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Abstract

Sinc numerical methods are essential approaches for solving nonlinear prob-
lems. In this work, based on this method, the sinc neural networks (SNNs)
are designed and applied to solve the fractional optimal control problem
(FOCP) in the sense of the Riemann–Liouville (RL) derivative. To solve the
FOCP, we first approximate the RL derivative using Grunwald–Letnikov
operators. Then, according to Pontryagin’s minimum principle for FOCP
and using an error function, we construct an unconstrained minimization
problem. We approximate the solution of the ordinary differential equa-
tion obtained from the Hamiltonian condition using the SNN. Simulation
results show the efficiencies of the proposed approach.
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1 Introduction

In the last decades, based on the sinc approximation, there have been devel-
oped a variety of numerical methods, which are now called the sinc numerical
methods [30, 31]. Since 1974, Stenger [29] has studied the sinc approximation
methods for the numerical problems. These methods are used as useful tools
to solve linear and nonlinear problems arising from scientific and engineering
applications. In general, the error in the sinc numerical method for the single
exponential is O(exp(−c

√
n)) with some positive c and n is the number of

nodes used in the method [30]. In 2002, the sinc function was formed by dou-
ble exponential transformation by Sugihara. He [33, 32] discovered that the
error of the new method with a positive value of c is equal to O(exp(− cN

ln N )).
By expanding the normal integer calculus to noninteger calculus, frac-

tional calculus is created. Today, fractional calculus is used in many branches
of science and engineering, which shows its importance and application
[4, 5, 14, 17, 22, 24, 28, 34, 37, 38]. An optimal control problem that in-
cludes at least one fractional derivative term in the performance index or
differential equation dominating the system’s dynamics is called the fraction
optimal control problem. The fractional optimal control problem (FOCP)
can be introduced concerning different definitions of fractional derivatives,
where Riemann–Liouville (RL), Caputo, and Grunwald–Letnikov (GL) frac-
tional derivatives are the most essential types of fractional derivatives. Be-
cause of the importance of this category of problems, research has been done
to solve the FOCP. In [6], a solution of multidimensional FOCPs with in-
equality constraint by multiwavelets is presented. SIR and SEIR epidemic
models are considered by a formulation for optimal control problems for a
class of fuzzy fractional differential systems [9]. Nemati, Lima, and Torres
[21] used modified hat functions for solving the FOCPs. The authors in [18]
gave an extended modal series method and linear programming strategy to
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solve the FOCPs. In [35], for solving FOCPs with vector components, the
authors used a Bernoulli polynomial method. It is hard to find the exact
solution for the Hamiltonian system of equations because there exist both
right and left in the Hamiltonian system. In [2, 3], the authors, to find the
optimal solution of the FOCPs with the RL and Caputo fractional derivative
sense, solved the Hamiltonian system of equations, which provides the nec-
essary optimization conditions. To transform the Caputo-type FOCP into
a system of algebraic equations, the authors of [7] have employed the GL
approximation.

In this work, we consider the FOCP as follows:

min J
(
x(t), u(t)

)
=

∫ tf
t0
F

(
t, x(t), u(t)

)
dt,

s.t. t0D
α
tf
x(t) = G

(
t, x(t), u(t)

)
,

x(t0) = x0,

(1)

where x(t) ∈ Rp and u(t) ∈ Rq are the state and control variables, respec-
tively. We assume that the integrand F , for all its arguments, has continuous
first and second partial derivatives, and G is Lipschitz continuous on a set
Ω ⊂ Rp. In addition, α = [α1, α2, . . . , αp]

T , i = 1, 2, . . . , p and n = [αi] + 1,
where [αi] is the integer part of αi.
The left and right RL fractional derivatives are, respectively, defined in the
following form:

aD
α
t f(t) =

1

Γ(n − α)

(
d

dt

)n ∫ t

a

(t− z)n−α−1f(z)dz,

tD
α
b f(t) =

1

Γ(n − α)

(
− d

dt

)n ∫ b

t

(z − t)n−α−1f(z)dz.

In the last decade, artificial neural networks (ANNs) have been applied to
solving different problems, such as the FOCPs. The results show that the
ANNs are accurate and efficient for many problems, and this method is com-
parable with other methods obtained by mathematical algorithms. The au-
thors provided a method to solve the continuous-time direct adaptive optimal
control for partially unknown nonlinear systems in [36]. Sabouri, Effati, and
Pakdaman [25] used a neural network approach for solving a class of the
FOCPs. Ghasemi and Nazemi [12] have designed a neural network to solve
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the FOCPs by using Mittag-Leffler. The multilayer perceptron (MLP) with
a back propagation learning algorithm is employed for neonatal disease di-
agnosis [8]. Lagaris and Likas [16] solved the ordinary differential equations
and partial differential equations for boundary and initial value problems
by ANNs. The fuzzy neural networks algorithm is used for detecting car-
diovascular diseases [26]. Recently, Ghasemi, Nazemi, and Hosseinpour [13]
investigated the nonlinear FOCPs using ANNs. There are many references in
theory and applications of neural networks, such as mathematical program-
ming [19, 20] and optimal control problems [10].

In this work, after introducing the sinc numerical method, we design the
sinc neural networks (SNNs). To solve the FOCP using this network, we first
approximate the RL derivative used in the FOCP by the GL operator. Then,
using Pontryagin’s minimum principle (PMP) and the optimality conditions
in the Hamiltonian function, we construct the unrestricted optimality prob-
lem. Finally, the adjustable parameters in the trial solution related to this
problem are determined by the SNN. The main reason for using the SNN in
solving FOCPs can be found in the simplicity of the network. Also, SNN has
no bias and increases the efficiency of the network due to the linearity of the
unknowns of the problem with respect to the output.

The article is arranged as follows: Section 2 introduces the sinc numerical
method. In Section 3, the SNN is presented. In Section 4, the proposed
technique is utilized for solving FOCPs. Numerical examples are presented
in Section 5, and Section 6 contains concluding remarks.

2 Sinc numerical method

In recent decades, sinc numerical methods have been used to solve various
problems due to their exponential convergence rate. In [30], sinc function is
fully introduced. In this section, we briefly state some of its definitions and
features.

The sinc function is defined for each x ∈ (−∞,∞) as follows:
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Sinc(x) =


sinπx
πx

, x ̸= 0,

1, x = 0.

For h > 0, and any integer k, the translated sinc functions with evenly spaced
nodes are defined as

S(k, h)(x) = Sinc

(
x

h
− k

)
.

By these functions, a set of interpolation functions can be formed in the
following form:

S(k, h)(jh) = δj,k =

 1, j = k,

0, j ̸= k.
(2)

Assume that f is a function defined on real line. Then for h > 0, the cardinal
function corresponding to f is introduced by

C(f, h)(x) =

∞∑
k=−∞

f(kh)S(k, h)(x), (3)

while the series in (3) converges [30]. From the relations (2) and (3), it can
be concluded that the function f is interpolated by the cardinal function
in points {nh}+∞

n=−∞. Suppose that in the complex w -plane, Dd shows the
infinite strip region of width 2d as

Dd = {w = t+ is : |s| < d}.

We use a conformal map ϕ as ϕ(Γ) = R for problems on a subinterval Γ ⊆ R,
such that ϕ has the inverse ψ and is a conformal map of the simply-connected
domain D, where (0, 1) ⊆ D, onto Dd, then on a subinterval Γ = (0, 1) =

ψ(R) with ϕ(0) = −∞, and ϕ(1) = +∞. The following interpolation can be
defined as

f(x) ∼=
N∑

k=−N

f(xk)Sk(x),

where xk = ψ(kh) is defined as the sinc grid points and
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Sk(x) = S(k, h)oϕ(x) = Sinc

(
ϕ(x)

h
− k

)
is the translated sinc basic function. As a result of these discussions, double
exponential and single exponential can be introduced, respectively, as follows:

z = ψ1(w) =
1

2
+

1

2
tanh

(
π

2
sinh(w)

)
,

z = ψ2(w) =
1

2
+

1

2
tanh

(
w

2

)
,

where the interval (−∞,+∞) is mapped onto (0, 1).

3 Sinc neural network (SNN)

In this part, to solve FOCP, we introduce the structure of the SNN. There
are few works in the field of neural networks with the sinc activation func-
tion. SNN with a single input and a single output has been utilized for the
approximation of functions with one variable by Elwasif and Fausett [11] in
1996. Suppose that T = [t1, t2, . . . , tn]

T , and O = [o1, o2, . . . , oq]
T are the

input and output vectors of the SNN, respectively. Then, the SNN can be
structured as follows:

O =

m∑
i=1

WiSi(T ), (4)

where W = [W1,W2, . . . ,Wm] is a q×n matrix of weights between the nodes
of Si(T ) and outputs, and Si(T ), 1 ≤ i ≤ m, is the translated sinc basic
function with input vector T . The structure of SNN can be observed in
Figure 1.

The structure of SNN has been motivated from the sinc numerical method
as a fascinating approach in solving nonlinear problems numerically. Sinc
function is a famous and beneficial function in science and engineering. It is
a smooth function with positive and negative amounts. It oscillates, and its
output approaches zero when its input tends to infinity.

Unlike the MLP neural network, the structure of SNN is simple with a
few number of trainable parameters. In fact, it contains only one layer of
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Figure 1: The structure of SNN.

trainable parameters. In SNN, the activation functions are the sinc basis
functions, and therefore, the accuracy of modeling results increases when the
number of sinc basis functions (nodes Si(T )) increases in its structure.

To train the SNN, we can use various existing methods such as gradient
methods, methods based on Lyapunov’s stability theory, and so on. Since
in these neural networks we only have adjustable parameters in one layer,
the output of the neural network is linear with respect to the parameters,
and this makes it easier to train it, and it becomes possible to use a variety
of learning algorithms. In this article, based on the error functions obtained
from the existing mathematical relations, an optimization problem is created,
and by solving it, we get the optimal parameters of the neural network.

4 Applying SNN to solve FOCP

Before we resolve the problem, we approximate the RL fractional derivative
with the GL operators. Assume y ∈ cl([a, b]), l ∈ N . Then the l-order
derivative of y at t ∈ (a, b] can be defined as

aD
l
ty(t) = lim

h→0

1

hl

l∑
k=0

(−1)k
(
l

k

)
y(t− kh), (5)

where
(
l
k

)
= l!

k!(l−k)! are the binomial coefficients. By replacing the real num-
ber α instead of l, binomial coefficients can be developed using the gamma

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1016–1036



1023 Designing the sinc neural networks ...

function as
Γ(z) =

∫ ∞

0

tz−1e−tdt, z > 0,

where Γ(1) = 1 and Γ(z + 1) = zΓ(z), for any z > 0. Now, the binomial
coefficients are defined for the real number α as

(
α
k

)
= Γ(α+1)

Γ(k+1)Γ(α−k+1) . So,
(5) can be extended to the fractional order α > 0 by means of

aD
α
t y(t) = lim

N→∞

1

hα

N∑
k=0

w
(α)
k y(t− kh), (6)

where h = t−a
N and t ∈ (a, b]. Besides, we have w(α)

k = (−1)k
(
α
k

)
, which can

be evaluated by using the recurrence formula as follows:

w
(α)
0 = 1, w

(α)
k =

(
1− α+ 1

k

)
w

(α)
k−1.

Note that for h > 0, relation (6) is left GL fractional derivative, and for
h < 0, it is called the right GL fractional derivative.

Now, to solve problem (1), we define the Hamiltonian function as

H
(
x(t), u(t), p(t), t

)
= F

(
x(t), u(t), t

)
+ p(t).G

(
x(t), u(t), t

)
,

where p(t) ∈ Rq is the co-state vector. Assume that x∗(t), u∗(t), and p∗(t)

are the optimal state, control, and co-state functions, respectively. Then,
to minimize the objective function (1), a necessary condition for u∗(t) is as
follows:

H
(
x∗(t), u∗(t), p∗(t), t

)
≤ H

(
x∗(t), u(t), p∗(t), t

)
, (7)

where t ∈ [t0, tf ], for all impossible controls. Equation (7) is called the
PMP, where an optimal control must minimize the Hamiltonian function
[15]. According to the PMP, if x(t), u(t), and p(t) are the optimal solutions
in (7), then they must satisfy the following conditions:

∂H(x, u, p, t)

∂x
= tD

α
tf
p(t),

∂H(x, u, t, p)

∂p
= t0D

α
t x(t),

∂H(x, u, p, t)

∂u
= 0.

(8)
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We try to solve the system of equations (8) using the SNN. It can define
the main trial solutions using the SNN (4), so that the initial or boundary
conditions are satisfied, so they are constructed in the following form:

xT = x0 + (t− t0)ox,

pT = (t− tf )op,

uT = ou,

(9)

where

ox =

m∑
i=1

W x
i S

x
i (T ), op =

m∑
i=1

W p
i S

p
i (T ), ou =

m∑
i=1

Wu
i S

u
i (T ),

are state, co-state, and control neural networks, respectively. Note that since
x(tf ) is free, then p(tf ) = 0. By placing the trial solutions (9) in relation (8),
we have 

∂HT

∂xT
= tD

α
tf
pT (t),

∂HT

∂pT
= t0D

α
t xT (t),

∂HT

∂uT
= 0,

(10)

where HT = H
(
xT (t), uT (t), pT (t), t

)
. To solve the system of equations (10)

as an unconstrained minimization problem, we put them on the m+1 points
of the interval [t0, tf ] as tk = t0 +

tf−t0
m k, k = 0, 1, . . . ,m. According to the

relation (5), the left and right RL fractional derivatives can be calculated as
follows:

t0D
α
tk
xT ≃ 1

hα

k∑
j=0

w
(α)
j xT (tk−j), k = 1, 2, . . . ,m,

tkD
α
tf
pT ≃ 1

hα

m−k∑
j=0

w
(α)
j pT (tk+j), k = 0, 1, . . . ,m− 1.

Now, we construct the optimization problem as

minE(η) =
1

2

m∑
k=0

{E1(tk, η) + E2(tk, η) + E3(tk, η)}, (11)

where η = (wx, wp, wu) and
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E1(tk, η) =

[
∂HT

∂xT
− 1

hα

∑m−k
j=0 w

(α)
j pT (tk+j)

]2
, k = 0, 1, . . . ,m− 1,

E2(tk, η) =

[
∂HT

∂pT
− 1

hα

∑k
j=0 w

(α)
j xT (tk−j)

]2
, k = 1, 2, . . . ,m,

E3(tk, η) =

[
∂HT

∂uT

]2
, k = 1, 2, . . . ,m.

Based on [13, Lemma 1], if η satisfies the system of equations (11), then η is
an optimal solution of (1). So, one can verify that the minimization problem
(11) is equivalent to the following problem:

min
η
E(η) =

1

2
||ϕ(η)||2. (12)

Optimization algorithms such as steepest descent, Newton, quasi-Newton,
and conjugate gradient can be used to solve the problem (12). The main
advantage of the mentioned method is that it is not very complicated, and the
accuracy of the approximation solution can be increased using more training
points in the interval [t0, tf ].

Remark 1. In the present work, on the basis of sinc numerical methods
and using the sinc basis functions, we propose the SNNs for the optimal
control of fractional linear and nonlinear dynamic systems. Then, the results
have been compared with MLP. In [13], the MLP is used for the optimal
control of fractional dynamic systems. However, aside from the utilized neural
structure, the main approach to solving FOCP is similar to [13].

In this work, we introduce the SNN as a new neural network with a
simple structure for solving the FOCPs. Due to the beneficial properties of
sinc function, as described in Section 3, the SNN is powerful in solving the
problems. The simulation results show the capabilities of this neural network
in solving FOCPs.

Remark 2. Generally, utilizing the neural networks to solve the fractional
optimal control follows the presented approach in [13], and therefore, we can
spread the presented theory for the convergence and stability of the method
in that article to the present work.
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5 Numerical examples

In order to show the efficiency and application of the proposed technique,
three problems are solved in this section. In these numerical calculations,
the fractional derivatives are approximated using the GL operators. In all
the examples, five nodes are applied in the SNN to solve FOCP. To show the
efficiency of the proposed method, we have compared this method with MLP
and shown the error graph of each of these methods in the figures.

In this work, all numerical computations have been coded in MATLAB
R2017b with 16GB RAM. In the proposed approach, to adjust the param-
eters of neural structures, we are faced with some unconstrained nonlinear
optimization problems. These optimization problems have been solved using
the “fminunc” function, and the optimization algorithm has been selected as
“quasi-newton”.

Example 1. As the first example, consider the FOCP as follows:

min J = 1
2

∫ 1

0

(
3x2(t) + u2(t)

)
dt,

0D
α
t x(t) = −x(t) + u(t),

x(0) = 0, x(1) = 2.

The exact solution of this problem [13] in the case of α = 1 is equal to x(t) = 2
sinh 2 sinh(2t),

u(t) = 2
sinh 2

(
2 cosh(2t) + sinh(2t)

)
.

The Hamiltonian function of this example is as follows:

H
(
x, u, p, t

)
=

1

2

(
3x2(t) + u2(t)

)
+ p(t)

(
− x(t) + u(t)

)
.

According to relation (10), we have

tD
α
1 p(t) = 3x(t)− p(t),

0D
α
t x(t) = −x(t) + u(t),

u(t) + p(t) = 0,

x(0) = 0, x(1) = 2.
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Due to the initial conditions, the trial solutions are selected as follows:
xT = 2t+ t(t− 1)ox,

pT = op,

uT = ou.

Figure 2 shows the exact and approximate diagram of the state and control
function. Also, the error graph of the proposed method and the MLP are
compared.

Figure 2: Exact and approximated state and control functions and their errors for
Example 1.

In Table 1, we have expressed the error related to approximated state and
control functions in the number of points and the process time in the SNN is
2.4 seconds, while it is 2.51 seconds in the MLP.

Example 2. Consider the following FOCP [23]:

min J = 1
2

∫ 1

0

(
x2(t) + u2(t)

)
dt,

0D
α
t x(t) = −x(t) + u(t),

x(0) = 1.

The exact solution of this example with α = 1 is

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1016–1036
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Table 1: Parameter values for Example 1

t Error of x(t) (SNN) Error of x(t) (MLP) Error of u(t) (SNN) Error of u(t) (MLP)
0.0 0 0 0.0023 0.0043

0.1 10−5 10−5 0.0004 0.0002

0.2 0.0001 0.0004 0.0012 0.0032

0.3 0.0004 0.0010 0.0025 0.0058

0.4 0.0006 0.0016 0.0034 0.0075

0.5 0.0009 0.0022 0.0039 0.0081

0.6 0.0011 0.0025 0.0037 0.0075

0.7 0.0011 0.0024 0.0029 0.0056

0.8 0.0010 0.0021 0.0012 0.0023

0.9 0.0006 0.0012 0.0014 0.0024

1.0 0 0 0.0050 0.0087

 x(t) = cosh(
√
2t) + β sinh(

√
2t),

u(t) = (1 +
√
2β) cosh(

√
2t) + (

√
2 + β) sinh(

√
2t),

where β = − cosh(
√
2)+(

√
2 sinh(

√
2)

(
√
2 cosh(

√
2)+sinh(

√
2)

≈ −0.98.

Since x(1) is free, we conclude p(1) = 0. So, due to relation (10), we have

tD
α
1 p(t) = x(t)− p(t),

0D
α
t x(t) = −x(t) + u(t),

u(t) + p(t) = 0,

x(0) = 1, p(1) = 0.

From the initial conditions, the trial solution is written as
xT = (1 + t)ox,

pT = (t− 1)op,

uT = ou.

Figure 3 shows the exact and approximate diagram of the state and control
function, as well as the error diagram of the proposed method and MLP.

In Table 2, we have expressed the error related to approximated state and
control functions in the number of points and the process time in the SNN is
3.14 seconds, while it is 3.3 seconds in the MLP.
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1029 Designing the sinc neural networks ...

Figure 3: Exact and approximated state and control functions and their errors for
Example 2.

Table 2: Parameter values for Example 2

t Error of x(t) (SNN) Error of x(t) (MLP) Error of u(t) (SNN) Error of u(t) (MLP)
0.0 0 0 0.0098 0.0030

0.1 0.0014 0.0038 0.0002 0.0078

0.2 0.0002 0.0061 0.0039 0.0123

0.3 0.0019 0.0075 0.0043 0.0122

0.4 0.0034 0.0087 0.0024 0.0095

0.5 0.0038 0.0098 0.0006 0.0056

0.6 0.0030 0.0109 0.0034 0.0020

0.7 0.0012 0.0119 0.0050 0.0005

0.8 0.0008 0.0125 0.0046 0.0009

0.9 0.0020 0.0128 0.0013 0.0012

1.0 0.0011 0.0125 0.0055 0.0065

Example 3. In this example, we consider the FOCP as [1]

min J = 1
2

∫ 1

0

(
x2(t) + u2(t)

)
dt,

0D
α
t x(t) = tx(t) + u(t),

x(0) = 1.

According to (10), we have
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tD
α
1 p(t) = x(t) + tp(t),

0D
α
t x(t) = tx(t) + u(t),

u(t) + p(t) = 0,

x(0) = 1, p(1) = 0.

It is clear that p(1) = 0 , because x(1) is free. Also, we can select the trial
solutions as 

xT = 1 + tox,

pT = (t− 1)op,

uT = ou.

This example does not have an exact solution; therefore, only approximate
solutions for the control and state functions are shown in Figure 4. Also,
approximate the state and control functions with different values of α are
shown. The operation time is 3.5 seconds.

Figure 4: Approximated of the state and control functions by assuming different values
of α for Example 3.

Example 4. Consider the nonlinear FOCP as follows [27]:

min J(x, u) = 1
2

∫ 1

0

(
0.625x2(t) + 0.5x(t)u(t) + 0.5u2(t)

)
dt,

0D
α
t x(t) = 0.5x(t) + u(t),

x(0) = 1.

The exact solution of this problem in the case of α = 1 is equal to

Iran. J. Numer. Anal. Optim., Vol. 14, No. 4, 2024, pp 1016–1036



1031 Designing the sinc neural networks ...
x(t) = 0.99999− 0.761547t+ 0.499522t2 − 0.124986t3 + 0.0379117t4

−0.00284627t5,

u(t) =
−
(

tanh(1−t)+0.5
)

cosh(1−t)

cosh(1) .

Figure 5 shows the exact and approximate diagram of the state and con-
trol function. In Table 3, we have expressed the error related to approximated
state and control functions in the number of points and the process time in
the SNN is 2.71 seconds, while it is 2.98 seconds in the MLP.

Figure 5: Exact and approximated state and control functions and their errors for
Example 4.

6 Conclusion

In this work, based on the sinc numerical method, we presented a novel
structure for the SNN and used this network to solve the FOCPs. Compared
to MLP, this network has a simpler structure and fewer variables. The results
obtained from the simulations showed that the method used is more efficient
than the MLP. In general, ANNs have lower computational complexity. We
can increase the accuracy of the trial solution by increasing the number of
training points or different optimization algorithms. One of the important
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Table 3: Parameter values for Example 4

t Error of x(t) (SNN) Error of x(t) (MLP) Error of u(t) (SNN) Error of u(t) (MLP)
0.0 0 0 0.0135 0.0265

0.1 0.0007 0.0017 0.0011 0.0216

0.2 0.0003 0.0029 0.0070 0.0134

0.3 0.0005 0.0034 0.0068 0.0047

0.4 0.0012 0.0031 0.0029 0.0027

0.5 0.0014 0.0020 0.0023 0.0076

0.6 0.0010 0.0005 0.0067 0.0091

0.7 0.0003 0.0011 0.0084 0.0069

0.8 0.0005 0.0024 0.0059 0.0008

0.9 0.0009 0.0027 0.0022 0.0092

1.0 0 0.0015 0.0169 0.0228

advantages of ANNs is that we can train the neural network at some points,
but the final approximation solution can be calculated at each arbitrary point
in the training interval. As a future work, the proposed method can be
utilized to solve delay FOCPs.
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