. We approximate state and
control functions of the variables derived from SJPs with unknown coef-
ficients into the objective function, the dynamic system, and the initial
and Dirichlet boundary conditions. The effectiveness and efficiency of the
suggested approach are investigated through the different types of test
problems.

AMS subject classifications (2020): Primary 35R30; Secondary 65M32, 35K20.

Keywords: Fractal−fractional (FF) derivative; Shifted Jacobi polynomials
(SJPs); Operational matrices; Nonlinear Ginzburg−Landau equation; Opti-
mal control problem.

1 Introduction

The Ginzburg−Landau equation is one of the most studied nonlinear partial
differential equations in physics and engineering. This equation describes di-
verse types of phenomena, including superconductivity, Bose-Einstein, super-
fluidity, nonlinear waves, second-order phase transitions, condensation, liquid
crystals, and strings in field theory [1]. There are many numerical and analyt-
ical schemes for solving this equation, for instance, see [10, 12, 18, 20, 25, 31].

Atangana [2] introduced the idea of FF derivation. The FF derivatives
have been found very useful in many science and engineering applications.
Since the fractals can be realized in nature as a fractal process or fractal
media, it is interesting to derive the fractal or FF equations. The fractional
partial differential equations appear in chaotic dynamics [32], long-range dis-
sipation [22], and material science [26]. Fractional integrals and derivatives
are a robust framework that can be applied to describe processes with various
levels of complexity [11].

The fractional generalization of the Ginzburg–Landau equation was intro-
duced in [30]. This equation can be used to describe the dynamical processes
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877 A pseudo−operational collocation method for optimal control problems ...

in a medium with fractal dispersion and capture some long-range interactions
of a system that can not be captured by traditional integer order differen-
tial equations. It is well has been evaluated from different aspects of this
equation [29, 19, 28, 33]. Recently, Ding et al. studied higher-order numer-
ical algorithm for the two-dimensional nonlinear spatial fractional complex
Ginzburg−Landau equation [6].

Orthogonal polynomials have been extensively employed in solving op-
timal control problems involving fractional partial differential equations
[4, 5, 9, 23, 27].

In [15] a numerical method for solving the model of the nonlinear
Ginzburg−Landau equation in a FF sense is presented.

Regarding numerical methods for the FF equations, the critical step is
the approximation of the fractional or FF derivatives.

Although, some approximate schemes for solving the FF model of non-
linear Ginzburg−Landau equation have been presented, for the first time
we propose a scheme for solving the optimal control problem of FF nonlin-
ear Ginzburg−Landau equation. The method uses SJPs for its numerical
solution.

Using the FF derivative in the A-R-L concept and fractional deriva-
tives in Caputo and Atangana-Baleanu-Caputo sense, optimal control of FF
advection-diffusion-reaction equations is provided. These classes of problems
are solved an operational matrix with high accuracy. Here , we consider the
following optimal control problem:

(P ) min
u∈Uad

J (y, u) := ∥y(s, t)−ŷ(s, t) ∥2L2

ω(e,f)
(Ω) +ϵ2∥u(s, t)−û(s, t) ∥2L2

ω(e,f)
(Ω),

(1)
with a nonlinear FF dynamic equation

FFM
0Dα,βy(s, t)− (r1 + iµ1)yss(s, t) + (r2 + iµ2)|y(s, t)|2y(s, t)

− (r(s) + iµ(s))y(s, t) = f(s, t) + u(s, t), (2)

on the domain (s, t) ∈ Ω with the initial condition

y(s, 0) = v(s), (3)

and the boundary conditions
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y(0, t) = k(s), y(1, t) = g(s), (4)

where, Ω := [0, 1] × [0, 1]. In the above relations, the state variables
y(s, t) and the control variables u(s, t) are undetermined complex functions
ŷ(s, t), û(s, t), v, k and g are complex determined functions, r1, r2, µ1 and,
µ2 are known constants and r(s) and, µ(s) are real functions; in addi-
tion, ϵ in the transition process is the weight of the control action, and
Uad = {u ∈ L2(Ω) : u1 ≤ u ≤ u2, u1, u2 ∈ R ∪ ±∞} has determined the
collection of admissible controls. Here, FFM

0Dα,β denotes the FF derivative
operator of order (α, β) ∈ (0, 1) in the A-R-L sense with Mittag–Leffler non-
singular kernel [2, 3].
In the presented plan, we solve it by converting the main problem into a
system of algebraic equations. For this aim, the functions y and u are ap-
proximated by SJPs with unknown coefficients. By substituting these ap-
proximations into the objective function, a nonlinear algebraic equation with
unknown coefficients is derived. By substituting the mentioned approxima-
tions in the dynamic system and the initial and boundary conditions and
utilizing the FF derivative operational matrix of SJPs, we derive a system
of nonlinear algebraic equations. Finally, by using Lagrangian multipliers,
we connect the algebraic equations obtained from the nonlinear FF dynamic
equation and the initial and boundary conditions with the algebraic equation
created by the objective function, and the optimal solution is achieved using
the constrained extremum method.

2 Fractal-Fractional calculus

Here, we describe the definitions and basic features of FF calculus in the
Atangana-Riemann-Liouville- Caputo sense.

Definition 1. [13]. The two-parameter Mittag-Lefler function is defined as
follows:

Eζ,η(t) =

∞∑
k=0

tk

Γ(kζ + η)
, (5)
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879 A pseudo−operational collocation method for optimal control problems ...

where ζ, η ∈ R+, and t ∈ R. Please remember that for η = 1 it is considered
as Eζ(t) = Eζ,1(t).

Definition 2. [2, 3]. The FF derivative of the continuous function z(s, t) of
order (α, β) in the A-R-L sense with Mittag-Leffler kernel is defined by

FFM
0D

α,β
t z(s, t) =

c(α)

1− α

∂

∂tβ

∫ t

0

z(s, τ)Eα(
−α(t− τ)

α

1− α
)dτ, (6)

where (α, β) ∈ (0, 1), c(α) = 1− α+ α
Γ(α) and

∂z(s, t)

∂tβ
= lim

∆t→0

z(s, t+∆t)− z(s, t)

(t+∆t)
β − tβ

. (7)

Remark 1. The aforementioned definition can be expressed as follows:

FFM
0D

α,β
t z(s, t) =

c(α)t1−β

β(1− α)

∂

∂t

∫ t

0

z(s, τ)Eα(
−α(t− τ)

α

1− α
)dτ. (8)

Corollary 1. [14]. Let α, β ∈ (0, 1) and r ∈ N
⋃
{0}. Then, we have

FFM
0D

α,β
t tr =

c(α)r!tr−β+1

β(1− α)
Eα,r+1(

−αtα

1− α
). (9)

3 The shifted Jacobi polynomials and their properties

The well-known SJPs on [0, 1] can be defined by the following explicit analytic
formula: [4, 16]

b
(e,g)
i (t) =

i∑
k=0

π
(i)
k tk, (10)

where

π
(i)
k = (−1)i−k

(
i+ e+ f + k

k

)(
i+ f

i− k

)
, (11)

i ∈ N∪{0}, e, f > −1, e+f ̸= −1. Concerning the weight function ωe,f (t) =

tf (1− t)e on [0, 1] for SJPs, the orthogonality condition is Demonstrated by∫ 1

0

b
(e,f)
i (t)b

(e,f)
j (t)ω(e,f)(t)dt = λiδij , (12)
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that δij is Kronecker’s delta function and

λi =
Γ(i+ e+ 1)Γ(i+ f + 1)

(2i+ e+ f + 1)Γ(i+ e+ f + 1)Γ(i+ 1)
.

Any assumed function y ∈ L2
ω(e,f) [0, 1] in (n+1) terms of SJPs can be written

as follows

y(t) ≃
n∑

i=0

yib
(e,f)
i (t)

∆
= Y TΦn(t), (13)

where

Y = [y0, y1, . . . , yn]
T
,

Φn(t)
∆
=
[
b
(e,f)
0 (t), b

(e,f)
1 (t), . . . , b(e,f)n (t)

]T
, (14)

and

yi =
1

λi

∫ 1

0

y(t)b
(e,f)
i (t)ω(e,f)(t)dt, i = 0, 1, · · · , n.

In the same way, a bivariate function y(s, t) ∈ L2
ω(e,f)(Ω) can be expanded by

the SJPs as

y(s, t) ≃
m∑
i=0

n∑
j=0

yijb
(e,f)
i (s)b

(e,f)
j (t)

∆
= ΦT

m(s)Y Φn(t), (15)

where the entries of the unknown matrix Y = [yij ] (coefficients matrix of
(m+ 1)× (n+ 1) dimensional) are obtained from the following equation

yij=
1

λiλj

∫ 1

0

∫ 1

0

y(s, t)b
(e,f)
i (s)b

(e,f)
j (t)ω(e,f)(s)ω(e,f)(t)dxdt, (16)

for i = 0, 1, · · · ,m, j = 0, 1, · · · , n. The first-order derivative of the vector
Φn(t) can be expressed by [8, 7, 21]

dΦn(t)

dt
= D(1)Φn(t) (17)

where, D(1) is the (n+1)× (n+1) operational matrix of derivative given by
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881 A pseudo−operational collocation method for optimal control problems ...

D(1) = (dij) =


C1(i, j), i > j,

0, otherwise,

, (18)

where

C1(i, j) =
(i+ e+ f + 1)(i+ e+ f + 2)j(j + e+ 2)i−j−1Γ(j + e+ f + 1)

(i− j − 1)!Γ(2j + e+ f + 1)

×3 F2


−i+ 1 + j, i+ j + e+ f + 2, j + e+ 1

; 1

j + e+ 2, 2j + e+ f + 2,


For example, for even n we have

D(1) =



0 0 0 . . . 0 0

C1(1, 0) 0 0 . . . 0 0

C1(2, 0) C1(2, 1) 0 . . . 0 0

C1(3, 0) C1(3, 1) C1(3, 2) . . . 0 0
...

...
... . . .

...
...

C1(n, 0) C1(n, 1) C1(n, 2) . . . C1(n, n− 1) 0


.

Remark 2. [8]. Recall that the shifted factorial (a)n is defined by

(a)n =
Γ(a+ n)

Γ(a)
,

and the hypergeometric function ×3F2 is defined by

×3F2


−n, a, b

; 1

c, 1 + a+ b− c− n,

 =
(c− a)n(c− n)n
(c)n(c− a− b)n

.

Remark 3. Generally, the r-derivative operational matrix of SJPs of Φn(t)

can be given by:

drΦn(t)

dtr
= D(r)Φn(t), (19)

where r ∈ N and D(r) denotes the r−th power of D(1).
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Theorem 1. [24]. Assume that α, β ∈ (0, 1). The FF derivative of order
(α, β) in the A-R-L sense of Φn(t) in (14) is achieved as:

FFM
0D

α,β
t Φn(t) ≃ E(α,β)Φn(t), (20)

that E(α,β) = [ϵ
(α,β)
ij ] is called FF derivative operational matrix of the SJPs,

and its entries for 1 ≤ i, j ≤ n+ 1 are yielded as follows

ϵ
(α,β)
ij =

c(α)

λj−1β(1− α)

i−1∑
m=0

j−1∑
r=0

∞∑
l=0

(
α

1− α
)l

π
(i−1)
m π

(j−1)
r m!Γ(e+ 1)Γ(αl − β + f +m+ r + 2)

Γ(αl +m+ 1)Γ(αl − β + e+ f +m+ r + 3)
, (21)

in which π
(i−1)
m and π

(j−1)
r are presented in (11).

4 Convergence analysis

Here in two dimensions, the convergence analysis of SJPs expansion is ex-
plored. Set

W(e,f)(s, t) = ω(e,f)(s)ω(e,f)(t), (22)

where ωe,f (z) = zf (1− z)e, z ∈ [0, 1].

Theorem 2. Suppose τ ∈ Cm+n+1(Ω) and | ∂n+m+1

∂xn+m+1−i∂ti
ℑ(s, t) |⩽ ∆, for

0 ≤ i ≤ n+m+ 1. Let Y = span{b(e,f)i (s) b
(e,f)
j (t), 0 ≤ i ≤ m, 0 ≤ j ≤ n},

be a vector subspace with finite dimension of L2(Ω). If ℑmn(s, t) is a unique
best approximation of τ out of Y obtained from the proposed method, then
the error upper bound satisfies the following relation:

∥ℑ(s, t)−ℑmn(s, t)∥L2

W(e,f)
=

∫ 1

0

∫ 1

0

(ℑ(s, t)−ℑmn(s, t))
2W(e,f)(s, t)dsdt

⩽ ∆22(m+n+1)

(n+m+ 1)!
.

(23)

Proof. From Maclaurin’s expansion for ℑ(s, t), we have

ℑ(s, t) = ℘(s, t) +
1

(n+m+ 1)!
(s

∂

∂s
+ t

∂

∂t
)n+m+1ℑ(ξ0s, ξ0t), ξ0 ∈ (0, 1),
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883 A pseudo−operational collocation method for optimal control problems ...

where

℘(s, t) =

n+m∑
k=0

1

k!
(s

∂

∂s
+ t

∂

∂t
)
k

ℑ(0, 0).

Thusly

|ℑ(s, t)− ℘(s, t)| = | 1

(n+m+ 1)!
(s

∂

∂s
+ t

∂

∂t
)n+m+1ℑ(ξ0s, ξ0t)|, ξ0 ∈ (0, 1).

Since ℑmn(s, t) is the best approximation of ℑ(s, t), we acquire

∥ ℑ − ℑmn∥2L2

W(e,f)
≤∥ τ − p∥2L2

W(e,f)
.

By the definition of the L2-norm and binomial expansion (s ∂
∂s + t ∂

∂t )
n+m+1,

we will have

∥ ℑ(s, t)− ℘(s, t) ∥2L2

W(e,f)

=

∫ 1

0

∫ 1

0

[
1

(n+m+ 1)!
(s

∂

∂s
+ t

∂

∂t
)n+m+1ℑ(ξ0s, ξ0t)]2W(e,f)(s, t)dsdt

=

∫ 1

0

∫ 1

0

[
1

(n+m+ 1)!

n+m+1∑
i=0

(
n+m+ 1

i

)
sn+m+1−iti

∂n+m+1

∂sn+m+1−i∂ti

ℑ(ξ0s, ξ0t)]2W(e,f)(s, t)dsdt

≤ ∆2

(n+m+ 1)!2

∫ 1

0

∫ 1

0

n+m+1∑
i=0

n+m+1∑
j=0

(
n+m+ 1

i

)
(
n+m+ 1

j

)
sn+m+1−itisn+m+1−jtjW(e,f)(s, t)dsdt.

Since, 0 ≤ s, t ≤ 1, we have

∥ ℑ − ℘∥2L2

W(e,f)
≤ ∆2

(n+m+1)!2

∫ 1

0

∫ 1

0

n+m+1∑
i=0

n+m+1∑
j=0

(
n+m+ 1

i

)
(
n+m+ 1

j

)
W(e,f)(s, t)dsdt

= ∆222(m+n+1)

(n+m+1)!2

which is the desired result.
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Corollary 2. If ℑ(s, t) is an infinity differential function on Ω, then

∥ℑ(s, t)−ℑmn(s, t)∥L2

W(e,f)
→ 0 as n,m → ∞

5 Expression of the proposed approach

In the present section, we will solve the introduced problem in Eqs. (1)-(4)
numerically. For this purpose, we first decompose the complex state and
control variables and functions of the problem in their real and imaginary
parts as follows

y(s, t) = y1(s, t) + iy2(s, t), u(s, t) = u1(s, t) + iu2(s, t),

ŷ(s, t) = ŷ1(s, t) + iŷ2(s, t), v(s) = v1(s) + iv2(s), (24)

g(t) = g1(t) + ig2(t), k(t) = k1(t) + ik2(t),

where, yj(s, t), ŷj(s, t), uj(s, t), vj(s), gj(t) and kj(t) are real functions for j =
1, 2. Thus, the called problem can be illustrated in a coupled system of
nonlinear FF differential equations as

FFM
0Dα,βy1(s, t)− r1y1ss(s, t) + µ1y2ss(s, t)

+r2(y1
2(s, t) + y2

2(s, t))y1(s, t)− µ2(y1
2(s, t) + y2

2(s, t))y2(s, t)

−r(s)y1(s, t) + µ(s)y2(s, t) = u1(s, t) + f1(s, t),

FFM
0Dα,βy2(s, t)− r1y2ss(s, t)− µ1y1ss(s, t)

+r2(y1
2(s, t) + y2

2(s, t))y2(s, t) + µ2(y1
2(s, t) + y2

2(s, t))y1(s, t)

−r(s)y1(s, t)− µ(s)y1(s, t) = u2(s, t) + f2(s, t),

(25)

for i = 1, 2 with the initial conditions

yi(s, 0) = vi(s), (26)

and the boundary conditions

yi(0, t) = gi(t),

yi(1, t) = ki(t).
(27)
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Now, the state and control variables are approximated in terms of the SJPs

as follows for k = 1, 2

yk(s, t) ≃ ΦT
m(s)YkΦn(t), (28)

uk(s, t) ≃ ΦT
m(s)UkΦn(t), (29)

where the vectors Φm(s) and Φn(t) are introduced in Eq. (14), and Yk =

(ykij), and Uk = (uk
ij) are the unknown coefficients matrices of (m + 1) ×

(n+ 1) dimensional. Set

B(s, t) ≜
[
b
(e,f)
0 (s)b

(e,f)
0 (t), . . . , b(e,f)m (s)b

(e,f)
0 (t) | . . .

| b(e,f)0 (s)b(e,f)n (t), . . . , b(e,f)m (s)b(e,f)n (t)
]T

. (30)

Considering Eq. (15), we can write Eqs. (28) and (29) as follows:

yk(s, t) ≃ ΦT
m(s)YkΦn(t) = BT (s, t)vec(Yk), (31)

and

uk(s, t) ≃ ΦT
m(s)UkΦn(t) = BT (s, t)vec(Uk), (32)

where k = 1, 2, and

vec(Yk) =
[
yk00, . . . , y

k
m0 | . . . | yk0n, . . . , ykmn

]T
,

vec(Uk) =
[
uk
00, . . . , u

k
m0 | . . . | uk

0n, . . . , u
k
mn

]T
.

The following results are obtained from Eqs. (28) and (20):

FFM
0D

α,β
t yk(s, t) ≃ ΦT

m(s)YkE(α,β)Φn(t). (33)

Also, from Remark 3 and two times derivative with respect to s on both sides
of Eq. (28) yields

ykss(s, t) ≃ ΦT
m(s)(D(2))T YkΦn(t). (34)

Regarding relations Eqs. (26)–(27) and Eq. (31), for k = 1, 2

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 875–899
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B(s, 0)vec(Yk) = vk(s),

B(0, t)vec(Yk) = kk(t),

B(1, t)vec(Yk) = gk(t).

(35)

Inserting Eqs. (31)–(34) into Eq. (25) gives

Z1(s, t, ) ≜ B(s, t)
[(

(E(α,β)T ⊗ Im+1)− r1(In+1 ⊗ (D(2))T )− r(s) + r2((B(s, t)vec(Y1))
2

+ (B(s, t)vec(Y2))
2)
)
vec(Y1) +

(
µ1(In+1 ⊗ (D(2))T ) + µ(s)

− µ2((B(s, t)vec(Y1))
2 + (B(s, t)vec(Y2))

2)
)
vec(Y2)− vec(U1)

]
− f1(s, t) ≃ 0,

Z2(s, t, ) ≜ B(s, t)
[(

(E(α,β)T ⊗ Im+1)− r1(In+1 ⊗ (D(2))T )− r(s) + r2((B(s, t)vec(Y1))
2

+ (B(s, t)vec(Y2))
2)
)
vec(Y2)−

(
µ1(In+1 ⊗ (D(2))T )− µ(s)

− µ2((B(s, t)vec(Y1))
2 + (B(s, t)vec(Y2))

2)
)
vec(Y1)− vec(U2)

]
− f2(s, t) ≃ 0,

(36)

where, Im+1 and In+1 are identity matrices of m + 1 and n + 1 orders,
respectively and ⊗ represents Kronecker’s product [17]. Finally, from Eqs.
(35) and (36), a system of 2(m+1)(n+1) algebraic equations can be written
as for k = 1, 2:

Ck
i,j ≜ Zk(ξi, ηj) = 0, i = 2, . . . ,m, j = 2, . . . , n+ 1,

H̃k ≜ B(ξi, 0)vec(Yk)− vk(ξi) = 0 i = 1, . . . ,m+ 1,

M̃k ≜ B(0, ηj)vec(Yk)− kk(ηj) = 0, j = 2, . . . , n+ 1,

Ñk ≜ B(1, ηj)vec(Yk)− gk(ηj) = 0, j = 2, . . . , n+ 1,

(37)

where

ξi =
1

2
(1− cos(

2(i− 1)π

2m
)), i = 1, . . . ,m+ 1,

ηj =
1

2
(1− cos(

2(j − 1)π

2n
)), j = 1, . . . , n+ 1.
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Then, the performance index of the examined problem is approximated using
SJPs. First, the desired function is approximated as:

ŷk(s, t) ≃ ΦT
m(s)ŶkΦn(t), k = 1, 2. (38)

Inserting Eqs. (28), (29), and (38) into Eq. (1), we get

J (y, u) ≃ Jm,n(Y1, Y2, U1, U2)

=

∫ 1

0

∫ 1

0

[
(ϕm(s)

T Y1ϕn(t) − ϕm(s)
T Ŷ1ϕn(t))(ϕm(s)

T Y1ϕn(t) − ϕm(s)
T Ŷ1ϕn(t))

T
]

W(e,f)
(s, t)dsdt

+

∫ 1

0

∫ 1

0

[
(ϕm(s)

T Y2ϕn(t) − ϕm(s)
T Ŷ2ϕn(t))(ϕm(s)

T Y2ϕn(t) − ϕm(s)
T Ŷ2ϕn(t))

T
]

W(e,f)
(s, t)dsdt

+ ϵ
2
(∫ 1

0

∫ 1

0

[
(ϕm(s)

T U1ϕn(t) − ϕm(s)
T Û1ϕn(t))(ϕm(s)

T U1ϕn(t) − ϕm(s)
T Û1ϕn(t))

T
]

W(e,f)
(s, t)dsdt

+

∫ 1

0

∫ 1

0

[
(ϕm(s)

T U2ϕn(t) − ϕm(s)
T Û2ϕn(t))(ϕm(s)

T U2ϕn(t) − ϕm(s)
T Û2ϕn(t))

T
]

W(e,f)
(s, t)dsdt

)
.

Because expressions
∫ 1

0

∫ 1

0
(ϕm(s)T Ŷ1ϕn(t))

2W(e,f)(s, t)dsdt,
∫ 1

0

∫ 1

0
(ϕm(s)T

Ŷ2ϕn(t))
2W(e,f)(s, t)dsdt,

∫ 1

0

∫ 1

0
(ϕm(s)T Û1ϕn(t))

2W(e,f)(s, t)dsdt, and∫ 1

0

∫ 1

0
(ϕm(s)T Û2ϕn(t))

2W(e,f)(s, t)dsdt do not have any effective role in min-
imization due to being positive, so according to Eq. (12), the above equation
is expressed as follows

Jm,n((Y1,Y2,U1,U2)) = vec(Y1)
T (Υn ⊗Υm)vec(Y1) + vec(Y2)

T (Υn ⊗Υm)vec(Y2)

(39)

− 2vec(Ŷ1)
T (Υn ⊗Υm)vec(Y1)− 2vec(Ŷ2)

T (Υn ⊗Υm)vec(Y2) (40)

+ ϵ2[vec(U1)
T (Υn ⊗Υm)vec(U1) + vec(U2)

T (Υn ⊗Υm)vec(U2) (41)

− 2vec(Û1)
T (Υn ⊗Υm)vec(U1)− 2vec(Û2)

T (Υn ⊗Υm)vec(U2)], (42)

where

Υk = diag(λ0, . . . , λk).

The discussed optimal control problem has now transformed into a finite-
dimensional optimization. To solve the obtained optimization problem, we
employ the Lagrangian multipliers scheme. First define

J ∗(y, u) ≃ J∗(Y1,Y2,U1,U2,Σ) = Jm,n(Y1,Y2,U1,U2) + ΣT C, (43)
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where

C =
[
C1
2,2, . . . , C1

2,n+1| . . . |C1
m,2, . . . , C1

m,n+1|C2
2,2, . . . ,

C2
2,n+1| . . . |C2

m,2, . . . , C2
m,n+1|H̃1|H̃2|M̃1|M̃2|Ñ1|Ñ2

]
,

and

Σ =
[
ς1 ς2 . . . ς2(m+1)(n+1)

]T
,

where the Lagrange multipliers vector is denoted with Σ. Now the optimality
conditions for k = 1, 2 are derived from the following equations:

∂J ∗(y, u)

∂vec(Yk)
= 0,

∂J ∗(y, u)

∂vec(Uk)
= 0,

∂J ∗(y, u)

∂Σ
= 0.

The above system of algebraic equations can be solved by Newton’s iterative
method or by using Matlab software packages. The numerical solutions of
y(s, t) and u(s, t) are specified by determining Yk and Uk and placing them
in Eqs. (31) and (32), respectively.

6 Illustrative examples

In this section, using some test problems, the accuracy and efficiency of
the described method in Section 5 have been investigated. To achieve this
goal, the maximum absolute error (MAE) and root mean square (RMS) are
calculated. All calculations and results have been done using the Fmincon
package in MATLAB software. The accuracy of the obtained results from
the proposed method is calculated using MAE and RMS, which is defined as
follows:

MAE = max
1≤i≤m+1

max
1≤j≤n+1

|f(ξi, ηj)−
∼
f (ξi, ηj)|,
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RMS =

√√√√ 1

(m+ 1)(n+ 1)
(
m+1∑
i=1

n+1∑
j=1

|f(ξi, ηj)−
∼
f (ξi, ηj)|2),

where
∼
f represents the numerical solution of f in the collocation points of

(ξi, ηj). Note that in all test problems, the first 29 terms of the infinite series
in the Mittag-Leffler functions are used in numerical calculations.

Example 1. Consider the following objective function:

J (y, u) =

∫ 1

0

∫ 1

0

(
(y(s, t)− t4eis)2 − ϵ2(u(s, t)− ((1 + 2i)t4 + (1 + i)t12

− s2(1 + is)t4)eis)2W(e,f)(s, t)
)
dsdt, (44)

where ϵ = 1. Subject to the following nonlinear time FF Ginzburg–Landau
equation [14]:

FFM
0 Dα,βy(s, t)− (1 + 2i)yss(s, t) + (1 + i)|y(s, t)|2y(s, t)− s2(1 + is)y(s, t)

= f(s, t) + u(s, t),

where
f(s, t) = ( c(α)4!t

5−β

β(1−α) Eα,5(
−αtα

1−α ))eis .

The exact solution of state and control functions is mentioned below,

y(s, t) = t4eis,

u(s, t) = ((1 + 2i)t4 + (1 + i)t12 − s2(1 + is)t4)eis.

From the analytical solution of y(s, t), we acquire the initial and boundary
conditions. For the computational solution of this example, we have used
the introduced method in Section 5 with values of m = n. For some choices
(α, β) and (e, f) = (0, 0), MAE and RMS values of state and control variables
are shown in Figures 1 − 4. AE graphs for state and control variables with
m = n = 7, α = 0.25, β = 0.85 and (e, f) = (0, 0) are depicted in Figure 5.
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Figure 1: The RMS of the presented method for the state and control functions with
α = 0.35 and β = 0.35 in Example 1.

Figure 2: The RMS of the presented method for the state and control functions with
α = 0.55 and β = 0.35 in Example 1.

Figure 3: The RMS of the presented method for the state and control functions with
α = 0.75 and β = 0.35 in Example 1.

Figure 4: The RMS of the presented method for the state and control functions with
α = 0.75 and β = 0.65 in Example 1.

Iran. J. Numer. Anal. Optim., Vol. 14, No. 3, 2024, pp 875–899



891 A pseudo−operational collocation method for optimal control problems ...

Figure 5: Numerical solution (SJPs) and error function (AE) surfaces of y(s, t) (left)
and u(s, t) (right) with (m=n=7) in Example 1.

Example 2. Consider the problem of optimal control with ϵ = 10−1 as
follows:

J (y, u) =

∫ 1

0

∫ 1

0

(
(y(s, t)− t2sin(t)eis)2 − ϵ2(u(s, t)− (5it2sin(t)

+ 2t6sin3(t)− it2sin(t)e−is)eis)2W(e,f)(s, t)
)
dsdt, (45)

with the nonlinear time FF dynamical system: [14]

FFM
0 Dα,βy(s, t)−5iyss(s, t)+2|y(s, t)|2y(s, t)− ie−isy(s, t) = f(s, t)+u(s, t),

where,

f(s, t) = ( c(α)t
4−β

β(1−α)

∑∞
k=0(−1)k(2k + 3)(2k + 2)t2kEα,2k+4(

−αtα

1−α ))eis .

The exact solution of state and control functions is mentioned following,
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y(s, t) = t2sin(t)eis,

u(s, t) = (5it2sin(t) + 2t6sin3(t)− it2sin(t)e−is)eis.

From the analytical solution of y(s, t), we acquire the initial and boundary
conditions. For the computational solution of this example, we have used the
introduced method in section 5 with values of m = n. For some choices (α, β)
and (e, f) = (0.5, 0.5), MAE and RMS values of state and control functions
are shown in Figures 6 − 9. AE graphs for state and control functions with
m = n = 7, α = 0.75, β = 0.25 and (e, f) = (0.5, 0.5) are depicted in Figure
10.

Figure 6: The RMS of the presented method for the state and control functions with
α = 0.35 and β = 0.35 in Example 2.

Figure 7: The RMS of the presented method for the state and control functions with
α = 0.65 and β = 0.35 in Example 2.

Figure 8: The RMS of the presented method for the state and control functions with
α = 0.75 and β = 0.15 in Example 2.
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Figure 9: The RMS of the presented method for the state and control functions with
α = 0.75 and β = 0.45 in Example 2.

Figure 10: Numerical solution (SJPs) and error function (AE) surfaces of y(s, t) (left)
and u(s, t) (right) with (m=n=7) in Example 2.

Example 3. Consider the problem of optimal control with ϵ = 1.1 as follows:

J (y, u) =

∫ 1

0

∫ 1

0

(
(y(s, t)− it3e−(t+is))2 − ϵ2(u(s, t)− ie−is(2t3e−t + 3it9e−3t

− (2s+ 1 + 3is2)t3e−t))2W(e,f)(s, t)
)
dsdt, (46)
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with the FF dynamical system: [14]

FFM
0 Dα,βy(s, t)− 2yss(s, t) + 3i|y(s, t)|2y(s, t)− (2s+ 1 + 3is2)y(s, t) = f(s, t) + u(s, t),

where,

f(s, t) = i( c(α)t
4−β

β(1−α)

∑∞
k=0(−1)k(k + 3)(k + 2)(k + 1)tkEα,k+4(

−αtα

1−α ))e−is .

The exact solution of state and control functions is mentioned following,

y(s, t) = it3e−(t+is),

u(s, t) = ie−ix(2t3e−t + 3it9e−3t − (2s+ 1 + 3is2)t3e−t).

The homogeneous initial and boundary conditions are obtained from the
analytic solution of y(s, t). For the numerical solution of this example, we
have used the introduced method in section 5 with values of m = n. For some
choices (α, β) and (e, f), MAE and RMS values of state and control variables
are shown in Figures 11−14. AE graphs for state and control functions with
m = n = 7, α = 0.25, β = 0.25 and (e, f) = (0, 1) are depicted in Figure 15.

Figure 11: The RMS of the presented method for the state and control functions with
α = 0.25 and β = 0.25 in Example 3.

Figure 12: The RMS of the presented method for the state and control functions with
α = 0.65 and β = 0.25 in Example 3.
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Figure 13: The RMS of the presented method for the state and control functions with
α = 0.80 and β = 0.25 in Example 3.

Figure 14: The RMS of the presented method for the state and control functions with
α = 0.80 and β = 0.65 in Example 1.

Figure 15: Numerical solution (SJPs) and error function (AE) surfaces of y(s, t) (left)
and u(s, t) (right) with (m=n=7) in Example 3.
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7 Conclusion

In this paper we introduced a novel class of optimal control with the nonlinear
Ginzburg−Landau equation. To express this new class, we have used the FF
derivative in the A-R-L sense with Mittag-Leffler non-singular kernel. For
the numerical solution of this class of optimal control problems, an efficient
method based on the shifted Jacobi polynomials has been proposed. To
transform the main problem into a system of nonlinear algebraic equations,
we have used the FF derivative operational matrix of SJPs and the collocation
method. By presenting three numerical examples, we have investigated and
evaluated the accuracy of the mentioned scheme.
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