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Abstract. Many authors have studied ordering results between extreme order statistics from
multiple-outlier models when the observations are independent. However, the independence as-
sumption is not very attractive in many situations due to the complexity of the problems. This
paper focuses on stochastic comparisons of extreme order statistics stemming from multiple-
outlier scale models with dependence. Archimedean copula is used to model dependence struc-
ture among nonnegative random variables. Sufficient conditions are obtained to compare the
largest order statistics in the sense of the usual stochastic, reversed hazard rate, likelihood ratio,
dispersive, star, and Lorenz orders. The smallest order statistics are also compared with respect
to the usual stochastic, hazard rate, star, and Lorenz orders. Here, the sufficient conditions
are based on the weak-super majorization, weak-sub majorization, and p-larger orders between
the model parameters. To illustrate the theoretical establishments, some examples are pro-
vided. Furthermore, some counterexamples are provided to establish that ignorance of sufficient
conditions may not lead to the established ordering results between the order statistics.

Keywords: Archimedean copula; Dispersive order; Hazard rate order; Majorization; Multiple-outlier
model; Reversed hazard rate order.

1 Introduction
Order statistics play a vital role in many fields such as statistical inference, economics, reliability
theory and operations research. Consider a random sample X1, . . . ,Xn from a population. Then,
the ith order statistic is denoted by Xi:n, where i = 1, . . . ,n. In reliability theory, the ith order
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statistic represents the lifetime of an (n − i + 1)-out-of-n system, which functions if at least
n− i+ 1 of n components work. In particular, the order statistics X1:n and Xn:n represent the
lifetimes of series and parallel systems, respectively. Due to the correspondence between the
order statistics and the systems’ reliability, a lot of effort has been put to study ordering results
between order statistics in terms of many well-known stochastic orders. In this paper, we deal
with the comparison of extreme order statistics arising from dependent multiple-outlier scale
models in the sense of the usual stochastic, reversed hazard rate, hazard rate, star, and Lorenz
orders.

Due to the robustness of different estimators of model parameters, multiple-outlier models
have been widely used by many researchers. Now, we present some developments on stochastic
comparisons between order statistics arising from multiple-outlier models.

Kochar and Xu (2011) considered multiple-outlier exponential models. They showed that
more heterogeneity among the scale parameters of the model results more skewed order statistics.
Zhao and Balakrishnan (2012) took similar model and obtained ordering results between the
largest order statistics with respect to the likelihood ratio, reversed hazard rate, hazard rate,
and usual stochastic orderings. Zhao and Balakrishnan (2015) discussed stochastic comparisons
of the largest order statistics from multiple-outlier gamma models in terms of various stochastic
orderings such as the likelihood ratio, hazard rate, star, and dispersive orders. Kochar and
Torrado (2015) established likelihood ratio ordering between the largest order statistics arising
from independent multiple-outlier scale models. Sufficient conditions for the comparison of
the lifetimes of series systems with respect to dispersive order have been obtained by Fang et
al. (2016). They considered that the components of the series systems follow multiple-outlier
Weibull models. Amini Seresht et al. (2016) studied multiple-outlier proportional hazard rate
models and developed ordering results with respect to the star, Lorenz, and dispersive orders.
Furthermore, they proved that more heterogeneity among the multiple-outlier components led
to a more skewed lifetime of a k-out-of-n system consisting of these components. Balakrishnan
and Torrado (2016) obtained conditions under which the likelihood ratio order holds between
largest order statistics under the set-up of multiple-outlier exponential model. Torrado (2017)
developed the comparison result similar to Balakrishnan and Torrado (2016) for the multiple-
outlier scale models when the random variables are independent. Wang and Cheng (2017)
studied an open problem on mean residual life ordering between two parallel systems under
multiple-outlier exponential models, which was proposed by Balakrishnan and Zhao (2013).

It is noted that almost all concerned research in this area has been developed under the
assumption of statistically independent component lifetimes. However, there are some practi-
cal situations, where the condition of statistically mutual independence among the component
lifetimes is evidently unsuitable. For an example, let us consider a mechanical system. The
components of the system are suffering a common stress. Then, it is of huge interest to include
statistical dependence among component lifetimes into the study of stochastic comparison of
the lifetimes of the series and parallel systems. Furthermore, note that due to the complex-
ity of working with the dependent random variables, marginal effort was put to the study of
dependent multiple-outlier models by the researchers (see Navarro et al. 2018). These are the
main motivations to investigate ordering properties of the extreme order statistics arising from
multiple-outlier dependent scale components. The dependency structure among the random
variables is modeled by the concept of Archimedean copulas. We recall that a nonnegative
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random variable X with distribution function FX is said to follow the scale model if there exists
λ > 0 such that FX(x) = F(λx), where F is the baseline distribution function and λ is the scale
parameter.

In this paper, we will develop different ordering results between the largest as well as the
smallest order statistics stemming from multiple-outlier dependent scale models with respect to
several stochastic orderings such as the usual stochastic, hazard rate, reversed hazard rate, star,
and Lorenz orders. Let {X1, . . . ,Xn∗1 ,Xn∗1+1, . . . ,Xn∗} be a set of dependent and heterogeneous ran-
dom observations. The observations are sharing a common Archimedean copula with generator
ψ1 and are taken from the multiple-outlier scale model, where for i = 1, . . . ,n∗1, Xi ∼ F1(λ1x) and
for j = n∗1 +1, . . . ,n∗, X j ∼ F2(λ2x), where λ1, λ2 > 0. Note that F1(·) and F2(·) are two different
baseline distribution functions. Also, let {Y1, . . . ,Yn∗1 ,Yn∗1+1, . . . ,Yn∗} be another set of dependent
and heterogeneous random observations sharing a common Archimedean copula with generator
ψ2, drawn from the multiple-outlier scale model, where for i = 1, . . . ,n∗1, Yi ∼ F1(µ1x) and for
j = n∗1 +1, . . . ,n∗, Yj ∼ F2(µ2x), where µ1, µ2 > 0.

Denote by r1, r̃1 and r2, r̃2 the hazard rate and reversed hazard rate functions for F1 and
F2, respectively. Furthermore, Xn:n(n1,n2), Yn∗:n∗(n∗1,n

∗
2) and X1:n(n1,n2), Y1:n∗(n∗1,n

∗
2) denote the

largest and the smallest order statistics, respectively, arising from {X1, . . . ,Xn1 ,Xn1+1, . . . ,Xn} and
{Y1, . . . ,Yn∗1 ,Yn∗1+1, . . . ,Yn∗}, where 1 ≤ n1 ≤ n∗1 ≤ n∗2 ≤ n2, n = n1 + n2 and n∗ = n∗1 + n∗2. We aim to
establish sufficient conditions, under which the following implications hold:

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

) ⇒ Yn∗:n∗(n∗1,n
∗
2)≤st [≤rh]Xn:n(n1,n2),

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

) ⇒ X1:n(n1,n2)≤st Y1:n∗(n∗1,n
∗
2)

and
(u1, . . . ,u1︸ ︷︷ ︸

n∗1

,u2, . . . ,u2︸ ︷︷ ︸
n∗2

)⪰w (v1, . . . ,v1︸ ︷︷ ︸
n∗1

,v2, . . . ,v2︸ ︷︷ ︸
n∗2

)⇒ X1:n(n1,n2)≤hr Y1:n∗(n∗1,n
∗
2),

where ui = logλi and vi = log µi, i = 1, 2.
The remainder of the paper is rolled out as follows. Some basic definitions and important

lemmas are provided in Section 2. Section 3 consists of two subsections. In Subsection 3.1, we
obtain sufficient conditions, under which two largest order statistics are comparable according
to the usual stochastic order, reversed hazard rate order, likelihood ratio, dispersive order, star
order, and Lorenz order, whereas in Subsection 3.2, we study the usual stochastic order, hazard
rate order, star order, and Lorenz order between two smallest order statistics. We also present
some examples to illustrate the established results. Finally, we conclude the paper in Section 4.

Throughout the paper, we only concern about nonnegative random variables. Increasing and
decreasing mean nondecreasing and nonincreasing, respectively. Also, the prime “′” stands for
the first order derivative.

2 Basic notions
In this section, we recall some basic definitions and well-known concepts of stochastic orders
and majorization. Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two n-dimensional vectors such that



50 Sangita Das and Suchandan Kayal

x ,y ∈ A, where A ⊂ Rn and Rn be an n-dimensional Euclidean space. Also, consider the order
coordinates of the vectors x and y as x1:n ≤ ·· · ≤ xn:n and y1:n ≤ ·· · ≤ yn:n, respectively.

Definition 1. A vector x is said to be

• majorized by another vector y, (denoted by x ⪯m y), if for each l = 1, . . . ,n− 1, we have
∑l

i=1 xi:n ≥ ∑l
i=1 yi:n and ∑n

i=1 xi:n = ∑n
i=1 yi:n;

• weakly submajorized by another vector y, denoted by x ⪯w y, if for each l = 1, . . . ,n, we have
∑n

i=l xi:n ≤ ∑n
i=l yi:n;

• weakly supermajorized by another vector y, denoted by x ⪯w y, if for each l = 1, . . . ,n, we
have ∑l

i=1 xi:n ≥ ∑l
i=1 yi:n.

Note that x ⪯m y implies both x ⪯w y and x ⪯w y. For a brief introduction of majorization
orders and their applications, we refer to Marshall et al. (2011). Now, we present notions of
stochastic orderings. Let X1 and X2 be two nonnegative random variables with probability density
functions fX1 and fX2 , cumulative density functions FX1 and FX2 , survival functions F̄X1 = 1−FX1

and F̄X2 = 1−FX2 , hazard rate functions rX1 = fX1/F̄X1 and rX2 = fX2/F̄X2 , and reversed hazard rate
functions r̃X1 = fX1/FX1 and r̃X2 = fX1/FX2 , respectively.

Definition 2. A random variable X1 is said to be smaller than X2 in the

• likelihood ratio order (denoted by X1 ≤lr X2) if fX2(x)/ fX1(x) is increasing in x > 0,

• hazard rate order (denoted by X1 ≤hr X2) if rX1(x)≥ rX2(x), for all x > 0;

• reversed hazard rate order (denoted by X1 ≤rh X2) if r̃X1(x)≤ r̃X2(x), for all x > 0;

• usual stochastic order (denoted by X1 ≤st X2) if F̄X1(x)≤ F̄X2(x), for all x;

• star order (denoted by X1 ≤∗ X2 or FX1(x)≤∗ FX2(x)) if F−1
X2

FX1(x) is star shaped in the sense

that
F−1

X2
FX1 (x)
x is increasing in x on the support of X1;

• Lorenz order (denoted by X1 ≤Lorenz X2) if 1
E(X1)

∫ F−1
X1

(u)
0 xdFX1(x) ≥ 1

E(X2)

∫ F−1
X2

(u)
0 xdFX2(x), for

all u ∈ (0,1];

• dispersive order, (denoted by X1 ≤disp X2) if F−1
X1

(β )−F−1
X1

(α) ≤ F−1
X2

(β )−F−1
X2

(α) for all
0 < α ≤ β < 1.

Note that both the hazard rate and reversed hazard rate orderings imply the usual stochastic
ordering. Also, star order implies Lorenz order (see Marshall and Olkin 2007). One may refer
to Shaked and Shanthikumar (2007) for a detailed discussion on various stochastic orderings.
The next definition is for the Schur-convex and Schur-concave functions.

Definition 3. A function Ψ : Rn → R is said to be Schur-convex (Schur-concave) in Rn if

x
m
⪰ y ⇒ Ψ(x)≥ (≤)Ψ(y), for all x, y ∈ Rn.
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Throughout the article, we will use the notations. (i) D+ = {(x1, . . . ,xn) : x1 ≥ x2 ≥ ·· · ≥ xn > 0}
and (ii) E+ = {(x1, . . . ,xn) : 0 < x1 ≤ x2 ≤ ·· · ≤ xn}. Set h′(z) = dh(z)

dz . The following consecutive
lemmas due to Kundu et al. (2016) are useful to prove the results in the subsequent sections.
The partial derivative of h with respect to its kth argument is denoted by h(k)(z) = ∂h(z)/∂ zk,
for k = 1, . . . ,n, where z = (z1, . . . ,zn).

Lemma 1. Let h : D+ → R be a function, continuously differentiable on the interior of D+.
Then, for x, y ∈ D+,

x ⪰m y implies h(x)≥ (≤) h(y),

if and only if h(k)(z) is decreasing (increasing) in k = 1, . . . ,n.

Lemma 2. Let h : E+ →R be a function, continuously differentiable on the interior of E+. Then,
for x, y ∈ E+,

x ⪰m y implies h(x)≥ (≤) h(y),

if and only if h(k)(z) is increasing (decreasing) in k = 1, . . . ,n.

The following lemma due to Saunders and Moran (1978) is useful to establish star order
between the order statistics.

Lemma 3. Let {Fλ |λ ∈ R} be a class of distribution functions, such that Fλ is supported on
some interval (a,b)⊆ (0,∞) and has density fλ that does not vanish on any subinterval of (a,b).
Then,

Fλ ≤∗ Fλ ∗ , λ ≤ λ ∗

if and only if
F ′

λ (x)
x fλ (x)

is decreasing in x,

where F ′
λ is the derivative of Fλ with respect to λ .

To model the dependency structure among the random variables, the concept of copulas plays
a vital role. One of the important characteristics of the copula is that it involves the information
of the dependencies between the random variables apart from the behavior of the marginal
distributions. Archimedean copulas are important class of copulas. These are used widely
because of its simplicity. Let F and F̄ be the joint distribution function and the joint survival
function of the random vector X = (X1, . . . ,Xn). Suppose there exist functions C(z) : [0,1]n → [0,1]
and Ĉ(z) : [0,1]n → [0,1] such that for all xi, i ∈ In, where In is the index set

F(x1, . . . ,xn) =C(F1(x1), . . . ,Fn(xn))

and
F̄(x1, . . . ,xn) = Ĉ(F̄1(x1), . . . , F̄n(xn))

hold. Then, C(z) and Ĉ(z) are said to be the copula and survival copula of X, respectively. Here,
F1, . . . ,Fn and F̄1, . . . , F̄n are the univariate marginal distribution functions and survival functions
of the random variables X1, . . . ,Xn, respectively.
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Now, let ψ : [0,∞)→ [0,1] be a nonincreasing and continuous function, satisfying ψ(0) = 1 and
ψ(∞)= 0. Also, let ψ = ϕ−1 = sup{x∈R : ϕ(x)> v} be the right continuous inverse. Furthermore,
suppose ψ satisfies the conditions (i) (−1)iψ i(x) ≥ 0, i = 0, 1, . . . ,d −2 and (ii) (−1)d−2ψd−2 is
nonincreasing and convex. That implies the generator ψ is d-monotone. Then, a copula Cψ is
said to be an Archimedean copula if it can be written as the following form

Cψ(v1, . . . ,vn) = ψ(ϕ(v1)+ · · ·+ϕ(vn)), for all vi ∈ [0,1], i ∈ In.

For further discussion on Archimedean copulas, one may refer to McNeil and Nešlehová (2009);
Nelsen (2006). A few well known Archimedan copulas including different properties of the
generators are enlisted in Table 1. Next lemma is taken from Li and Fang (2015), which has
been used to prove the results in Theorems 1, 7 and 9.

Lemma 4. For two n-dimensional Archimedean copulas Cψ1 and Cψ2, if ϕ2 ◦ψ1 is super-additive,
then Cψ1(z)≤Cψ2(z), for all z ∈ [0,1]n. A function f is said to be super-additive, if f (x)+ f (y)≤
f (x+ y), for all x and y in the domain of f .

3 Main results
This section is completely devoted to establishing sufficient conditions, under which the extreme
order statistics arising from multiple outlier dependent scale models are comparable in different
stochastic senses. The usual stochastic, hazard rate, reversed hazard rate, star, and Lorenz
orders are used in what follows. Throughout this section, we denote two-dimensional vectors by
bold symbols. For example, λ = (λ1,λ2) and µ = (µ1,µ2).

3.1 Orderings between the largest order statistics
This subsection addresses ordering results between the largest order statistics arising from
multiple-outlier models. The following three consecutive theorems present different conditions,
for which the usual stochastic order between the largest order statistics holds.

The distribution functions of Xn∗:n∗(n∗1,n
∗
2) and Yn∗:n∗(n∗1,n

∗
2) are, respectively, given by

FXn∗:n∗ (n∗1,n
∗
2)
(x) = ψ1

[
n∗

∑
i=1

ϕ1(Fi(xλi))

]
= ψ1 [n∗1ϕ1 (F1 (xλ1))+n∗2ϕ1 (F2 (xλ2))] (1)

and

FXn∗:n∗ (n∗1,n
∗
2)
(x) = ψ2

[
n∗

∑
i=1

ϕ2(Fi(xµi))

]
= ψ2 [n∗1ϕ2 (F1 (xµ1))+n∗2ϕ2 (F2 (xµ2))] . (2)

Li et al. (2016) established comparison results between two largest order statistics in the
sense of the usual stochastic order when the underlying random variables follow the dependent
scale models. The authors have used same baseline distribution.

In this section, we consider two sets of dependent observations where the random variables
follow multiple-outliers dependent scale models sharing Archimedean copula with same/different
generators. Here, the first n1 observations of {X1, . . . ,Xn1 ,Xn1+1, . . . ,Xn} have baseline distribution
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function F1 and remaining observations have baseline distribution function F2. Furthermore, as-
sume that first n∗1 observations of {Y1, . . . ,Yn∗1 ,Yn∗1+1, . . . ,Yn∗} have a baseline distribution function
F1, and remaining (n∗−n∗1) observations have baseline distribution function F2. It is also assumed
that the number of observations n (= n1+n2) and n∗ (= n∗1+n∗2) may be different. Now, we inves-
tigate whether the usual stochastic order between Yn∗:n∗(n∗1,n

∗
2) and Xn:n(n1,n2) holds under this

set-up. To obtain this result, we first prove following two theorems. In the following theorem,
it is assumed that the dependence structures of two sets of samples having multiple-outliers
are different. Also, first n∗1 observations of {X1, . . . ,Xn∗1 ,Xn∗1+1, . . . ,Xn∗} have baseline distribution
function F1 and remaining observations have baseline distribution function F2. Before presenting
the first result, we state the following assumption.

Assumption 1. Let X1, . . . ,Xn∗ be n∗ dependent nonnegative random variables sharing Archimedean
(survival) copula with generator ψ1, with Xi ∼ F1(xλ1), for i = 1, . . . ,n∗1 and X j ∼ F2(xλ2), for
j = n∗1 +1, . . . ,n∗. Also, let Y1, . . . ,Yn∗ be n∗ dependent nonnegative random variables sharing
Archimedean copula with generator ψ2, with Yi ∼ F1(xµ1), for i = 1, . . . ,n∗1 and Yj ∼ F2(xµ2), for
j = n∗1 +1, . . . ,n∗. Here, n∗1 +n∗2 = n∗, ψ1 = ϕ−1

1 and ψ2 = ϕ−1
2 .

Theorem 1. Under the set-up as in Assumption 1, let r̃1(x)≥ (≤)r̃2(x) and let n∗1 ≥ (≤)n∗2. Also,
let λ , µ ∈ E+ (D+), ϕ2 ◦ψ1 be super-additive and let ψ1 or ψ2 be log-convex. Then,

(i) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒Yn∗:n∗(n∗1,n
∗
2)≤st Xn∗:n∗(n∗1,n

∗
2), provided r̃1(x)

or r̃2(x) is decreasing;

(ii) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰p (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒Yn∗:n∗(n∗1,n
∗
2)≤st Xn∗:n∗(n∗1,n

∗
2), provided xr̃1(x)

or xr̃2(x) is decreasing.

Proof. Here, we prove the first part. Second part can be proved by similar argument. Denote
A(λ ,ψ1,x) = FXn∗:n∗ (n∗1,n

∗
2)
(x) and B(µ,ψ2,x) = FYn∗:n∗ (n∗1,n

∗
2)
(x) (given in (1) and (2)). Using the fact

that ϕ2 ◦ψ1 is super-additive, one can easily obtain A(µ,ψ1,x)≤ B(µ,ψ2,x). Therefore, to prove
the desired result, we have to show that A(λ ,ψ1,x)≤ A(µ,ψ1,x). This is equivalent to establish
that the function A(λ ,ψ1,x) is increasing and Schur-concave with respect to λ (see Marshall et
al. 2011, Theorem A.8). Furthermore, on differentiating A(λ ,ψ1,x) with respect to λi partially,
we get

∂A(λ ,ψ1,x)
∂λi

= xn∗i r̃i(xλi)
ψ1 [ϕ1 [Fi (xλi)]]

ψ ′
1 [ϕ1 [Fi (xλi)]]

ψ ′
1

[
n∗

∑
m=1

ϕ1(Fm(xλm))

]
, (3)

where i = 1,2. From (3), it is not difficult to check that ∂A(λ ,ψ1,x)
∂λi

≥ 0 for i = 1,2. Thus, A(λ ,ψ1,x)
is increasing in λi, for i = 1,2. To establish Schur-concavity of A(λ ,ψ1,x), in view of Lemma 2
(Lemma 1), we only need to show that for 1 ≤ i ≤ j ≤ n∗, the following inequality holds:

∂A(λ ,ψ1,x)
∂λi

− ∂A(λ ,ψ1,x)
∂λ j

≥ (≤)0, for λ ∈ E+ (D+). (4)

Next, consider three cases.
Case I: For 1 ≤ i ≤ j ≤ n∗1, λi = λ j = λ1. In this case, ∂A(λ ,ψ1,x)

∂λi
− ∂A(λ ,ψ1,x)

∂λ j
= 0.
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Case II: For n∗1 +1 ≤ i ≤ j ≤ n∗, λi = λ j = λ2. Here, ∂A(λ ,ψ1,x)
∂λi

− ∂A(λ ,ψ1,x)
∂λ j

= 0.
Case III: For 1 ≤ i ≤ n∗1 and n∗1 +1 ≤ j ≤ n∗, λi = λ1 and λ j = λ2. For this case, consider λ1 ≤ (≥
)λ2, which implies ϕ1(F1(xλ1)) ≥ (≤)ϕ1(F1(xλ2)). Furthermore, under the given assumption, we
get ϕ1(F1(xλ2))≥ (≤)ϕ1(F2(xλ2)). Hence, ϕ1(F1(xλ1))≥ (≤)ϕ1(F2(xλ2)). Again, ψ1 is log-convex.
Therefore, we have

−ψ1(w)
ψ ′

1(w)

∣∣∣
w=ϕ1[F1(xλ1)]

≥ (≤)− ψ1(w)
ψ ′

1(w)

∣∣∣
w=ϕ1[F2(xλ2)]

. (5)

Moreover, r̃1(w) is decreasing in w > 0; hence

r̃1(xλ1)≥ (≤)r̃1(xλ2). (6)

Also, r̃1(x)≥ (≤)r̃2(x) gives
r̃1(xλ2)≥ (≤)r̃2(xλ2). (7)

Equations (6), (7) and n∗1 ≥ (≤)n∗2, together imply

n∗1r̃1(xλ1)≥ (≤)n∗2r̃2(xλ2). (8)

Finally, combining (5) and (8), we obtain (4).

The following corollary, which is a direct consequence of Theorem 1 presents some special
cases.

Corollary 1. In addition to Assumption 1, let ψ1 = ψ2 = ψ, let n∗1 ≥ (≤)n∗2, and let ψ be
log-convex. Furthermore, let λ , µ ∈ E+ (D+). Then,

(i) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒Yn∗:n∗(n∗1,n
∗
2)≤st Xn∗:n∗(n∗1,n

∗
2), provided r̃1(x)

or r̃2(x) is decreasing and r̃1(x)≥ (≤)r̃2(x);

(ii) for r̃1 = r̃2 = r̃, we have

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n∗1,n
∗
2)≤st Xn∗:n∗(n∗1,n

∗
2),

provided r̃(x) is decreasing.

The next theorem states that the ordering result holds between the largest order statistics
Xn:n(n1,n2) and Xn∗:n∗(n∗1,n

∗
2) according to the usual stochastic ordering. Here, the samples are

collected from multiple-outlier dependent scale models. Also, it is assumed that the samples are
sharing Archimedean copula with a common generator.

Assumption 2. Let X1, . . . ,Xn∗ be n∗ dependent nonnegative random variables sharing Archimedean
(survival) copula with generator ψ1, such that Xi ∼ F1(xλ1), for i = 1, . . . ,n∗1 and X j ∼ F2(xλ2),
for j = n∗1 +1, . . . ,n∗. We assume that there exist two natural numbers n1 and n2 such that
1 ≤ n1 ≤ n∗1 ≤ n∗2 ≤ n2. Also, n = n1 +n2, n∗ = n∗1 +n∗2 and ψ1 = ϕ−1

1 .
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Theorem 2. Let Assumption 2 hold with F1 ≥ F2. Then, for λ ∈ D+, we have

(n1,n2)⪰w (n∗1,n
∗
2)⇒ Xn∗:n∗(n∗1,n

∗
2)≤st Xn:n(n1,n2).

Proof. The distribution functions of Xn:n(n1,n2) and Xn∗:n∗(n∗1,n
∗
2) can be, respectively, written as

FXn:n(n1,n2)(x) = ψ1

(
n

∑
i=1

ϕ1 (Fi (xλi))

)
= ψ1[n1ϕ1 (F1 (xλ1))+n2ϕ1 (F2 (xλ2))]

and

FXn∗:n∗ (n∗1,n
∗
2)
(x) = ψ1

(
n∗

∑
i=1

ϕ1 (Fi (xλi))

)
= ψ1[n∗1ϕ1 (F1 (xλ1))+n∗2ϕ1 (F2 (xλ2))].

To obtain the desired result, one needs to show FXn:n(n1,n2)(x)≤ FXn∗:n∗ (n∗1,n
∗
2)
(x), which is equivalent

to establish

ψ1

(
n

∑
i=1

ϕ1 (Fi (xλi))

)
≤ ψ1

(
n∗

∑
i=1

ϕ1 (Fi (xλi))

)
⇒ n1ϕ1 (F1 (xλ1))+n2ϕ1 (F2 (xλ2))≥ n∗1ϕ1 (F1 (xλ1))+n∗2ϕ1 (F2 (xλ2))

⇒ (n∗1 −n1)ϕ1 (F1 (xλ1))≤ (n2 −n∗2)ϕ1 (F2 (xλ2)) . (9)

Now, (n1,n2) ⪰w (n∗1,n
∗
2) ⇒ (n1 + n2) ≥ (n∗1 + n∗2) ⇒ (n2 − n∗2) ≥ (n∗1 − n1) ≥ 0. Also, λ1 ≥ λ2 ⇒

ϕ1 (F2 (xλ2))≥ ϕ1 (F1 (xλ1))≥ 0. Combining above two inequalities, we have the inequality given
in (9).

Next, we observe that two largest order statistics Xn:n(n1,n2) and Yn∗:n∗(n∗1,n
∗
2) are comparable

with respect to the usual stochastic order under the presence of Archimedean copula. It is worth
mentioning that the order statistics are constructed from two multiple-outlier dependent samples
having sample sizes n and n∗. The pairs of the sizes of both the outliers (n1,n2) and (n∗1,n

∗
2) are

assumed to be connected according to the weakly submajorization order and p-larger order. The
following assumption is useful for the next theorem.

Assumption 3. Let X1, . . . ,Xn be n nonnegative dependent random variables sharing Archimedean
( survival) copula with generator ψ1, such that Xi ∼ F1(xλ1), for i = 1, . . . ,n1 and X j ∼ F2(xλ2),
for j = n1 +1, . . . ,n. Also, let Y1, . . . ,Yn∗ be n∗ dependent nonnegative random variables sharing
Archimedean copula with generator ψ2, such that Yi ∼ F1(xµ1), for i = 1, . . . ,n∗1 and Yj ∼ F2(xµ2),
for j = n∗1 +1, . . . ,n∗. Here, 1 ≤ n1 ≤ n∗1 ≤ n∗2 ≤ n2, n = n1 +n2 and n∗ = n∗1 +n∗2.

The following result states as remark immediately follows from Theorems 1 and 2.

Remark 1. Assume that Assumption 3 holds with r̃1(x) ≤ r̃2(x). Let (n1,n2) ⪰w (n∗1,n
∗
2), let

λ , µ ∈ D+, let ϕ2 ◦ψ1 be super-additive, and let ψ1 or ψ2 be log-convex.

(i) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒Yn∗:n∗(n∗1,n
∗
2)≤st Xn:n(n1,n2), provided r̃1(x)

or r̃2(x) is decreasing;
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(ii) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰p (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒Yn∗:n∗(n∗1,n
∗
2)≤st Xn:n(n1,n2), provided xr̃1(x)

or xr̃2(x) is decreasing.

The condition stated in Remark 1 “ϕ2 ◦ψ1 is super-additive” demonstrates that the copula
having generator ψ2 is more positively dependent than that having generator ψ1. Therefore, from
Remark 1(i), one can conclude that in the presence of the Archimedean copula for more positively
dependent components having multiple-outlier dependent scale models, less heterogeneous scale
parameter vector (with respect to the weakly supermajorized order) leads to less reliable parallel
system in the sense of the stochastically smaller lifetime.

Remark 2. From Table 1, one can see that in literature, there are several Archimedean copulas
whose generators are satisfied all the conditions of Theorems 1 and 2 and Remark 1. For
example, we can consider Independence copula, Clayton copula, Ali-Mikhail-Haq copula, and
Gumbel copula.

We now present a numerical example, which provides an illustration of the result in Remark
1.

Example 1. Set λ =(λ1,λ2)= (5,2), µ =(µ1,µ2)= (6,3), (n1,n2)= (1,11), (n∗1,n
∗
2)= (5,6), ψ1(x)=

e−x
1
9 , ψ2(x) = e−x

1
10 , x > 0. Consider the baseline distribution functions as F2(x) = 1− e1−(1+x2)

1
5

and F1(x) = 1−e−x, x > 0. Here, both the reversed hazard rate functions r̃1 and r̃2 are decreasing
and satisfy r̃1(x)≤ r̃2(x), for x > 0. Furthermore, ψ1 and ψ2 are log-convex and ϕ2 ◦ψ1 is super-
additive (see Table 1). Thus, all the conditions of Remark 1 are satisfied. Now, we plot the
graphs of FX12:12(1,11)(x) and FY11:11(5,6)(x) in Figure 1, which shows that Y11:11(5,6)≤st X12:12(1,11)
holds.
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Figure 1: Plots of the distribution functions FX12:12(1,11)(x) and FY11:11(5,6)(x) as in Example 1.

Next, we present a counterexample to illustrate that the result does not hold if r̃1(x)≥ r̃2(x)
and λ ∈ E+ in Remark 1.
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Counterexample 1. Consider λ =(λ1,λ2)= (2,6), µ =(µ1,µ2)= (8,2), (n1,n2)= (1,8), (n∗1,n
∗
2)=

(3,4), ψ1(x) = e−x
1
3 , ψ2(x) = e−x

1
10 , x > 0. Baseline distribution functions are taken as F1(x) =

1−e−x and F2(x) = 1− (1+2x)−0.5, x > 0. It can be seen that all the conditions of Remark 1 are
satisfied except λ ∈ D+ and r̃1(x)≤ r̃2(x). Now, we plot the graph of FX9:9(1,8)(x)−FY7:7(3,4)(x) in
Figure 2, which reveals that Y7:7(3,4)≰st X9:9(1,8).
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Figure 2: Plot of FX9:9(1,8)(x)−FY7:7(3,4)(x) as in Counterexample 1

In the preceding results, we have derived sufficient conditions, under which the largest order
statistics from multiple-outlier dependent scale models obey the usual stochastic order. However,
naturally, it is of interest to extend the ordering results to some other stronger concepts of the
stochastic orders. In this part of the subsection, we establish sufficient conditions, under which
the reversed hazard rate order holds between the largest order statistics. The following theorem
shows that the largest order statistics Xn∗:n∗(n∗1,n

∗
2) and Yn∗:n∗(n∗1,n

∗
2) have the reversed hazard rate

ordering when the scale parameters are associated with the weakly supermajorization order. The
samples are heterogeneous and follow multiple-outlier dependent scale models.

Theorem 3. Let Assumption 1 hold with r1 = r2 = r, n∗1 ≥ (≤) n∗2 and ψ1 = ψ2 = ψ. Also,
suppose that ψ is log-concave, that 1−ψ

ψ ′ is decreasing, and that 1−ψ
ψ ′ [

1−ψ
ψ ′ ]′ is increasing. Then,

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n∗1,n
∗
2)≤rh Xn∗:n∗(n∗1,n

∗
2),

provided λ , µ ∈ E+ (D+), r(x) is decreasing and xr(x) is decreasing and convex.

Proof. Under the given assumption, r1 = r2 = r implies F1 = F2 = F. The reversed hazard rate
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function of Xn∗:n∗(n∗1,n
∗
2) is

r̃Xn∗:n∗ (n∗1,n
∗
2)
(x) =

ψ ′
[
∑n∗

i=1 ϕ (F (xλi))
]

ψ
[
∑n∗

i=1 ϕ (F (xλi))
] [ n∗

∑
i=1

n∗1λi f (xλi)

ψ ′[ϕ (F (xλi))]

]

=
ψ ′
[
∑n∗

i=1 ϕ (F (xλi))
]

ψ
[
∑n∗

i=1 ϕ (F (xλi))
] [ n∗

∑
i=1

n∗1λir(xλi)[1−ψ[ϕ (F (xλi))]]

ψ ′[ϕ (F (xλi))]

]
,

where f is the probability density function corresponding to F. Denote z = n∗1ϕ (F (xλ1)) +
n∗2ϕ (F (xλ2)) . The partial derivative of r̃Xn∗:n∗ (n∗1,n

∗
2)
(x) with respect to λi is obtained as

∂ [r̃Xn∗:n∗ (n∗1,n
∗
2)
(x)]

∂λi
= n∗i xr(xλi)

d
dz

[
ψ ′(z)
ψ(z)

][
1−ψ [ϕ [F (xλi)]]

ψ ′[ϕ (F (xλi))]

][ n∗

∑
i=1

λi f (xλi)

ψ ′[ϕ (F (xλi))]

]

+n∗i xλi [r(xλi)]
2 ψ ′(z)

ψ(z)

[
1−ψ(v)

ψ ′(v)
d
dv

[
1−ψ(v)

ψ ′(v)

]]
v=ϕ(F(xλi))

+n∗i
d

dw
[wr(w)]w=xλi

[
1−ψ [ϕ [F (xλi)]]

ψ ′ [ϕ [F (xλi)]]

]
ψ ′(z)
ψ(z)

, (10)

for i = 1,2. Utilizing (Marshall et al., 2011, Theorem A.8), to obtain the desired result, we need
to prove that r̃Xn∗:n∗ (n∗1,n

∗
2)
(x) is decreasing and Schur-convex with respect to λ . Using the given

assumptions and (10), the decreasing property of r̃Xn∗:n∗ (n∗1,n
∗
2)
(x) with respect to λ is obvious.

Furthermore, according to Lemma 2 (Lemma 1), to show the Schur-convexity of r̃Xn∗:n∗ (n∗1,n
∗
2)
(x),

we have to establish for 1 ≤ i ≤ j ≤ n∗,[
∂ [r̃Xn∗:n∗ (n

∗
1,n

∗
2)(x)]

∂λi
−

∂ [r̃Xn∗:n∗ (n
∗
1,n

∗
2)(x)]

∂λ j

]
≤ (≥)0, for λ ∈ E+ (D+). (11)

Now, consider the following three cases.
Case I: For 1 ≤ i ≤ j ≤ n∗1, λi = λ j = λ1. Here,

∂ [r̃Xn∗:n∗ (n
∗
1 ,n

∗
2)
(x)]

∂λi
−

∂ [r̃Xn∗:n∗ (n
∗
1 ,n

∗
2)
(x)]

∂λ j
= 0.

Case II: For n∗1 +1 ≤ i ≤ j ≤ n∗, λi = λ j = λ2. Hence,
∂ [r̃Xn∗:n∗ (n

∗
1 ,n

∗
2)
(x)]

∂λi
−

∂ [r̃Xn∗:n∗ (n
∗
1 ,n

∗
2)
(x)]

∂λ j
= 0.

Case III: For 1 ≤ i ≤ n∗1 and n∗1 +1 ≤ j ≤ n∗, λi = λ1 and λ j = λ2. Consider λ1 ≤ λ2, which gives
ϕ(F(xλ1)) ≥ ϕ(F(xλ2)). Here, we only discuss the proof when λ1 ≤ λ2. The other case when
λ1 ≥ λ2 can be proved in the similar way. The concavity property of lnψ provides d

dz

[
ψ ′(z)
ψ(z)

]
≤ 0.

Again, using decreasing property of 1−ψ
ψ ′ , we have

1−ψ(w)
ψ ′(w)

∣∣∣
w=ϕ [F(xλ1)]

≤ 1−ψ(w)
ψ ′(w)

∣∣∣
w=ϕ [F(xλ2)]

≤ 0. (12)

Furthermore, it has been assumed that r(x) is decreasing and that xr(x) is decreasing and convex.
Therefore, using n∗1 ≥ n∗2, we have

r(xλ1)≥ r(xλ2), (13)

n∗1xλ1r(xλ1)≥ n∗2xλ2r(xλ2), and (14)
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n∗1
d

dw
[wr(w)]w=xλ1

≤ n∗2
d

dw
[wr(w)]w=xλ2

≤ 0. (15)

Moreover, 1−ψ(w)
ψ ′(w)

d
dw [

1−ψ(w)
ψ ′(w) ] is increasing. Therefore, we obtain the following inequality:[

1−ψ(w)
ψ ′(w)

d
dw

[
1−ψ(w)

ψ ′(w)

]]
w=ϕ [F(xλ1)]

≥
[

1−ψ(w)
ψ ′(w)

d
dw

[
1−ψ(w)

ψ ′(w)

]]
w=ϕ [F(xλ2)]

≥ 0. (16)

Now, combining (12)–(16) and the given assumptions, we obtain that the inequality given by
(11) holds.

In the next theorem, we show that the largest order statistics Xn:n(n1,n2) and Xn∗:n∗(n∗1,n
∗
2)

are comparable according to the reversed hazard rate order.

Theorem 4. Let Assumption 2 hold with ψ1 = ψ and r1 = r2 = r. Then, for λ ∈ D+, we have

(n1,n2)⪰w (n∗1,n
∗
2)⇒ Xn∗:n∗(n∗1,n

∗
2)≤rh Xn:n(n1,n2),

provided lnψ is concave and 1−ψ
ψ ′ and xr(x) are decreasing.

Proof. The stated result will be proved, if we show that r̃Xn:n(n1,n2)(x) ≥ r̃Xn∗:n∗ (n∗1,n
∗
2)
(x). Equiva-

lently,

ψ ′

[
n

∑
i=1

ϕ (F (xλi))

]

ψ

[
n

∑
i=1

ϕ (F (xλi))

] ×
ψ

[
n∗

∑
i=1

ϕ (F (xλi))

]

ψ ′

[
n∗

∑
i=1

ϕ (F (xλi))

] ≥

n∗

∑
i=1

λir(xλi)[1−ψ[ϕ (F (xλi))]]

ψ ′[ϕ (F (xλi))]
n

∑
i=1

λir(xλi)[1−ψ[ϕ (F (xλi))]]

ψ ′[ϕ (F (xλi))]

. (17)

The preceding inequality holds if the following two inequalities are satisfied:

ψ ′
[
∑n∗

i=1 ϕ (F (xλi))
]

ψ
[
∑n∗

i=1 ϕ (F (xλi))
] ≥ ψ ′ [∑n

i=1 ϕ (F (xλi))]

ψ [∑n
i=1 ϕ (F (xλi))]

⇔ (n∗1 −n1)ϕ(F(xλ1))≤ (n2 −n∗2)ϕ(F(xλ2)) (18)

and
n∗

∑
i=1

λir(xλi)[1−ψ[ϕ (F (xλi))]]

ψ ′[ϕ (F (xλi))]
≥

n

∑
i=1

λir(xλi)[1−ψ[ϕ (F (xλi))]]

ψ ′[ϕ (F (xλi))]

⇔ (n∗1 −n1)
λ1r(xλ1)[1−ψ[ϕ (F (xλ1))]]

ψ ′[ϕ (F (xλ1))]
≥ (n2 −n∗2)

λ2r(xλ2)[1−ψ[ϕ (F (xλ2))]]

ψ ′[ϕ (F (xλ2))]
. (19)

Furthermore,

(n1,n2)⪰w (n∗1,n
∗
2)⇒ (n1 +n2)≥ (n∗1 +n∗2)⇒ (n2 −n∗2)≥ (n∗1 −n1)≥ 0. (20)

Also,
λ1 ≥ λ2 ⇒ ϕ (F (xλ2))≥ ϕ (F (xλ1))≥ 0.

Moreover, 1−ψ
ψ ′ is decreasing. Thus,

1−ψ(w)
ψ ′(w)

∣∣∣
w=ϕ [F(xλ2)]

≤ 1−ψ(w)
ψ ′(w)

∣∣∣
w=ϕ [F(xλ1)]

≤ 0. (21)
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Using the decreasing property of xr(x), we have

xλ1r(xλ1)≤ xλ2r(xλ2). (22)

Combining (20), (21), and (22), the inequality (19) can be obtained. Using (20) and the assump-
tion that ψ is log-concave, we get the inequality (18).

Now, we are ready to state a result which shows that the largest order statistics Xn:n(n1,n2)
and Yn∗:n∗(n∗1,n

∗
2) can be compared with respect to the reversed hazard rate order. Here, n and

n∗ may be different.

Theorem 5. Let the set-up in Assumption 3 hold with ψ1 = ψ2 = ψ and r1 = r2 = r. Also,
assume λ , µ ∈ D+ and (n1,n2)⪰w (n∗1,n

∗
2). Then,

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n∗1,n
∗
2)≤rh Xn:n(n1,n2),

provided ψ is log-concave, 1−ψ
ψ ′ is decreasing, 1−ψ

ψ ′ [
1−ψ

ψ ′ ]′ is increasing, xr(x) is decreasing and
convex, and r(x) is decreasing.

Proof. According to Theorem 3, we have

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n∗1,n
∗
2)≤rh Xn∗:n∗(n∗1,n

∗
2). (23)

Also, from Theorem 4, we get

(n1,n2)⪰w (n∗1,n
∗
2)⇒ Xn∗:n∗(n∗1,n

∗
2)≤rh Xn:n(n1,n2). (24)

Thus, the proof of the theorem follows after combining the inequalities given by (23) and (24).

Below, we consider an example to illustrate Theorem 5.

Example 2. Consider λ =(3,2), µ =(6,5), (n1,n2)= (2,10), (n∗1,n
∗
2)= (3,4), ψ(x)= e

1
d (1−ex), x>

0. Also, let the baseline distribution be F(x) = 1−
( x

b

)−a
, x ≥ b > 0, a > 0. It is not hard to see

that, for d = 0.2, a = 5 and b = 1, all the conditions of Theorem 5 are satisfied (see Table 1).
Furthermore, we plot the graph of FX12:12(2,10)(x)/FY7:7(3,4)(x) in Figure 3. This shows that the
result in Theorem 5 holds.

Remark 3. Let us consider (i) Independence copula with generator ψ(x) = e−x, x > 0 and (ii)
Ali-Mikhail-Haq copula with generator ψ(x) = 1−σ

ex−σ , σ ∈ [−1,0), x > 0. One can easily check that
the above two copulas satisfies all the conditions of Theorems 3– 5 (see Table 1).

Now, we derive conditions such that the star order holds between Xn∗:n∗(n∗1,n
∗
2) and Yn∗:n∗(n∗1,n

∗
2).

Denote λ2:2 = max{λ1,λ2}, λ1:2 = min{λ1,λ2}, µ2:2 = max{µ1,µ2}, and µ1:2 = min{µ1,µ2}.
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Figure 3: Plot of the ratio of two distribution functions FX12:12(2,10)(x)/FY7:7(3,4)(x) in Example 2.

Theorem 6. Under the set-up as in Assumption 1, with r̃1 = r̃2 = r̃ and ψ1 = ψ2 = ψ, we have
λ2:2

λ1:2
≥ µ2:2

µ1:2
⇒ Yn∗:n∗(n∗1,n

∗
2)≤∗ Xn∗:n∗(n∗1,n

∗
2),

provided ψ
ψ ′ is decreasing and convex, xr̃′(x)

r̃(x) is decreasing, and xr̃(x) is increasing.

Proof. Under the assumption, r̃1 = r̃2 = r̃ gives F1 =F2 =F. The distribution functions of Xn∗:n∗(n∗1,n
∗
2)

and Yn∗:n∗(n∗1,n
∗
2) are, respectively, given by

FXn∗:n∗ (n∗1,n
∗
2)
(x) = ψ [n∗1ϕ (F (xλ1))+n∗2ϕ (F (xλ2))]

and
FYn∗:n∗ (n∗1,n

∗
2)
(x) = ψ [n∗1ϕ (F (xµ1))+n∗2ϕ (F (xµ2))] .

To obtain the required result, we consider two cases.
Case I: λ1 +λ2 = µ1 +µ2.

For convenience, we assume λ1 +λ2 = µ1 + µ2 = 1. For this case, it is clear that (λ1,λ2) ⪰m

(µ1,µ2). Now, take λ2 = λ ≥ λ1, µ2 = µ ≥ µ1. Hence, λ1 = 1−λ and µ1 = 1−µ. Based on this,
the distribution functions of Xn∗:n∗(n∗1,n

∗
2) and Yn∗:n∗(n∗1,n

∗
2) can be written in the following form

FXn∗:n∗ (n∗1,n
∗
2)
(x)

de f
= Fλ (x) = ψ [n∗1ϕ (F (x(1−λ )))+n∗2ϕ (F (xλ ))]

and
FYn∗:n∗ (n∗1,n

∗
2)
(x)

de f
= Fµ(x) = ψ [n∗1ϕ (F (x(1−µ))+n∗2ϕ (F (xµ))] .

Now, according to Lemma 3, we have to show that F ′
λ (x)

x fλ (x)
is decreasing in x ∈R+, for λ ∈ (1/2,1].

The derivative of Fλ , with respect to λ is given by

F ′
λ (x) =

[
−xn∗1r̃(x(1−λ ))

ψ[ϕ (F (x(1−λ )))]
ψ ′[ϕ (F (x(1−λ )))]

+ xn∗2r̃(xλ )
ψ[ϕ (F (xλ ))]
ψ ′[ϕ (F (xλ ))]

]
×ψ ′ [n∗1ϕ (F (x(1−λ )))+n∗2ϕ (F (xλ ))] . (25)
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Also, the probability density function corresponding to Fλ is

fλ (x) =

[
(1−λ )n∗1r̃(x(1−λ ))

ψ[ϕ (F (x(1−λ )))]
ψ ′[ϕ (F (x(1−λ )))]

+λn∗2r̃(xλ )
ψ[ϕ (F (xλ ))]
ψ ′[ϕ (F (xλ ))]

]
×ψ ′ [n∗1ϕ (F (x(1−λ )))+n∗2ϕ (F (xλ ))] . (26)

Therefore,

F ′
λ (x)

x fλ (x)
=

λ +

 n∗2r̃(xλ )
ψ[ϕ (F (xλ ))]
ψ ′[ϕ (F (xλ ))]

n∗1r̃(x(1−λ ))
ψ[ϕ (F (x(1−λ )))]
ψ ′[ϕ (F (x(1−λ )))]

−1


−1

−1

.

Thus, it suffices to show that L(x) =
(

r̃(xλ ) ψ[ϕ(F(xλ ))]
ψ ′[ϕ(F(xλ ))]

)
/
(

r̃(x(1−λ )) ψ[ϕ(F(x(1−λ )))]
ψ ′[ϕ(F(x(1−λ )))]

)
is decreasing

in x ∈ R+, for λ ∈ (1/2,1]. The derivative of L(x) with respect to x is obtained as

L′(x)
sign
=

λ r̃′(xλ )
r̃(xλ )

+λ r̃(xλ )
[

ψ[ϕ(F(xλ ))]
ψ ′[ϕ(F(xλ ))]

]′
− (1−λ )r̃′(x(1−λ ))

r̃((1−λ )x)

−(1−λ )r̃(x(1−λ ))
[

ψ[ϕ(F(x(1−λ )))]
ψ ′[ϕ(F(x(1−λ )))]

]′
.

Under the assumptions made, xr̃′(x)
r̃(x) is decreasing and xr̃(x) is increasing. Therefore, for λ ∈

(1/2,1],

xλ r̃′(xλ )
r̃(xλ )

≤ x(1−λ )r̃′(x(1−λ ))
r̃(x(1−λ ))

≤ 0 and xλ r̃(xλ )≥ x(1−λ )r̃(x(1−λ ))≥ 0. (27)

Also, since ψ
ψ ′ is decreasing and convex, we have[

ψ[ϕ(F(xλ ))]
ψ ′[ϕ(F(xλ ))]

]′
≤
[

ψ[ϕ(F(x(1−λ )))]
ψ ′[ϕ(F(x(1−λ )))]

]′
≤ 0. (28)

Now, combining (27) and (28), we get L′(x)≤ 0, for x ∈ R+.
Case II. λ1 +λ2 ̸= µ1 +µ2.

In this case, we can take λ1+λ2 = k(µ1+µ2), where k is a scalar. Hence, (kµ1,kµ2)⪯m (λ1,λ2).
Let us consider n∗ dependent nonnegative random variables sharing Archimedean copula with
generator ψ, such that Zi ∼ F(kµ1x), for i= 1, . . . ,n∗1 and Z j ∼ F(kµ2x), for j = n∗1 +1, . . . ,n∗. Here,
n∗1 +n∗2 = n∗. Then, from Case I, we have Zn∗:n∗(n∗1,n

∗
2) ≤∗ Xn∗:n∗(n∗1,n

∗
2). Furthermore, star order

is scale invariant, and hence we obtain Yn∗:n∗(n∗1,n
∗
2)≤∗ Xn∗:n∗(n∗1,n

∗
2).

Remark 4. Let us consider ψ(x) = e−x, x > 0 in Theorem 6. Then, Theorem 6 reduces to
(Zhang et al., 2019, Theorem 3.14) when α1 = α2 = 1.

Using the fact that the star order implies the Lorenz order, the following result is a direct
consequence of Theorem 6. Furthermore, since the Lorenz order is mainly used to compare the
income distributions, the following corollary is more interesting from the point of its applications
in the study of incomes.
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Corollary 2. Under the set-up as in Theorem 6,

λ2:2

λ1:2
≥ µ2:2

µ1:2
⇒ Yn∗:n∗(n∗1,n

∗
2)≤Lorenz Xn∗:n∗(n∗1,n

∗
2),

provided ψ
ψ ′ is decreasing and convex, xr̃′(x)

r̃(x) is decreasing, and xr̃(x) is increasing.

In the following theorem, an interesting result has been developed to compare Yn∗:n∗(n∗1,n
∗
2)

and Xn∗:n∗(n∗1,n
∗
2) according to the dispersive order.

Theorem 7. Under the same assumptions of Theorem 6, let us consider ψ
ψ ′ be decreasing and

convex, r̃(x), xr̃′(x)
r̃(x) be decreasing, and xr̃(x) be increasing. Also, let λ2 ≤ µ2 ≤ µ1 ≤ λ1. Then,

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n∗1,n
∗
2)≤disp Xn∗:n∗(n∗1,n

∗
2).

Proof. Ahmed et al. (1986) established that, for two continuous random variables X and Y , if
X ≤∗ Y holds, then X ≤st Y ⇒ X ≤disp Y. Therefore, from Corollary 1(ii), we have Yn∗:n∗(n∗,n∗)≤st

Xn∗:n∗(n∗,n∗). Hence, considering Theorem 6, we can conclude that the required result holds.

Remark 5. It is notable that, in Theorem 7, if we take ψ(x) = e−x, x > 0, then Theorem 7
reduces to (Zhang et al., 2019, Theorem 3.15(i)) when α1 = α2 = 1.

Remark 6. Let F(x) = ( x
a)

l, 0 < x ≤ a. For this baseline distribution, it can be easily checked
that r̃(x), xr̃′(x)

r̃(x) are decreasing and xr̃(x) is increasing. Therefore, we can consider the power
distribution as the baseline distribution function in Theorems 6 and 7.

The following theorem provides some conditions for comparing two largest order statistics
Xn:n(n1,n2) and Yn∗:n∗(n∗1,n

∗
2) according to the likelihood ratio order. This can be proved by the

similar approach of Theorem 3.12 of Torrado (2017). Here, we consider ψ(x) = e−x, x > 0, as the
generator of the Independence copula. Also, denote u(x) = xr̃(x), η(x) =− x f ′(x)

f (x) and v(x) = xr̃′(x)
r̃(x) .

Theorem 8. Let X1, . . . ,Xn be n nonnegative dependent random variables sharing indepen-
dence copula with generator ψ, such that Xi ∼ F(xλ1), for i = 1, . . . ,n∗1 and X j ∼ F(xλ2), for
j = n∗1 +1, . . . ,n∗. Also, let Y1, . . . ,Yn be n dependent nonnegative random variables sharing In-
dependence copula with generator ψ, such that Yi ∼ F(xµ1), for i = 1, . . . ,n1 and Yj ∼ F(xµ2),
for j = n1 +1, . . . ,n. Assume that v(x) is decreasing and that η(x), x2r̃(x), and u(x)v′(x) are in-
creasing. Suppose µ1 ≤ λ1 ≤ λ2 ≤ µ2 and 1 ≤ n1 ≤ n∗1 ≤ n∗2 ≤ n2, n = n1 +n2, n∗ = n∗1 +n∗2. Then,
(n1,n2)⪰w (n∗1,n

∗
2) and

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ Xn:n(n1,n2)≤lr Yn∗:n∗(n∗1,n
∗
2).

3.2 Orderings between the smallest order statistics
In the previous subsection, we focus on the conditions, under which the largest order statistics
are comparable according to various stochastic orders. Here, we develop conditions such that the
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usual stochastic, hazard rate, star, and Lorenz orders hold between the smallest order statistics.
The reliability functions of X1:n∗(n∗1,n

∗
2) and Y1:n∗(n∗1,n

∗
2) are, respectively, given by

F̄X1:n∗ (n∗1,n
∗
2)
(x) = ψ1

[
n∗

∑
i=1

ϕ1 (F̄i (xλi))

]
= ψ1 [n∗1ϕ1 (F̄1 (xλ1))+n∗2ϕ1 (F̄2 (xλ2))] (29)

and

F̄Y1:n∗ (n∗1,n
∗
2)
(x) = ψ2

[
n∗

∑
i=1

ϕ2 (F̄i (xµi))

]
= ψ2 [n∗1ϕ2 (F̄1 (xµ1))+n∗2ϕ2 (F̄2 (xµ2))] . (30)

Li et al. (2016) compared two series systems with same number of components in the sense of
the usual stochastic order when the corresponding random variables follow the dependent scale
model with same baseline distribution function.

Here, we consider multiple-outlier models with different baseline distribution functions and
prove the usual stochastic order between X1:n(n1,n2) and Y1:n∗(n∗1,n

∗
2). This is presented in The-

orem 7. To obtain this result, let us first prove the following two theorems. In the following
theorems, it is assumed that the samples are heterogeneous and taken from the multiple-outlier
dependent scale models with different baseline F1 and F2. We now consider the following as-
sumption.

Theorem 9. Under the set-up as in Assumption 1, with r1(x)≤ (≥)r2(x) and n∗1 ≤ (≥)n∗2,

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ X1:n∗(n∗1,n
∗
2)≤st Y1:n∗(n∗1,n

∗
2),

provided λ , µ ∈ E+ (D+), ϕ2 ◦ψ1 is super-additive, ψ1 or ψ2 is log-convex, and r1(x) or r2(x) is
increasing.

Proof. Let us denote C(λ ,ψ1,x) = F̄X1:n∗ (n∗1,n
∗
2)
(x) and D(µ,ψ2,x) = F̄Y1:n∗ (n∗1,n

∗
2)
(x) (given in (29) and

(30)). According to Lemma 4, the super-additivity property of ϕ2 ◦ψ1 provides C(µ,ψ1,x) ≤
D(µ,ψ2,x). In order to prove the desired result, we need to show that C(λ ,ψ1,x) ≤ C(µ,ψ1,x).
This is equivalent to show that C(λ ,ψ1,x) is decreasing and Schur-concave with respect to λ .
Taking derivative of C(λ ,ψ1,x) with respect to λi, for i = 1,2, we get

∂C(λ ,ψ1,x)
∂λi

=−n∗i xri(xλi)
ψ1 [ϕ1 (F̄i (xλi))]

ψ ′
1 [ϕ1 (F̄i (xλi))]

ψ ′
1

[
n∗

∑
i=1

ϕ1 (F̄i (xλi))

]
. (31)

Equation (31) shows that C(λ ,ψ1,x) is decreasing in λ1. The other part can be proved in the
similar argument as of Theorem 1.

The following corollary is immediate from Theorem 9.

Corollary 3. Let the set-up as in Assumption 1 hold with ψ1 = ψ2 = ψ and n∗1 ≤ (≥)n∗2. Also,
let ψ be log-convex and let λ , µ ∈ E+ (D+). Then,



66 Sangita Das and Suchandan Kayal

(i) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ X1:n∗(n∗1,n
∗
2)≤st Y1:n∗(n∗1,n

∗
2), provided r1(x)

or r2(x) is increasing with r1(x)≤ (≥)r2(x).

(ii) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

) ⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ X1:n∗(n∗1,n
∗
2) ≤st Y1:n∗(n∗1,n

∗
2), provided r(x)

is increasing, where r1(x) = r2(x) = r(x).

The next result reveals that the smallest order statistics X1:n∗(n∗1,n
∗
2) dominates X1:n(n1,n2) in

the sense of the usual stochastic order under the condition that (n∗1,n
∗
2) is weakly submajorized

by (n1,n2). The following assumption will be helpful to prove the next two results.

Theorem 10. Let Assumption 2 hold. Then, for λ = (λ1,λ2) ∈ E+ and F1 ≤ F2, we have

(n1,n2)⪰w (n∗1,n
∗
2)⇒ X1:n(n1,n2)≤st X1:n∗(n∗1,n

∗
2).

Proof. Using the similar approach of Theorem 2, one can obtain the required result.

The following remark follows from Theorems 9 and 10.

Remark 7. Let Assumption 3 hold, with r1(x)≤ r2(x). Also, let λ , µ ∈ E+. Then, for (n1,n2)⪰w

(n∗1,n
∗
2),

(λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ X1:n(n1,n2)≤st Y1:n∗(n∗1,n
∗
2),

provided ϕ2 ◦ψ1 is super-additive, ψ1 or ψ2 is log-convex and r1(x) or r2(x) is increasing.

As an illustration of Remark 7, we present the following example.

Example 3. Take λ = (2,6), µ = (1,3), (n1,n2) = (4,8), (n∗1,n
∗
2) = (6,7), ψ1(x) = e−x

1
d1 and

ψ2(x) = e−x
1

d2 , x > 0, d1, d2 ∈ [1,∞). Also, let F1(x) =
( x

a

)l
, 0 < x ≤ a and F2(x) = 1− e−x, x > 0.

It can be seen that, for d1 = 9, d2 = 10 a = 400 and l = 2, all the conditions of Remark 7 are
satisfied (see Table 1). Now, we plot the graph of F̄X1:12(4,8)(x)− F̄Y1:13(6,7)(x), given in Figure 4.
The figure suggests that X1:12(4,8)≤st Y1:13(6,7) holds.

Next, we present a counterexample, which shows that the stated usual stochastic order in
Remark 7 does not hold if the conditions r1(x)≤ r2(x) and r2 is increasing, are dropped out.

Counterexample 2. Take λ = (1.2,3.6), µ = (1.4,3), (n1,n2) = (2,11), (n∗1,n
∗
2) = (3,9), ψ1(x) =

e−x
1

4.5 , and ψ2(x) = e−x
1
5 , x > 0. Also, suppose F1(x) = 1− e−x and F2(x) = 1− (1+2x)−0.5, x > 0.

Clearly, all the conditions of Remark 7 are satisfied except r1 ≤ r2 and r2 is increasing. Now,
the graphs of F̄X1:13(2,11)(x) and F̄Y1:12(3,9)(x) are depicted in Figure 5. It reveals that the usual
stochastic order in Remark 7 does not hold.

Upon using Remark 7, one can easily conclude the following corollary.
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Figure 4: Plot of F̄X1:12(4,8)(x)− F̄Y1:13(6,7)(x) as in Example 3.
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Figure 5: Plots of F̄X1:13(2,11)(x) and F̄Y1:12(3,9)(x) as in Counterexample 2
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Corollary 4. Let Assumption 3 hold with ψ1 = ψ2 = ψ. Also, let λ , µ ∈ E+, ψ is log-convex
and (n1,n2)⪰w (n∗1,n

∗
2). Then,

(i) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒X1:n(n1,n2)≤st Y1:n∗(n∗1,n
∗
2), provided r1(x) or r2(x)

is increasing and r1(x)≤ r2(x).

(ii) (λ1, . . . ,λ1︸ ︷︷ ︸
n∗1

,λ2, . . . ,λ2︸ ︷︷ ︸
n∗2

)⪰w (µ1, . . . ,µ1︸ ︷︷ ︸
n∗1

,µ2, . . . ,µ2︸ ︷︷ ︸
n∗2

)⇒ X1:n(n1,n2)≤st Y1:n∗(n∗1,n
∗
2), provided r(x) is

increasing, where r1 = r2 = r.
Next, we provide three consecutive theorems, which deal with the hazard rate ordering

between the smallest order statistics.
Theorem 11. Let Assumption 1 hold with n∗1 ≤ (≥)n∗2, ψ1 = ψ2 = ψ, F1 = F2 = F, r̃1 = r̃2 = r̃
and r1 = r2 = r. Also, suppose that ψ is log-concave, that 1−ψ

ψ ′ is decreasing, that [1−ψ
ψ ′ ]′

ψ
ψ ′ is

increasing, and that λ , µ ∈ E+ (D+). Then,

(m1, . . . ,m1︸ ︷︷ ︸
n∗1

,m2, . . . ,m2︸ ︷︷ ︸
n∗2

)⪰w (v1, . . . ,v1︸ ︷︷ ︸
n∗1

,v2, . . . ,v2︸ ︷︷ ︸
n∗2

)⇒ X1:n∗(n∗1,n
∗
2)≤hr Y1:n∗(n∗1,n

∗
2),

where mi = logλi and vi = log µi, i = 1, 2, provided r(x) is increasing, xr̃(x) is increasing and
convex.
Proof. Denote by f the probability density function corresponding to the distribution function
F . The hazard rate function of X1:n∗(n∗1,n

∗
2) is given by

rX1:n∗ (n∗1,n
∗
2)
(x)

de f
= E (m) =

ψ ′ [z]
ψ [z]

[
n∗

∑
i=1

em1 f (xem1)

ψ ′[ϕ (F̄ (xem1))]

]

=
ψ ′ [z]
ψ [z]

[
n∗

∑
i=1

emi r̃(xemi)[1−ψ[ϕ (F̄ (xemi))]]

ψ ′[ϕ (F̄ (xemi))]

]
,

where z = n∗1ϕ (F̄ (xem1))+n∗2ϕ (F̄ (xem2)), mi = logλi, for i = 1,2 and m = (m1,m2). Also, f is the
probability density function of F. The partial derivative of E (m) with respect to mi for i = 1,2
is given by

∂E (m)

∂mi
= −n∗i xemi r̃(xemi)

d
dz

[
ψ ′(z)
ψ(z)

][
1−ψ [ϕ [F̄ (xemi)]]

ψ ′[ϕ (F̄ (xemi))]

][ n∗

∑
i=1

emi f (xemi)

ψ ′[ϕ (F̄ (xemi))]

]

−n∗i r(xemi)
[
x[emi ]2r̃(xemi)

] ψ ′(z)
ψ(z)

[
ψ(v)
ψ ′(v)

[
d
dv

[
1−ψ(v)

ψ ′(v)

]]]
v=ϕ(F̄(xemi ))

+n∗i
d

dw
[wr̃(w)]w=xemi

1−ψ [ϕ [F̄ (xemi)]]

ψ ′ [ϕ [F̄ (xemi)]]

ψ ′(z)
ψ(z)

. (32)

From (32), it is easy to see that E (m) is increasing with respect to m. Now, we only need to show
the Schur-convexity of E (m) with respect to m. This is equivalent to show that for 1 ≤ i ≤ j ≤ n∗,[

∂E (m)

∂mi
− ∂E (m)

∂m j

]
≤ (≥)0, for m ∈ E+ (D+). (33)
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Utilizing the assumptions made, the rest of the proof follows from the similar arguments of
Theorem 9. Thus, it is omitted for the sake of conciseness.

The following theorem demonstrates that under some conditions, the hazard rate ordering
between X1:n(n1,n2) and X1:n∗(n∗1,n

∗
2) exists.

Theorem 12. Let Assumption 2 hold with ψ1 = ψ and r̃1 = r̃2 = r̃. Then, for λ ∈ E+, we have

(n1,n2)⪰w (n∗1,n
∗
2)⇒ X1:n(n1,n2)≤hr X1:n∗(n∗1,n

∗
2),

provided xr̃(x) is increasing, ψ ′/ψ and 1−ψ
ψ ′ are decreasing.

Proof. The required result can be proved if we show that rX1:n(n1,n2)(x)≥ rX1:n∗ (n∗1,n
∗
2)
(x) and equiv-

alently,
ψ ′[∑n

i=1 ϕ(F̄(xλi))]

ψ[∑n
i=1 ϕ(F̄(xλi))]

[
∑n

i=1
λi r̃(xλi)[1−ψ[ϕ(F̄(xλi))]]

ψ ′[ϕ(F̄(xλi))]

]
≥ ψ ′[∑n∗

i=1 ϕ(F̄(xλi))]
ψ[∑n∗

i=1 ϕ(F̄(xλi))]

[
∑n∗

i=1
λi r̃(xλi)[1−ψ[ϕ(F̄(xλi))]]

ψ ′[ϕ(F̄(xλi))]

]
.

(34)

To prove inequality (34), it is sufficient to show that the following two inequalities hold:

(n∗1 −n1)ϕ(F̄(xλ1))≤ (n2 −n∗2)ϕ(F̄(xλ2)) (35)

and

(n∗1 −n1)
λ1r̃(xλ1)[1−ψ[ϕ (F̄ (xλ1))]]

ψ ′[ϕ (F̄ (xλ1))]
≥ (n2 −n∗2)

xλ2r̃(xλ2)[1−ψ[ϕ (F̄ (xλ2))]]

ψ ′[ϕ (F̄ (xλ2))]
. (36)

Furthermore, (n1,n2) ⪰w (n∗1,n
∗
2) ⇒ (n1 + n2) ≥ (n∗1 + n∗2) ⇒ (n2 − n∗2) ≥ (n∗1 − n1) ≥ 0. Also, λ1 ≤

λ2 ⇒ ϕ (F̄ (xλ2))≥ ϕ (F̄ (xλ1))≥ 0. With the help of decreasing property of 1−ψ
ψ ′ , we obtain

1−ψ(w)
ψ ′(w)

|w=ϕ [F̄(xλ2)] ≤
1−ψ(w)

ψ ′(w)
|w=ϕ [F̄(xλ1)] ≤ 0. (37)

Since xr̃(x) is increasing,
xλ1r̃(xλ1)≤ xλ2r̃(xλ2). (38)

Thus, the proof is completed from(37), (38), and the given assumptions.

The next theorem states that if the scale parameters are connected with the weakly subma-
jorized order and the sample size pairs (n1,n2) and (n∗1,n

∗
2) have weakly submajorized order, then

the smallest order statistics of X1:n(n1,n2) is dominated by Y1:n∗(n∗1,n
∗
2) according to the hazard

rate order.
Theorem 13. Let Assumption 3 hold with ψ1 = ψ2 = ψ, r1 = r2 = r and r̃1 = r̃2 = r̃. Then, for
λ , µ ∈ E+ and (n1,n2)⪰w (n∗1,n

∗
2),

(m1, . . . ,m1︸ ︷︷ ︸
n∗1

,m2, . . . ,m2︸ ︷︷ ︸
n∗2

)⪰w (v1, . . . ,v1︸ ︷︷ ︸
n∗1

,v2, . . . ,v2︸ ︷︷ ︸
n∗2

)⇒ X1:n(n1,n2)≤hr Y1:n∗(n∗1,n
∗
2),

provided ψ is log-concave, 1−ψ
ψ ′ is decreasing, [1−ψ

ψ ′ ]′
ψ
ψ ′ and r(x) are increasing, xr̃(x) is increasing

and convex, where mi = logλi and vi = log µi, i = 1, 2.
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Proof. The proof of the theorem follows from Theorems 11 and 12. Thus, it is omitted.

To illustrate Theorem 13, we now consider the following example.

Example 4. Set λ = (e0.5,e0.6), µ = (e0.2,e0.3), (n1,n2) = (2,11), (n∗1,n
∗
2) = (3,7), and ψ(x) =

e
1
b (1−ex), x > 0, b ∈ (0,1]. Furthermore, let F(x) =

( x
a

)l
, 0 < x ≤ a. It can be easily shown that for

b = 0.99, a = 1000, and l = 2, all the conditions of Theorem 13 are satisfied (see Table 1). Now,
we plot the ratio F̄Y1:10 (3,7)(x)

F̄X1:13 (2,11)(x) in Figure 6, which is consistent with the result in Theorem 13.
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Figure 6: Plot of F̄Y1:10(3,7)(x)/F̄X1:13(2,11)(x) as in Example 4.

Remark 8. Consider the Independence copula with generator ψ(x) = e−x, x > 0, which satisfies
all the conditions of Theorems 11–13 (see Table 1).

In the next theorem, we develop some conditions under which two smallest order statistics
are comparable according to the star order.

Theorem 14. Under the set-up as in Assumption 1, with r̃1 = r̃2 = r̃ and ψ1 = ψ2 = ψ,

λ2:2

λ1:2
≥ µ2:2

µ1:2
⇒ Y1:n∗(n∗1,n

∗
2)≤∗ X1:n∗(n∗1,n

∗
2),

provided ψ
ψ ′ is decreasing and convex and xr′(x)

r(x) and xr(x) are decreasing.

Proof. The distribution functions of X1:n∗(n∗1,n
∗
2) and Y1:n∗(n∗1,n

∗
2) are, respectively, given by

FX1:n∗ (n
∗
1,n

∗
2)(x) = 1−ψ [n∗1ϕ (F̄ (xλ1))+n∗2ϕ (F̄ (xλ2))]

and
FY1:n∗ (n

∗
1,n

∗
2)(x) = 1−ψ [n∗1ϕ (F̄ (xµ1))+n∗2ϕ (F̄ (xµ2))] .

Now, the rest of the proof follows using similar arguments as in Theorem 6. Thus, it is
omitted.
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The following result is a direct consequence of Theorem 14.

Corollary 5. Under the assumptions as in Theorem 14,

λ2:2

λ1:1
≥ µ2:2

µ1:2
⇒ Y1:n∗(n∗1,n

∗
2)≤Lorenz X1:n∗(n∗1,n

∗
2),

provided ψ
ψ ′ is decreasing and convex and xr′(x)

r(x) and xr(x) are decreasing.

Remark 9. Suppose F(x) = 1−( x
b)

a, 0 < x ≤ b, a > 0. For this baseline distribution, it is easy to
check that xr′(x)

r(x) and xr(x) are decreasing. Therefore, one can consider this distribution function
as the baseline distribution of Theorem 14.

4 Concluding remarks
In this paper, we discussed some comparison results between the lifetimes of both parallel and
series systems consisting of multiple-outlier dependent scale components in the sense of the
usual stochastic, reversed hazard rate, dispersive order, hazard rate, likelihood ratio, star, and
Lorenz orders. The dependence structure has been modeled by Archimedean copulas. Sufficient
conditions have been established for the purpose of the comparisons of the order statistics.
Several examples and counterexamples are presented to illustrate the established results.
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