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Abstract. Trees, as loop-free graphs, are fundamental hierarchical structures of Nature. De-
pending on the way their constitutive atoms are labeled, their growth obeys different sequential
dynamics when a new atom is being appended to a current tree, possibly forming a new tree.
Randomized versions of the underlying counting problems are shown to lead, in general, to
Markovian triangular sequences.
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1 Introduction
The purpose of this note is to present explicit and asymptotic methods to count various kinds of
topological trees (for which there is no data giving the distance between any two of their nodes).
In all cases, the use of generating functions (g.f.’s) is an essential ingredient. Explicit formulas are
derived with the help of Lagrange’s inversion formula. On the other hand, singularity analysis
of g.f.’s leads to asymptotic formulas aiming at describing large trees.

The analysis concerns counting of the following labeled tree structures (with no restriction
on the degree of their nodes):

- Simply generated labeled trees, either ordered (plane) or not (Cayley trees).
- Recursive increasing labeled trees, either ordered (plane) or not.
- The height, depth, and number of leaves of such trees.
- A weighted version of such trees.
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- Forests of such trees are also considered.
The various labeling conditions translate various distinguishability possibilities of the nodes

(somewhere called here, alternatively vertices or atoms) of the tree (or forest). We will herewith
be also concerned by the stochastic randomization of the underlying strictly combinatorial as-
pects of the counting issues. Relation of enumeration problems of trees and forests to random
walks can be found in Pitman (1998).

Focus will be on sequential growth of trees and forests as given, after randomization, by
Markov triangular probability sequences. By that, we mean the update of their shapes when
the number of its atoms goes from n to n+1, in an aggregation process of individuals. Whenever
the additional atom connects to one of the internal nodes of the size-n tree, the number of
external nodes (leaves) grows by one unit, whereas if the additional atom connects to one of
its leaves, the number of its leaves remains constant. Leaves of a tree consist of its boundary,
connecting it to the external world. When dealing with forests, the additional atom can either
connect to one of the trees of the current forest (aggregation) or generate a new tree (nucleation).
Trees are efficient graph structures to fully connect people as the number of edges required to
do so is minimum but these are fragile in that the deletion of an edge disconnects the subtree
below it from the main tree.

If, by recursion from the root, Φ(z) solves the functional equation

Φ(z) = ze∑k≥1
1
k Φ(zk), (1)

then
cn = [zn]Φ(z) ,

(the zn-coefficient in the power series expansion of Φ(z)) is the number of rooted unlabeled size-n
trees (see (Wolfram.com) and the references therein). The number of unrooted such trees is
given by c∗n = [zn]Φ∗ (z) = cn/n, where

Φ∗ (z) = Φ(z)− 1
2
[
Φ2 (z)−Φ

(
z2)] .

The enumeration of such trees with n up to 6 is given in (Wolfram.com). There are no known
expressions for cn (or c∗n) but, from local singularity analysis, cn ∼ βn−3/2z−n

c (respectively, c∗n ∼
βn−5/2z−n

c ) for large n, where β = 0.5349 . . . and 1/zc = 2.955765 . . . is defined from Φ(zc) = 1.
Note that the functional equation (1) is also,

Φ(z) = z ∏
n≥1

(1− zn)−cn ,

with ∏n≥1 (1− zn)−cn = e∑k≥1
1
k Φ(zk) the unordered “exponential” of Φ(z) . Moreover,

Φ(z,u) = ze∑k≥1 k−1[(u−1)zk+ 1
k Φ(zk,u)] = z(1− z)u−1 e∑k≥1

1
k Φ(zk,u)

is the joint g.f. for the nodes (vertices) and the dangling nodes (culs de sac or leaves) of such
trees, with

cn,k :=
[
znuk

]
Φ(z,u)
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the number of unlabeled rooted trees with size-n having k dangling nodes, k = 2, . . . ,n−1. From
Wolfram, c∗6,1 = 1, c∗6,2 = 1, c∗6,3 = 2, c∗6,4 = 2, and c∗6,5 = 1. For each such tree, the question of
how many ways they can be labeled to yield simple or recursive unrooted trees arises.

Let Bl be a 0-diagonal n×n matrix with entries in {0,1} whose the first row is (0;1, . . . ,1;0, . . . ,0)
(with n1 ≥ 1 ones), the second row is (0;0, . . . ,0;1, . . . ,1;0, . . . ,0) (with n2 ≥ 1 following 1 ’s not
overlapping the n1 first ones), . . ., whose the lth row is (0;0, . . . ,0;0, . . . ,0; . . . ;1, . . . ,1) (with nl ≥ 1
final 1’s not overlapping the n1 + . . .+ nl−1 previous ones). The remaining rows are zero-sum
rows, and n1 + . . .+ nl = n− 1 is the overall number of edges in the size-n unrooted tree; the
nonoverlapping condition in the formation of Bl guarantees that there are no cycles in the tree
graph.

If n1 ≥ n2 ≥ . . . ≥ nl ≥ 1, then there are pn−1,l such matrices Bl, where pn,l is the number of
unordered partitions of n into l positive summands, with pn,l obeying the three-term recursion

pn,l = pn−1,l−1 + pn−l,l,

with boundary conditions pn,l = 0 if l ≤ 0 or l > n. Upon transposition of Bl, the symmetrized
matrix

Al = Bl +B′l
is thus, up to permutation of its rows and columns, the incidence matrix of unrooted unlabeled
trees with k = n− l dangling nodes. Both the row and column sums vectors of Al are the same.
We conclude that c∗n,k, k = 2, . . . ,n−1, is the number of matrices obtained as PAlP′, where P runs
over all permutation n×n matrices (the equivalence class of Al).

2 Number of atoms and leaves in a size-n simple tree
We shall distinguish two main types of simply generated (or simple) trees, namely, as follows:

- Ordered (or plane) trees: The reason is that one can draw the tree in the half-plane so that
the children of every parent are ordered from left to right, say from the youngest child to the
oldest one. Embeddings obtained from cyclic rotations of the sub-trees around the root are not
allowed.

Such trees are amenable to the Ulam–Harris–Neveu ordering of their nodes (horizontal or-
dering holds), and they can be represented as strata with the founder on top and the successive
layers below; see Neveu (1986). Given that an individual of the population at generation k has
been labeled by vertex v = v1 . . .vk (as a concatenation of k positive integers) and gives birth to
Kv ≥ 1 children, its offspring is labeled by v1, . . . ,vKv. Each individual at generation k thus gets
a concatenated label v = v1 . . .vk for which label v1 . . .vk−1 is one of its mothers, v1 . . .vk−2, is one
of its grandmothers, …, up to /0, is the conventional label of the root. Such ordered trees are the
combinatorial versions of Galton–Watson trees in the theory of branching processes.

- Unordered (nonplane) trees: If the above condition is not imposed, then such trees are
called Cayley trees.

2.1 Nonincreasing (simply generated) trees
By recursion from the root, the number of labeled simply generated (or simple) trees of size n
generated by the local g.f. ϕ (z) (with nonnegative ϕm := [zm]ϕ (z), m≥ 0, ϕ (0) = 1) is obtained
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as
Cn = n! [zn]Φ(z) , (2)

where Φ(z) solves the functional equation Φ(z) = zϕ (Φ(z)), Φ(0) = 0. Lagrange inversion for-
mula states that for all n≥ 1

[zn]Φ(z) =
1
n

[
zn−1]ϕ (z)n . (3)

In enumeration problems from combinatorics, k!ϕk are assumed to be nonnegative integers.
A more general form of Lagrange inversion formula states that (with ′ denoting derivative)

[zn]h(Φ(z)) =
1
n

[
zn−1](h′ (z)ϕ (z)n) , (4)

for any arbitrary analytic output function h; see Surya and Warnke (2023).

2.1.1 Cayley (unordered) trees Rényi (1959)

For rooted and labeled Cayley trees, ϕ (z) = ez. By Lagrange inversion formula,

Φ(z) = ∑
n≥1

nn−1

n!
zn

solves Φ(z) = zeΦ(z) (with ϕ (z) = ez and Cn = nn−1).
Note zc = sup(z > 0 : Φ(z)< ∞) = 1/e with Φ(zc) = 1, Φ′ (zc) = ∞. The probability to observe

a particular size-n tree τn among all such size-n trees is 1/cn. The tilted probability to observe a
tree of size n among all possible trees is

znCn/n!
Φ(z)

,

for those z ∈ (0,zc], where zc = 1/e. Tilting is necessary because the overall number of Cayley
trees, regardless of their sizes, is infinite.

The joint g.f. of their nodes and leaves reads:

Φ(z,u) = z(u−1+ eΦ(z,u)),

hence with

[zn]Φ(z,u) =
1
n

[
zn−1](u−1+ ez)n

=
1
n

[
zn−1] n

∑
k=0

(
n
k

)
uk (ez−1)n−k .

Therefore,

Cn,k := n!
[
znuk

]
Φ(z,u) = (n−1)!

(
n
k

)[
zn−1](ez−1)n−k

=
n!
k!

Sn−1,n−k, k = 1, . . . ,n−1, (5)
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due to the vertical “g.f. of Stirling numbers of the second kind” Sn,k :

∑
n≥k

Sn,k
zn

n!
=

(ez−1)k

k!
⇒ [zn] (ez−1)k =

k!
n!

Sn,k.

We get
kCn+1,k = k (n+1)Cn,k +(n+1)(n− k+1)Cn,k−1, (6)

with boundary conditions Cn,0 =Cn,n = 0, Cn,1 = n! and Cn,n−1 = n. In addition,

Cn := [zn]Φ(z,1) = nn−1 =
n−1

∑
k=1

Cn,k.

Assuming uniform sampling, we have P(Ln = k) = Cn,k
Cn

> 0, k = 1, . . . ,n−1 (otherwise 0): The law
of Ln has finite support, varying with n. From (6), with P(Ln = k) = Cn,k

Cn
, we get

kP(Ln+1 = k) =
(

n
n+1

)n−1

[kP(Ln = k)+(n− (k−1))P(Ln = k−1)] . (7)

The latter recursion (6) may be written as

P(Ln+1 = k) = q(n)k,k P(Ln = k)+q(n)k−1,kP(Ln = k−1) ,

defining the (positive) transition coefficients q(n)k,k and q(n)k−1,k, which are not transition probabilities.
This three-term (“space-time” inhomogeneous) recurrence is therefore not one of standard
Markov chains with a usual probability transition matrix. However, it is one of triangu-
lar Markov probability sequences whose support varies with n linearly. Note that the ratio
ρk,n := q(n)k−1,k/q(n)k,k = (n− (k−1))/k obeys

q(n)k−1,k/q(n)k,k < 1 if k > (n+1)/2,

q(n)k−1,k/q(n)k,k > 1 if k < (n+1)/2,

translating that Ln is attracted to the central part of its support, whose two endpoints {1,n−1}
are (asymmetrically) weakly repelling. Introduce the superdiagonal transition matrix

Qn,n :=


q(n)1,1 q(n)1,2 0 · · ·

0
. . . . . . 0

0 0 q(n)n−1,n−1 q(n)n−1,n
...

... 0 q(n)n,n

 ,

and let Qn−1,n be its (n−1)× n truncated version. With πL
2 := 1, taking indeed into account

the boundary conditions, the distributions πL
n := (P(Ln = k) , k ∈ {1, . . . ,n−1}), n≥ 2, satisfy the

recursion
πL

n+1 =
(
πL

n ,0
)

Qn,n = πL
n Qn−1,n, n≥ 2.
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Thus, πL
n =
←−
∏m=2,...,n−1Qm−1,m, n ≥ 3 is an integrated form solution of the recursion, as a

left product of nested rectangular matrices (starting from Qn−2,n−1 to the right, ending up with
Q1,2 to the left). Because for each n ≥ 1, πL

n is a probability vector, we get that πL
n is or-

thogonal to the 1-shifted column sum vector qn−1− 1 of Qn−1,n with kth entry q(n)k,k + q(n)k,k+1− 1,
k = 1, . . . ,n−1. This can easily be seen while post-multiplying πL

n+1 by the column vector 1 and
observing πL

n+11 = πL
n 1 = 1.

Next, the identity (Rényi 1959)

n−1

∑
k=1

Cn,k

( x
n−k

)( n
n−k

) = xn−1

yields (with x = n−1): ∑n−1
k=1 kCn,k = n(n−1)n−1 . Also,

∂uΦ(z,1) =
z

1−Φ(z,1)
,

with

[zn]∂uΦ(z,1) =
[
zn−1] 1

1−Φ(z,1)
=

1
n−1

[
zn−2](( 1

1− z

)′
ez
)

= n(n−1)n−1 ,

so that

E(Ln) =
[zn]∂uΦ(z,1)
[zn]Φ(z,1)

= n
(

1− 1
n

)n−1

∼ n/e,

σ2 (Ln) = n(n−1)
(

1+
2
n

)n−1

+n
(

1− 1
n

)n−1

−n2
(

1− 1
n

)2(n−1)

∼ n
e−2

e2 .

The variance term is obtained while plugging x = n− 2 in the identity. The Central Limit
Theorem (CLT) therefore holds:

Ln−E(Ln)

σ (Ln)

d→N (0,1) . (8)

Rényi (1959) and Steele (1987) rather studies unrooted Cayley trees (there are nn−2 such trees)
with no major difference with the rooted case here. Trees, in Rényi’s writing, consist of the
optimal graphs to connect n cities with just one path joining any pair of cities, passing through
their most recent common ancestor.

2.1.2 Ordered (plane) trees

For rooted ordered trees, ϕ (z) = 1/(1− z). The g.f.
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Φ(z) =
1−
√

1−4z
2

solves Φ(z) = z/(1−Φ(z)) (with ϕ (z) = 1/(1− z)).
Note zc = sup(z > 0 : Φ(z)< ∞) = 1/4 with Φ(zc) = 1/2 and Φ′ (zc) =∞. Φ(z) has an algebraic

singularity at zc = 1/2.
Here, Cn = n! [zn]Φ(z) = (2n−2)!

(n−1)! and cn = [zn]Φ(z) ∼ 1√
π n−3/24n−1 (by singularity analysis of

Φ(z)). Note also Cn+1 = 2(2n−1)Cn.

Here, Cn counts the number of labeled size-n trees respecting the Ulam-Harris-Neveu ordering
of the children, while cn counts the number of such size-n trees, dropping the global labeling
condition. There are thus cn =

(2n−2)!
n!(n−1)! rooted ordered trees with n atoms.

Let us now come to leaves of such trees:
With Φ(z) = Φ(z,1), the joint g.f. of nodes and leaves solves

Φ(z,u) = z(u−1+1/(1−Φ(z,u))) .

Hence,

Φ(z,u) =
1+(u−1)z−

√
(1+(u−1)z)2−4zu

2
,

with

[zn]Φ(z,u) =
1
n

[
zn−1](u+ z/(1− z))n

=
1
n

[
zn−1] n

∑
k=0

(
n
k

)
uk (z/(1− z))n−k

=
1
n

n

∑
k=0

(
n
k

)
uk
[
zk−1

]
(1− z)−(n−k)

=
1
n

n

∑
k=0

(
n
k

)
[n− k]k−1

(k−1)!
uk

=
1
n

n

∑
k=0

(
n
k

)(
n−2
k−1

)
uk.

Therefore,

Cn,k := n!
[
znuk

]
Φ(z,u) = (n−1)!

(
n
k

)(
n−2
k−1

)
, k = 1, . . . ,n−1. (9)

Using (Pascal triangle) (
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
and (

n
k

)
=

n
k

(
n−1
k−1

)
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entails (with Cn,1 = n! and Cn,n = 0)

Cn+1,k =
n(n−1)

n− k
Cn,k +

n(n−1)
k−1

Cn,k−1, (10)

from which the following three-term recurrence for P(Ln = k)= Cn,k
Cn

can be deduced (with P(Ln = n)=
P(Ln = 0) = 0):

P(Ln+1 = k) =
Cn+1,k

Cn+1
=

n(n−1)
2(2n−1)

[
1

n− k
P(Ln = k)+

1
k−1

P(Ln = k−1)
]
. (11)

For such random walks, the next step is either a no-move step or a move-up one. What (11) says
is that whenever Ln approaches its extremal values, either 1 (or n−1), there is a smaller chance
(inversely proportional to this value) that the next connection will result in a no-move step
(a move-up step); anti-preferential attachment rule holds. Here, the ratio ρk,n := q(n)k−1,k/q(n)k,k =
(n− k)/(k−1) obeys

q(n)k−1,k/q(n)k,k < 1 if k > (n+1)/2,

q(n)k−1,k/q(n)k,k > 1 if k < (n+1)/2,

translating that Ln is again attracted to the central part of its support, whose two endpoints
{1,n−1} are (asymmetrically) repelling. Here,

n! [zn]Φ(z,1) =
(2n−2)!
(n−1)!

=
n−1

∑
k=1

Cn,k =Cn.

Next,

∂uΦ(z,1) =
z
2
+

z
2
√

1−4z
= z

1−Φ(z)
1−2Φ(z)

,

n! [zn]∂uΦ(z,1) = n!
[
zn−1](1

2
+

1
2
√

1−4z

)
=

n
2

Cn for n≥ 2.

E(Ln) =
[zn]∂uΦ(z,1)
[zn]Φ(z,1)

=
n
2
,

σ2 (Ln) ∼ n/8.

The variance term can be computed from (see Drmota 2009, p. 83)

σ2 (Ln) = n! [zn]
[
∂ 2

u Φ(z,1)+∂uΦ(z,1)
]
/Cn− [n! [zn]∂uΦ(z,1)/Cn]

2 .

A CLT holds.
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2.2 Increasing (or recursive) trees
A size-n rooted and increasing Cayley tree has vertices with indices or labels {1, . . . ,n} increasing
for any path from the root to its leaves. Wherever a new connection is created in this tree, the
adjunction of a new node with index n+ 1 will result in a size-(n+ 1) rooted increasing tree.
Increasing trees can in addition be unordered (Cayley) or ordered. Such trees were studied by
Bergeron et al. (1992).

2.2.1 Cayley (unordered) increasing trees

The g.f. of unordered, rooted increasing trees solves the ordinary differential equation Φ′ (z) =
eΦ(z), Φ(0) = 0, hence Φ(z) = − log(1− z) with zc = sup(z > 0 : Φ(z)< ∞) = 1 with Φ(zc) = ∞.
Hence, Φ(z) has a logarithmic singularity at zc = 1. We get Cn = (n−1)! and cn = 1/n.

The joint generating of nodes and leaves solves:

∂zΦ(z,u) = u−1+ eΦ(z,u).

Hence,

z =
∫ Φ(z,u)

0

dz′

u−1+ ez′ ,

with solution
Φ(z,u) = log

(
1−u

1−uez(1−u)

)
.

With k = 1, . . . ,n−1, we have

Cn,k := n!
[
znuk

]
Φ(z,u) = (n−1)!

[
zn−1uk

](
u−1+

1−u
1−uez(1−u)

)
=: En−1,k, k = 1, . . . ,n−1, (12)

a shifted version of the first kind Eulerian triangle, for which

Cn+1,k = kCn,k +(n− k+1)Cn,k−1. (13)

Also, from
Φ(z,1) =− log(1− z) ,

Cn := [zn]Φ(z,1) = (n−1)! =
n−1

∑
k=1

Cn,k.

With P(Ln = k) = Cn,k
Cn

, k = 1, . . . ,n−1, therefore,

P(Ln+1 = k) =
Cn+1,k

Cn+1
=

k
n

P(Ln = k)+
(

1− k−1
n

)
P(Ln = k−1) , (14)

the dynamics of a conventional inhomogeneous Markov chain with transition probabilities. Mul-
tiplying (14) by k (respectively, k2) and summing over the admissible range of k yields recurrences
for E(Ln) (respectively, E

(
L2

n
)
) from which
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E(Ln) =
[zn]∂uΦ(z,1)
[zn]Φ(z,1)

= n/2,

σ2 (Ln) = 7n/12+1/3∼ 7n/12.

A CLT holds.
What (14) says is that, whenever Ln approaches its extremal values, either 1 (or n−1), there

is a large probability (proportional to this value) that the next connection will propel the walker
back inside its support. Else, the ratio ρk,n := q(n)k−1,k/q(n)k,k = (n− k+1)/k also obeys:

q(n)k−1,k/q(n)k,k < 1 if k > (n+1)/2,

q(n)k−1,k/q(n)k,k > 1 if k < (n+1)/2,

translating that the dynamics of Ln is attracted by the central body of its support, whose
endpoints remain repelling.

2.2.2 Increasing ordered (plane) trees

The exponential generating function (e.g.f.) Φ(z) of such ordered, rooted increasing trees solves:
Φ′ (z) = 1/(1−Φ(z)), Φ(0) = 0. Hence, Φ(z) = 1−

√
1−2z with

Cn = n! [zn]Φ(z) = (2n−3)!! = 2−(n−1) (2n−2)!/(n−1)!, (15)

and Cn+1 = (2n−1)Cn. There are thus 2n−1 more of simple ordered n-trees than increasing
ordered n-trees. The factor 2n−1 is the number of ordered partitions of n into positive summands.

Here, zc = sup(z > 0 : Φ(z)< ∞) = 1/2 with Φ(zc) = 1, Φ′ (zc) = ∞.
The joint e.g.f. of atoms and leaves solves:

∂zΦ(z,u) = u−1+1/(1−Φ(z,u))

or
z =

∫ Φ(z,u)

0

dz′

u−1+1/(1− z′)
.

With C (z) = ∑n≥1
nn−1

n! zn the Cayley function solving C (z)eC(z) = z,

Φ(z,u) =
u−C

(
ue−uez(1−u)2

)
1−u

as the inverse function of∫ z

0

dz′

u−1+1/(1− z′)
=

log(1+(1−u)z/u)− (1−u)z

(1−u)2 ,

(see Bergeron et al. (1992)). The triangular array

Cn,k := n!
[
znuk

]
Φ(z,u) , k = 1, . . . ,n−1,
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constitutes a shifted version of the second kind Eulerian triangle, with

Cn+1,k = kCn,k +(2n− k)Cn,k−1. (16)

Furthermore,

Cn := n! [zn]Φ(z,1) = (2n−3)!! =
n−1

∑
k=1

Cn,k.

With P(Ln = k) = Cn,k
Cn

, k = 1, . . . ,n−1, therefore,

P(Ln+1 = k) =
Cn+1,k

Cn+1
=

k
2n−1

P(Ln = k)+
(

1− k−1
2n−1

)
P(Ln = k−1) . (17)

Multiplying (17) by k and summing over the admissible range of k yields recurrences for E(Ln)
from which

E(Ln) :=
[zn]∂uΦ(z,1)

Cn
=

2n−1
3

.

A CLT holds.
Remark: When conditioning, as above, on the number n of nodes of a tree with g.f. Φ(z), the
law of Ln has bounded support 1, . . . ,n− 1. One may wish to consider the distribution of say
Nk, the number of nodes of the tree given its number of leaves is k; but then, the law of Nk has
unbounded support k,k+1, . . .. To this end, we first observe that the probability law of N, the
number of nodes in a tree with g.f. Φ(z), is given by the tilting

P(N = n) =
znCn/n!

Φ(z)
,

for any z < zc (z≤ zc), depending on Φ(zc) = ∞ (Φ(zc)< ∞). Tilting is necessary in the random-
ization process because of the divergence of the series cn. Then, with n≥ k,

P(Nk = n) = P(Ln = k)
znCn/n!

Φ(z)
/ ∑

n≥k
Num

=
znCn,k/n!
[uk]Φ(z,u)

,

where [uk]Φ(z,u) = ∑n≥k znCn,k/n! is the horizontal g.f. of Φ(z,u). The law of Nk necessarily
depends on z.

3 Root degree
With Φ(z,1) = Φ(z) solving Φ(z) = zϕ (Φ(z)) or Φ′ (z) = ϕ (Φ(z)), define

R(z,u) = zϕ (uΦ(z)) or R(z,u) =
∫ z

0
ϕ
(
uΦ
(
z′
))

dz′, (18)

where u marks the root-degree of the tree in that

Rn,k := n!
[
ukzn

]
R(z,u)

is the number of trees with n nodes and root-degree k.
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3.1 Nonincreasing trees

3.1.1 Cayley (unordered) trees

- If R(z,u) = zeuΦ(z), ∂uR(z,1) = zΦ(z)eΦ(z) = Φ(z)2. By Lagrange inversion theorem, E(Rn) =
2
(
1− 1

n

)
∼ 2. More generally, we have

[zn]R(z,u) =
[
zn−1]1/(1−uΦ(z))

=
1

n−1
[
zn−2]ϕ (uz)′ ϕ (z)n−1

=
u

n−1
[
zn−2]ϕ ′ (uz)ϕ (z)n−1

=
u

n−1
[
zn−2]ez(u+n−1)

=
u(u+n−1)n−2

(n−1)!
.

Hence,

Rn,k := n!
[
znuk

]
R(z,u) = n

(
n−2
k−1

)
(n−1)n−1−k and

E
(
uRn
)
=

n! [zn]R(z,u)
Cn

=
nu(u+n−1)n−2

nn−1 = u
(

1− 1
n
+

u
n

)n−2

, (19)

a shifted binomial distribution for which E
(
uRn
)
→

n→∞
ue−(1−u), the probability generating function

(p.g.f.) of a shifted Poisson (1) random variable (r.v.).

3.1.2 Ordered (plane) trees

- If, as for this case, R(z,u) = z/(1−uΦ(z)) ,

[zn]R(z,u) =
[
zn−1]1/(1−uΦ(z))

=
1

n−1
[
zn−2]ϕ (uz)′ ϕ (z)n−1

=
u

n−1
[
zn−2]ϕ ′ (uz)ϕ (z)n−1

=
u

n−1
[
zn−2] 1

(1−uz)2 (1− z)n−1

=
1

n−1

n−1

∑
k=1

k
(

2n− k−1
n−2

)
uk,

rn,k :=
[
znuk

]
R(z,u) =

k
n−1

(
2n− k−1

n−2

)
,
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E
(
uRn
)

=
n! [zn]R(z,u)

Cn
=

u(2n−2
n−1

) [zn−2] 1

(1−uz)2 (1− z)n−1

=
1(2n−2

n−1

) n−1

∑
k=1

k
(

2n− k−1
n−2

)
uk.

We have

∂uR(z,1) =
Φ(z)3

z
and

[zn]∂uR(z,1) =
[
zn+1]Φ(z)3 =

3
n+1

[zn]
z2

(1− z)n

=
3

n+1
[
zn−2](1− z)−n =

3
n+1

(
2n−3
n−2

)
,

E(Rn) =
[zn]∂uR(z,1)

Cn
=

3n!
n+1

(
2n−3
n−2

)
(n−1)!
(2n−2)!

=
3n

2(n+1)
∼ 3

2
.

For simple trees, there is a small (finite) number of root sub-trees (at least one of which must
be very large!).

3.2 Increasing (recursive) trees

3.2.1 Cayley (unordered) trees

- For nonplane increasing trees (see Bergeron et al. 1992, p. 40 and Mahmoud et al. 1993), with
Φ(z) =− log(1− z) , we have

∂zR(z,u) = euΦ(z) = (1− z)−u ,

R(z,u) =
1− (1− z)1−u

1−u
,

n! [zn]R(z,u) = [u]n−1 ,

n!
[
znuk

]
R(z,u) = |sn−1,k|=: Rn,k,

E
(
uRn
)

=
[u]n−1

(n−1)!
,

E(Rn) =
[zn]∂uR(z,1)

Cn
= Hn−1 ∼ logn, (20)

σ2 (Rn)∼ logn.

A CLT holds.
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3.2.2 Ordered (plane) trees

For plane increasing trees, with Φ(z) = 1−
√

1−2z, we have

∂zR(z,u) =
1

1−uΦ(z)
=

1
1−u+u

√
1−2z

,

R(z,u) =
1−
√

1−2z
u

+
1−u

u2 log
(

1−u+u
√

1−2z
)
.

Hence,

n!
[
znuk

]
R(z,u) =

(2n− k−3)!
2n−k−1 (n− k−1)!

∼
√

2
πn

e−k2/(4n),

and

P(Rn = k) =
n!
[
znuk

]
R(z,u)

(2n−3)!!
=

1
(2n−3)!!

(2n− k−3)!
2n−k−1 (n− k−1)!

,

with
E(Rn) =

[zn]∂uR(z,1)
Cn

∼
√

πn. (21)

4 Height of a size-n tree (Flajolet and Sedgewick, 2009, pp. 216–
217)

The height parameter is an extremal one. The height Hn := hτn of a size-n tree τn is the height
of one of its nodes at largest distance to the root. It obeys

hτn = 1+max
τ≺τn

hτ ,

where the maximum is over all root sub-trees τ of the full size-n tree τn. Taking into account
that the number of trees with n nodes and root-degree k is Rn,k = n!rn,k, with Cn (h) = n!cn (h)
the number of labeled trees’ configurations with size n having height less than h, the following
bivariate recurrence holds:

cn+1 (h+1) =
n

∑
k=1

rn,k ∑
n1+...+nk=n

k

∏
r=1

cnr (h) .

There are
(n−1

k−1

)
terms in the sum over nl ≥ 1, l = 1, . . . ,k (the number of ordered partitions of n

into k parts). We have P(Hn ≤ h) = cn (h)/cn.

Alternatively, let Φh (z) be the g.f. of those simple trees generated by ϕ with height ≤ h. We
have

Φh+1 (z) = zϕ (Φh (z)) , Φ0 (z) = z,
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where n! [zn]Φh (z) =: Ch (n) is the number of size-n labeled trees whose height is ≤ h. With
ch (n) :=Ch (n)/n! and ϕk =

[
zk
]

ϕ (z), it holds that

ch+1 (n+1) =
n

∑
k=1

ϕk [zn]Φh (z)
k

=
n

∑
k=1

ϕk ∑
n1+...+nk=n

k

∏
l=1

ch (nl) . (22)

Therefore, with Nh the number of trees whose height is less than or equal to h,

P
(
Nh = n

)
=

n! [zn]Φh (z)
n! [zn]Φ(z)

=
ch (n)

cn
,

where Φ(z) = Φ∞ (z) . We have Nh = n if and only if Hn ≤ n. From implied linear recurrences and
a complex analysis based on Mellin transforms:

- Cayley trees: Rényi and Szekeres (1967) have shown that (2πn)−1/2 Hn has a nontrivial
weak limit. Hence E(Hn)∼

√
2πn.

- For ordered trees (see De Bruijn et al. 1972): E(Hn)∼
√

πn.

In both cases, E(Hn) ∼ λ
√

n, where λ = (πζ )1/2 with ζ = 2ϕ ′(τ)2

ϕ(τ)ϕ ′′(τ) and ϕ (τ) = τϕ ′ (τ).

Furthermore, Hn/E(Hn)
d→ X , where X has theta density, with q-moments (q > 1): E(Xq) =

q(q−1)Γ(q/2)ζ q. See Proposition V II.16 of Flajolet and Sedgewick (2009).

The e.g.f. Φh (z) of the number of increasing trees whose height is ≤ h obeys

Φh+1 (z) =
∫ z

0
ϕ
(
Φh
(
z′
))

dz′, Φ0 (z) = z

with Ch (n) = n! [zn]Φh (z) and P
(
Nh = h

)
= Ch(n)

Cn
. A bivariate recurrence similar to (22) holds with

(n+1)ch+1 (n+1) instead of ch+1 (n+1) at the left hand-side.
It holds:
- Cayley increasing trees Pittel (1994): E(Hn)∼ e logn, Hn/ logn→ e (a.s.).
- Ordered increasing trees Pittel (1994): E(Hn) ∼ 1

2s logn, Hn/ logn→ 1/(2s) (a.s.), ses = 1
(s = 0.27846…).

Increasing recursive trees’ height is much smaller than the one of simple trees; concomitantly,
their root degrees are much larger than the ones of simple trees.

5 Depth of a size-n tree
The depth Dn of a size-n tree is the height of a randomly chosen node in this tree. So,

Dn = h w.p. Nh,n

n
, h = 0, . . . ,Hn,
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where Nh,n is the number of nodes at height h in the size-n tree (N0,n = 1), the profile of trees. It
requires the joint law of (Nh,n;h = 0, . . . ,Hn) obeying ∑Hn

h=0 Nh,n = n. With N(r)
h,ν

d
= Nh,ν i.i.d. copies,

Nh+1,n =
Rn

∑
r=1

N(r)
h,νr,n

, h = 0, . . . ,Hn.

- For Cayley increasing trees, Devroye (1998) and Mahmoud et al. (1993) have shown that
E(Dn)∼ logn, σ2 (Dn)∼ logn. A CLT holds.

- For ordered increasing trees, Mahmoud et al. (1993) have shown that E(Dn) ∼ 1
2 logn,

σ2 (Dn)∼ 1
2 logn. A CLT holds.

Equivalently, the mean depth can be obtained as the mean path-length/n, (see Bergeron et
al. 1992, pp. 36–37), where the path-length is ∑Hn

h=0 Nh,n.
Define some local additive parameters g.f. generated by a sequence an’s as

a(z,u) = ∑
n≥1

Cnuan
zn

n!
.

The global additive parameters generated by the an’s will be

Aτn = an + ∑
τ≺τn

Aτ ,

where the sum is over all root sub-trees τ of the full size-n tree τn.
For tree size: an = 1, a(z,u) = uΦ(z); For path length: an = n, a(z,u) = Φ(zu); For leaves:

an = δn,1, a(z,u) = zu.
With A(z,u) = ∑n≥1CnuAn zn

n! the additive parameters global g.f., we get

Simple : A(z,u) = a(z,u)−a(z,1)+ zϕ (A(z,u)) ,

Recursive : A(z,u) = a(z,u)−a(z,1)+
∫ z

0
ϕ
(
A
(
z′,u
))

dz′.

Concerning the mean, with Au (z,1) denoting the derivative with respect to u evaluated at u = 1,

Simple trees: Au (z,1) = au (z,1)+ zϕ ′ (A(z,1))Au (z,1) ,

so (owing to: A(z,1) = Φ(z)) Φ′ (z) = ϕ (Φ(z))/(1− zϕ ′ (Φ(z))),

Au (z,1) =
au (z,1)

1− zϕ ′ (Φ(z))
,

where au (z,1) = ∑n≥1Cnan
zn

n! is the e.g.f. of the Hadamard product sequence Cnan.

Recursive trees: Au (z,1) = au (z,1)+
∫ z

0
ϕ ′
(
A
(
z′,1
))

Au
(
z′,1
)

dz′,

whose integrated form is (au (z,1) = ∑n≥1Cnan
zn

n! , au,z (z,1) = ∑n≥1Cnan
zn−1

(n−1)!)

Au (z,1) = Φ′ (z)
∫ z

0

az,u (z′,1)
Φ′ (z′)

dz′.
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As a result, we get for the mean path lengths: (simple trees) au (z,1) = zΦ′ (z) and (recursive
trees) au,z (z,1) = Φ′ (z)+ zΦ′′ (z) .

- For simple Cayley trees: ϕ (z) = ez, Φ(z) = zeΦ(z), zΦ′ (z) = Φ(z)/(1−Φ(z)),

Au (z,1) =
au (z,1)

1− zϕ ′ (Φ(z))
=

Φ(z)

(1−Φ(z))2 ,

[zn]Au (z,1) =
1
n

[
zn−1] 1+ z

(1− z)3 ezn,

taking the explicit convolution form:

[zn]Au (z,1) =
1
n
(a. ∗b.)n−1 ,

with am = m(m+1)2 and bm = nm/m!. Next, by the Stirling formula,

cn := [zn]Φ(z) =
nn−1

n!
∼ 1√

2π
n−3/2en,

translating that Φ(z) shows up an algebraic singularity of order −1/2 at zc = 1/e. Equivalently,
observing Φ(zc) = 1,

Φ(z)∼ 1−
√

2(1− z/zc)
1/2 as z→ zc,

and so
Au (z,1) =

Φ(z)

(1−Φ(z))2 ∼
1
2
(1− z/zc)

−1 as z→ zc,

so with [zn]Au (z,1)∼ 1/2 · en. We conclude that

n! [zn]Au (z,1)
Cn

=
[zn]Au (z,1)

cn
∼
√

π
2

n3/2.

The mean depth therefore is
√π

2 n1/2.

- For simple ordered trees: ϕ (z) = (1− z)−1, Φ(z) =
(
1−
√

1−4z
)
/2, Φ′ (z) = (1−4z)−1/2,

Au (z,1) =
au (z,1)

1− zϕ ′ (Φ(z))
=

z(1−4z)−1/2(
1− 4z

(1+
√

1−4z)
2

)
=

z(1−4z)−1

2

(
1+
√

1−4z
)
.

Hence,

[zn]Au (z,1)∼
[
zn−1] (1−4z)−1

2
=

4n−1

2
.

Owing to cn = [zn]Φ(z) = (2n−2)!
n!(n−1)! ∼

1√
π n−3/24n−1,

[zn]Au (z,1)
cn

∼ 1
2
√

πn3/2.
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The mean depth therefore is 1
2
√

πn3/2/n = 1
2
√

πn1/2.
- Concerning recursive Cayley trees (with Φ(z) =− log(1− z) and Φ′ (z) = 1/(1− z)),

Au (z,1) = Φ′ (z)
∫ z

0

Φ′ (z′)+ z′Φ′′ (z′)
Φ′ (z′)

dz′

=
1

1− z

∫ z

0

(
1+ z′

[
logΦ′

(
z′
)]′)

=
− log(1− z)

1− z
.

Therefore, [zn]Au (z,1)∼ logn⇒ n! [zn]Au (z,1)/(n−1)! = n logn. The mean depth therefore is of
order logn.

- For recursive ordered trees,

Au (z,1) =
2z− log(1−2z)

4(1−2z)1/2 .

Owing to cn = [zn]Φ(z) = [zn]
(
1−
√

1−2z
)
∼−2nn−3/2/Γ(−1/2),

[zn]Au (z,1)∼ 2n/Γ(1/2)n−1/2 logn⇒ [zn]Au (z,1)/cn =
n
2

logn.

The mean depth therefore is of order 1
2 logn.

6 Forests (nucleation/aggregation process)
Besides aggregation of atoms to a preexisting tree, growth of trees can also result from the
creation of new trees forming a forest. Whenever an incoming atom launches on a new tree, we
speak of a nucleation event.

With Φ(z,1) = Φ(z) solving Φ(z) = zϕ (Φ(z)) or Φ′ (z) = ϕ (Φ(z)), define

K (z,u) = euΦ(z) (or K (z,u) = 1/(1−uΦ(z))), (23)

where u marks the number of trees (connected components) in a forest in that

Cn,k := n!
[
ukzn

]
K (z,u) =

n!
k!

[zn]Φ(z)k or (24)

Cn,k := n!
[
ukzn

]
K (z,u) = n! [zn]Φ(z)k

is the number of unordered (or ordered) forests with n labeled nodes and k trees, k = 1, . . . ,n.
Furthermore,

Cn : =
n

∑
k=1

Cn,k = [zn]K (z,1) = [zn]eΦ(z) (unordered),

Cn : =
n

∑
k=1

Cn,k = [zn]K (z,1) = [zn]
1

1−Φ(z)
(ordered),

is the number of forests with n atoms, regardless of its number of (in) distinguishable trees.
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6.1 Nonincreasing (simple) trees

6.1.1 Cayley (unordered) trees Rényi (1959)

- If Φ(z) = zeΦ(z), with K (z,u) = euΦ(z), the by Lagrange inversion theorem,

[zn]K (z,u) =
u
n

[
zn−1]ez(u+n)

=
u
n!

(u+n)n−1 ,

n!
[
znuk

]
K (z,u) = : Cn,k =

(
n−1
k−1

)
nn−k, k = 1, . . . ,n,

P(Kn = k) =
n!
[
znuk

]
K (z,u)

n! [zn]K (z,1)
=

1

(1+n)n−1

(
n−1
k−1

)
nn−k,(

n−1
k−1

)
nn−k =

(
n
k

)
knn−k−1.

Takács (1990) rather gave Cn,k = knn−k−1 as the number of unordered forests with k Cayley trees
while fixing the k different founders of the distinct trees out of

(n
k

)
different ways. See also Rényi

(1959). Also,

E
(
uKn
)
=

n! [zn]K (z,u)
n! [zn]K (z,1)

= u
(

1− 1
1+n

+
u

1+n

)n−1

, (25)

a shifted binomial distribution. In particular, E(Kn) =
2n

1+n ∼ 2. A remarkable fact is that Rn
d
=

Kn−1. Note
E
(
uKn
)
∼ ue−(1−u) as n is large, (26)

the p.g.f. of a shifted mean 1 Poisson r.v..
We finally observe as in Clarke (1958) that the triangular array Cn,k obeys the backward

recursion
(n− k)Cn,k = nkCn,k+1.

Hence, P(Kn = k) =Cn,k/Cn , k = 1, . . . ,n obeys

P(Kn = k) =
nk

n− k
P(Kn = k+1) , k = n−1, . . . ,1,

with terminal condition P(Kn = n) = (n+1)−(n−1).

6.1.2 Ordered and unordered forests

- (ordered forests of ordered trees) For such models of forests of trees, the trees themselves
are assumed distinguishable, resulting in ordered forests. If Φ(z) =

(
1−
√

1−4z
)
/2, solving
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Φ(z) = z/(1−Φ(z)), with K (z,u) = 1/(1−uΦ(z)), then

[zn]K (z,u) =
u
n

[
zn−1] 1

(1− zu)2 (1− z)−n

=
1
n

n

∑
k=1

k
[n]n−k

(n− k)!
uk

=
n

∑
k=1

k
n

(
2n− k−1

n− k

)
uk,

[zn]K (z,1) = e [zn]e−
√

1−2z =
1

n+1

(
2n
n

)
,

where we used the identity

[zn]K (z,1) =
n

∑
k=1

k
n

(
2n− k−1

n− k

)
=

1
n+1

(
2n
n

)
.

Hence
P(Kn = k) =

n!
[
znuk

]
K (z,u)

n! [zn]K (z,1)
=

n+1(2n
n

) k
n

(
2n− k−1

n− k

)
. (27)

Observing
∂uK (z,1) = Φ(z)/(1−Φ(z))2 ,

[zn]∂uK (z,1) =
1
n

[
zn−1] 1+ z

(1− z)n+3

=
1
n

([
zn−1](1− z)−(n+3)+

[
zn−2](1− z)−(n+3)

)
=

1
n

(
2n

n−2

)
3n+1
n−1

,

so

E(Kn) =
[zn]∂uK (z,1)
[zn]K (z,1)

=
n+1

n
3n−1
n−1

( 2n
n−2

)(2n
n

)
=

3n−1
n

n−1
n+2

∼ 3.

The variance can be computed using

∂ 2
u K (z,1) = 2Φ(z)2 /(1−Φ(z))3 .

We get E(Kn (Kn−1)) = 10 n−1
n+2 ∼ 10, so that σ2 (Kn) ∼ 4 and showing that the limit law is not

Poisson.
For such tree models, there is a small number of connected components (at least one of which

must be very large).
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- (Unordered forests of ordered trees): If K (z,u) = euΦ(z), for k = 1, . . . ,n, then

Cn,k : = n!
[
znuk

]
K (z,u) =

n!
k!

[zn]Φ(z)k

=
(n−1)!
(k−1)!

[
zn−1]zk−1 (1− z)−n

=
(n−1)!
(k−1)!

[
zn−k

]
(1− z)−n

=
(n−1)!
(k−1)!

[n]n−k

(n− k)!
=

(2n− k−1)!
(k−1)!(n− k)!

.

These Cn,k’s are readily checked to obey the three term recurrence

Cn+1,k = (2n− k)Cn,k +
n

k−1
Cn,k−1.

Furthermore,

Cn = n! [zn]eΦ(z) = (n−1)!
[
zn−1]ez (1− z)−n

= (n−1)!
n

∑
m=1

1
(m−1)!

[
zn−m](1− z)−n =

n

∑
k=1

(2n− k−1)!
k!(n− k−1)!

=
n

∑
l=1

(n+ l−1)!
(l−1)!(n− l)!

. (28)

6.2 Increasing trees
6.2.1 Cayley (unordered) trees

- In the case of nonplane increasing trees for which Φ(z) =− log(1− z) ,

K (z,u) = euΦ(z) = (1− z)−u ,

n! [zn]K (z,u) = [u]n ,

n!
[
znuk

]
K (z,u) = |sn,k| ,

E
(
uKn
)

=
[u]n
n!

.

Here Cn,k = |sn,k| ≡ Sn,k (−1,0,0) are the signless Stirling numbers of the first kind, obeying

Cn+1,k = nCn,k +Cn,k−1, (29)

E(Kn) =
[zn]∂uK (z,1)

Cn
= Hn ∼ logn,

σ2 (Kn)∼ logn.

A CLT holds.
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6.2.2 Ordered (plane) trees

- In the case of ordered increasing trees for which Φ(z) = 1−
√

1−2z solving Φ(z) = 1/(1−Φ(z)) ,

K (z,u) = eu(1−
√

1−2z). (30)

Here, with Sn,k (−α2,−α1;w2) the generalized Stirling triangle defined in Hsu and Shiue (1998),

n!
[
znuk

]
K (z,u) =

n!
k!

[zn]Φ(z)k =Cn,k := Sn,k (−2,−1;0) ,

Cn,k ≡ Sn,k (−2,−1,0) = (2(n− k)−1)!!
(

2n− k−1
2(n− k)

)
=

(2(n− k)−1)!
2n−k−1 (n− k−1)!

(
2n− k−1
2(n− k)

)
=

1
2n−k

(2n− k−1)!
(n− k)!(k−1)!

,

Cn+1,k = (2n− k)Cn,k +Cn,k−1.

Hence,

P(Kn+1 = k) =
Cn

Cn+1
((2n− k)P(Kn = k)+P(Kn = k−1)) . (31)

With Cn := ∑n
k=1Cn,k = ∑n−1

l=0 2−l (n+l−1)!
l!(n−l−1)! ,

P(Kn = k) =
n!
[
znuk

]
K (z,u)

n! [zn]K (z,1)
=

Cn,k

Cn
,

Cn+1 = (2n+1)Cn−
⟨
Cn
⟩
,

Cn+1

Cn
∼ 2n−1⇒ E(Kn) =

n! [zn]∂uK (z,1)
n! [zn]K (z,1)

=

⟨
Cn
⟩

Cn
∼ 2,

Kn has a shifted Poisson(1) limit law. We have

K (z,u) = eu

(
1+ ∑

k≥1

(−u)k

k!
(1−2z)k/2

)
,

with singularity at z = 1/2. Singularity analysis of the singular expansion yields

n! [zn]K (z,u) = n!eu

(
∑
k≥1

(−u)k

k!
n−k/22n

n
1

Γ(−k/2)

)

∼ (n−1)!2neu

(
un−1/2

2
√

π
+O

(
n−3/2

))
.

Therefore ,

Cn = n! [zn]K (z,1)∼ (n−1)!2ne

(
n−1/2

2
√

π
+O

(
n−3/2

))
,

Cn+1

Cn
∼ 2n

(
1− 1

2n
+O

(
n−2))∼ 2n−1.
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Therefore,
E
(
uKn
)
=

n! [zn]K (z,u)
n! [zn]K (z,1)

∼ ue−(1−u), (32)

the p.g.f. of a shifted Poisson(1) r.v..

This three-term recurrence, giving P(Kn = k) in all cases, is the one of triangular Markov
probability sequences. The latter recursion (31), for example, may be written as

P(Kn+1 = k) = q(n)k,k P(Kn = k)+q(n)k−1,kP(Kn = k−1) ,

defining the transition coefficients q(n)k,k and q(n)k−1,k (not probabilities). Introduce the superdiagonal
transition matrix

Qn,n :=


q(n)1,1 q(n)1,2 0 · · ·

0
. . . . . . 0

0 0 q(n)n−1,n−1 q(n)n−1,n
...

... 0 q(n)n,n

 ,

and let Qn−1,n be its (n−1)×n truncated version. With πK
1 := 1, taking into account the bound-

ary conditions, the distributions πK
n := (P(Kn = k) , k ∈ {1, . . . ,n}), n ≥ 1, satisfy the recursion

πK
n =

(
πK

n−1,0
)

Qn,n = πK
n−1Qn−1,n, n≥ 2. Thus, πK

n =
←−
∏m=2,...,nQm−1,m, n≥ 2 is an integrated form

solution of the recursion, as a left product of nested rectangular matrices. Because for each n,
πL

n is a probability vector, we get that πL
n is orthogonal to the 1-shifted column sum vector qn−1

of Qn,n+1 with kth entry q(n+1)
k,k +q(n+1)

k,k+1 −1, k = 1, . . . ,n.

7 Weighted trees
Simply generated weighted trees are weighted versions of rooted trees and have been introduced
by Meir and Moon (1978). They are obtained while assigning to each node x of a size-n tree τn

a weight wbn(x), where bn (x) is the outdegree of x. The weight of a particular tree τn is then the
product ∏x∈τn wbn(x), and while summing over all τn, we get the weight of all size-n trees.

7.1 Weighted simple trees

Let w(τn) = ∏n−1
b=0 wnb(τn)

b be the (multiplicative) weight of an unlabeled rooted tree τn with n
nodes (|τn| = n) having nb (τn) nodes with outdegree (branching number) b. The weight w(τn)
is the product over the n nodes x of τn of the wbn(x)’s, where bn (x) is the outdegree of x. Then
Wn = ∑τn w(τn) is the weight of all size-n such trees associated to the weight sequence w :=
(wb ≥ 0, b≥ 0) . The number of these trees is cn := Cn/n! = [zn]Φ(z) . Let Φw (z) = ∑n≥1 znWn.
Then Φw (z) solves Φw (z) = zg(Φw (z)), where g(z) = ∑b≥0 wbzb.

By Lagrange inversion formula, we get the identity

Wn = [zn]Φw (z) =
1
n

[
zn−1]g(z)n = ∑

τn

∏
x∈τn

wbn(x) = ∑
τn

n−1

∏
b=0

wnb(τn)
b .
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Examples of w are as follows:
- w =(εb; b≥ 0) with εb ∈ {0,1}. Only the branches of the tree with εb = 1 contribute to its

weight.
- wb = a1ab

2, a1,a2 > 0 with g(z) = a1 ∑b≥0 (a2z)b = a1/(1−a2z) . Note w(τn) = an
1an−1

2 in view
of ∑n−1

b=0 nb (τn) = n and ∑n−1
b=1 bnb (τn) = n− 1 (the total tree length). As a result, Wn = an

1an−1
2 cn,

where cn = Cn/n! = (2n−2)!
n!(n−1)! . In that separable case, each tree τn has equal weight an

1an−1
2 and

Wn = an
1an−1

2 cn. Note Φw (z) =
(
1−
√

1−4a1a2z
)
/(2a2) = Φ(a1a2z)/a2.

- If the sequence of weights wb is summable, then g(z)’s can be normalized to yield the p.g.f.’s
g(z)/g(1) ; the corresponding integrated solutions change from Φw (z) to Φw (z/g(1)) .

- If w := (wb ≥ 0, b≥ 0) is directly a probability sequence with ∑b≥0 wb = 1, then Φw (z) is
the g.f. of the total progeny of a Galton–Watson tree with branching mechanism g, solving
Φw (z) = zg(Φw (z)), Φw (0) = 0. The numbers [zn]Φw (z) = Wn are the (sub-)probabilities of a
progeny with size n.

Examples:
• (Poisson offspring) If wb = e−µ µb/b!, b≥ 0 with µ > 0, then, with g(z) = eµ(z−1) and Φ(z)

solving Φ(z) = zeΦ(z), the Cayley e.g.f., we have

Φw (z) =
1
µ

Φ
(
µe−µz

)
=

1
µ ∑

n≥1

nn−1

n!
(
µe−µz

)n
.

The Borel e.g.f. Φw (z) has thus now a displaced algebraic singularity of order −1/2 at zc =
1
µ eµ−1 > 1 with Φw (zc) = 1/µ and Φ′w (zc) = ∞. Note

µ ≤ 1 : Φw (1) = 1,

µ > 1 : Φw (1) = ρ < 1/µ,

where ρ is the extinction probability of the supercritical Poisson GW process solving g(ρ) =
eµ(ρ−1) = ρ.
• (geometric offspring) If wb = aab, b ≥ 0 with a ∈ (0,1) and a = 1− a, then, with g(z) =

a/(1−az) and Φ(z) solving Φ(z) = z/(1−Φ(z)) , the e.g.f. of ordered trees, we have

Φw (z) =
1
a

Φ(aaz) =
1−
√

1−4aaz
2a

.

Also, Φw (z) has thus now a displaced algebraic singularity of order −1/2 at zc = 1/(4aa) > 1
with Φw (zc) = 1/(2a) and Φ′w (zc) = ∞. Note, with µ = a/a, the mean offspring number is

µ ≤ 1 : Φw (1) = 1,

µ > 1 : Φw (1) = ρ < 1/(2a) ,

where ρ = a/a is the extinction probability of the supercritical geometric GW process solving
g(ρ) = a/(1−aρ) = ρ.

In both cases, there is a possibility for such weighted trees that they are finite with some
nonzero probability.
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7.2 Weighted increasing trees
Consider the increasing ordered tree g.f. Φ(z) solving Φ′ (z) = 1/(1− (Φ(z))), Φ(0) = 0, with
Φ(z) = 1−

√
1−2z and

Cn = n! [zn]Φ(z) = (2n−3)!! = 2−(n−1) (2n−2)!/(n−1)!.

Let Wn = ∑τn w(τn) (where w(τn) = ∏n−1
b=0 wnb(τn)

b ) be the weight of all size n increasing labeled
rooted trees (|τn|= n) associated to the weight sequence w := (wb ≥ 0, b≥ 0), with wb =

[
zb
]

g(z)
the weight of an atom with out-degree b. Let then Φw (z) = ∑n≥1 znWn/n!, with Wn = n! [zn]Φw (z).
Then Φw (z) solves Φ′w (z)= g(Φw (z)), where g(z)=∑b≥0 wbzb. Note Φ(z) is obtained when wb = 1,
b≥ 0 : the number of such n-trees is Cn = (2n−3)!!.

The probability to observe a particular size-n tree τn among all size-n trees is w(τn)/Wn. The
tilted probability to observe a tree of size n among all possible trees is

znWn/n!
Φw (z)

,

for those z ∈ (0,zc), where zc = inf(z > 0 : Φw (z) = ∞) =
∫ z∗

0
dz′

g(z′) with z∗ = inf(z > 0 : g(z) = ∞) .

Examples of w are as follows:
- wb = a1ab

2 [c]b /b!, a1,a2,c > 0 with g(z) = a1 ∑b≥0
[c]b
b! (a2z)b = a1 (1−a2z)−c .

- wb = a1ab
2, a1,a2 > 0 with g(z) = a1/(1−a2z) . In that separable case, each tree τn has equal

weight an
1an−1

2 and Wn = an
1an−1

2 Cn with Wn+1/Wn = a1a2 (2n−1) .
For the three special g.f.’s,

g(z) = (1−α1z)−(α2/α1−1) (α2 > α1 > 0,0 < α := α1/α2 < 1),

g(z) = eα2z (obtained from the latter g(z) when α1→ 0), or
g(z) = (1+α1z)d , α1 > 0,d ∈ {2,3, . . .} ,

the weighted e.g.f.’s Φw (z) solving Φ′w (z) = g(Φw (z)), Φw (0) = 0 are, respectively,

Φw (z) =
1

α1

(
1− (1−α2z)α1/α2

)
= − log(1−α2z) as α1→ 0

=
1

α1

(
−1+[1−α1(d−1)z]−1/(d−1)

)
.

Note that these special g(z)’s can be normalized to the p.g.f.’s g(z)/g(1) with the corresponding
integrated solutions changing from Φw (z) to Φw (z/g(1)) . The normalized p.g.f.’s g(z)/g(1) are
then, respectively, negative-binomial, Poisson, and binomial p.g.f.’s.

The formation of such increasing trees admits the following recursive tree evolution scheme
(label 1 is assigned to the root):

With probability pb (n) := K−1
n (b+1)wb+1/wb, attach uniformly node n+ 1 to any of the

nb (τn) nodes with out-degree b ∈ {0, . . . ,b∗} of a previous size-n increasing tree τn (b∗ ≤ n−1).
The normalization constant is Kn = ∑n−1

b=0 nb (τn)(b+1)wb+1/wb, representing the “number”
of ways the new atom with label n+ 1 can be inserted in τn. This preferential (or uniform)
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attachment procedure results in a realization of τn+1; see Panholzer and Prodinger (2007). With
(Bb (nb (τn)) ,b ∈ {0, . . . ,b∗}) mutually exclusive Bernoulli r.v.’s (summing to 1), each with success
probability nb (τn) pb (n), for each n≥ 1, we have

n0 (τn+1) = n0 (τn)+1−B0 (n0 (τn)) ,
nb (τn+1) = nb (τn)+Bb−1 (nb−1 (τn))−Bb (nb (τn)) , b ∈ {1, . . . ,b∗} ,

nb∗+1 (τn+1) = 0+Bb∗ (nb∗ (τn)) .

Whenever a connection to a node with outdegree b occurs, the number of nodes with out-degree
b (respectively, b+1) decreases (increases) by one unit. In addition, a new node with outdegree-
0 is always created whatever the degree of the node to which the new incoming atom connects
to τn . Here n0 (τn) is the number Ln of leaves in a size-n tree.

From the first equation above giving the evolution of the number of leaves,{
Ln+1 = Ln +1 with probability 1−Ln p0 (n) ,
Ln+1 = Ln with probability Ln p0 (n) .

(33)

This is one of standard space-time inhomogeneous Markov chains.
For the three particular Φw-models generated by the special g’s above, using ∑n−1

b=0 nb (τn) = n
and ∑n−1

b=1 bnb (τn) = n−1 for any τn, we get

pb (n) =
1−α +αb

n−α
,

1
n

, d−b
1+n(d−1)

,

respectively, depending only on (b,n) and not on the full sequence of weights (wb;b = 0, . . . ,b∗).
In the first two examples, b ∈ {0, . . . ,b∗ = n−1} while b ∈ {0, . . . ,b∗ = d−1} in the third d-ary
labeled plane trees case. The number Cn of such d-ary plane trees is obtained while integrating
Φ′w (z) = gd (Φw (z)), where gd (z) := (1+ z)d . We get

Φw (z) =−1+[1− (d−1)z]−1/(d−1), with

Cn = n! [zn]Φw (z) = (d−1)n [1/(d−1)]n = [1 : d−1]n ,

where [a : b]n := a(a+b) . . .(a+(n−1)b).
Note that for g(z) = (1−α1z)−(α2/α1−1), z∗ = 1/α1, zc = 1/α2 and Φw (zc) = z∗.
Such increasing trees may serve as models for phylogenetic trees in which nodes represent

species and labels encode their order of appearance, and thus the chronology of evolution. The
leaves of the tree are the currently living species; the different trees consist of genera.

Remark:(33) is the weighted tree extension of (17) and (14) obtained, respectively, when
α2 = 1 > α1 = 0 and α2 = 2 > α1 = 1.

The joint e.g.f. of the number of atoms and the number of trees of the forests is

Kw (z,u) = euΦw(z),
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with
Cn,k = n!

[
znuk

]
Kw (z,u) .

The generalized Stirling numbers

Cn,k ≡ Sn,k (−α2,−α1;0) , k = 0, . . . ,n,

Cn,k ≡ 0 if k > n,

are defined by the identity Hsu and Shiue (1998)

[w : α2]n =
n

∑
k=0

Cn,k [w : α1]k .

The Cn,k obey the (Stirling’s triangle) recurrence

Cn+1,k = (nα2− kα1)Cn,k +Cn,k−1 (34)

with boundary conditions Cn,0 = δn,0 and Cn,n = 1 for all n≥ 0. With P(Kn = k) =
n![znuk]Kw(z,u)

n![zn]Kw(z,1)
=

Cn,k

Cn
, therefore

P(Kn+1 = k) =
Cn

Cn+1
[(nα2− kα1)P(Kn = k)+P(Kn = k−1)] , (35)

where Cn := ∑n
k=0Cn,k = n! [zn]Kw (z,1) = n! [zn]eΦw(z). The e.g.f. Kw (z,1) = eΦw(z) has an algebraic

singularity of order −α at zc = 1/α2; by singularity analysis therefore

Cn ∼ −(n−1)!
1

α1Γ(−α)
αn

2 n−α ,

Cn

Cn+1
∼ 1

nα2

(
1+O

(
n−1)) , for large n.

Summing (34) over k,
Cn+1 = (nα2 +1)Cn−α1

⟨
Cn
⟩
,

Cn

Cn+1
∼ 1

nα2
⇒ E(Kn) =

n! [zn]∂uKw (z,1)
n! [zn]Kw (z,1)

=

⟨
Cn
⟩

Cn
∼ 1/α1.

Multiplying (35) by k and summing over k yield E
(
K2

n
)
∼ (1+1/α1)/α1; hence σ2 (Kn)∼ 1/α1 ∼

E(Kn) .
By the Lagrange inversion formula, we have

[zn]Kw (z,1) =
1
n

[
zn−1]ezg(z)n

=
1
n
(a. ∗b.)n−1 ,

where am = 1/m! and
bm = [zm]g(z)n = [zm] (1−α1z)−n(1/α−1) = αm

2 [n(1−α)]m /m!.
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Proposition 1 (condensed phase). If g(z) = (1−α1z)−(α2/α1−1) with α2 > α1 > 0, 0 < α :=
α1/α2 < 1, then Kn has a Poisson limit-law with mean 1/α1 as n→ ∞. It corresponds to the
distribution

P(Kn = k) =
Cn,k

Cn
, k = 0, . . . ,n,

of the normalized weight of unordered forests with n labeled atoms and k increasing ordered trees,
resulting from a random uniform choice of a configuration proportional to its weight.

Remark: (35) is the weighted tree extension of (29) and (31) obtained, respectively, when
α2 = 1 > α1 = 0 and α2 = 2 > α1 = 1. When α1→ 0, Kn diverges logarithmically, with both E(Kn)
and σ2 (Kn)∼ α2 logn.

- Finally, we mention a random version of increasing trees. With m> 0, w :=(wb = mπb ≥ 0, b≥ 0),
where (πb) is a probability sequence (∑b≥0 πb = 1), Φw (z) is the e.g.f. of the total progeny of
a Galton–Watson increasing tree with branching mechanism g(z) = ∑b≥0 πbzb and parameter m.
If the total progeny is finite with probability (w.p.) 1, Φw (1) = 1 and Φ′w (1) = m is the mean
number of its nodes, fixing m =

∫ 1
0

dz′
g(z′) .

The numbers Wn/n!= [zn]Φw (z)=mn ∑τn ∏n−1
b=0 πnb(τn)

b /n! are then the probabilities of a progeny
with size n. The e.g.f. Φw (z) solves

z =
1
m

∫ Φw(z)

0

dz′

g(z′)
=:

1
m

P(Φw (z)) .

By Lagrange inversion formula,

n! [zn]Φw (z) = mn (n−1)!
[
zn−1]( z

P(z)

)n

=Wn.

With z∗ = sup(z > 0 : g(z)< ∞) ∈ [1,∞], the convergence radius of Φw (z) is

zc = sup(z > 0 : Φw (z)< ∞) =
1
m

∫ z∗

0

dz′

g(z′)
,

with Φw (zc) = z∗ owing to

zc− z =
1
m

∫ z∗

Φw(z)

dz′

g(z′)
.

Assuming m <
∫ z∗

0
dz′

g(z′) then zc > 1. If so, Φw (1) < ∞ and Φw (z) is a g.f. candidate. It is
a defective p.g.f. only if m <

∫ 1
0

dz′
g(z′) because then ρ := Φw (1) < 1 (in view of 1 = 1

m

∫ Φw(1)
0

dz′
g(z′)

): the model is supercritical, having ρ as its extinction probability. The total progeny is finite
only w.p. ρ and Φ′w (1) = mg(ρ) is the mean number of its nodes on the extinction set. Fixing
the parameter m to its critical upper value mc =

∫ 1
0

dz′
g(z′) entails Φw (1) = 1, Φ′w (1) = mc > 1.

The size of the corresponding tree is then finite w.p. 1, with mean value mc. Note that if
m = 1 < mc =

∫ 1
0

dz′
g(z′) , then Φw (1)< 1 for all p.g.f.’s g.

When m = mc, the e.g.f. Φw (z) is proper. It admits a closed form integrable expression in
the following cases (respectively, binomial, Poisson, and negative-binomial):
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g(z) = (π0 +π1z)d ; Φw (z) =
π0

π1

(
(1− z/zc)

−1/(d−1)−1
)
, zc = 1/

(
1−πd−1

0

)
,

g(z) = e−µ(1−z) ; Φw (z) =− 1
µ

log(1− z/zc) , zc = 1/
(
1− e−µ) ,

g(z) =

(
q

1− pz

)θ
; Φw (z) =

1
p

(
1− (1− z/zc)

1/(θ+1)
)

, zc = 1/
(

1−qθ+1
)
.

With α,λ ∈ (0,1), suppose g(z)= 1−λ (1− z)α with wb =αλ [1−α]b−1 /b!, b≥ 1 and z∗= 1 (a
Sibuya branching mechanism with infinite mean µ). In that case, zc =

1
m

∫ 1
0

dz′
g(z′) =

1
m ∑k≥0

λ k

1+kα <∞,
with zc > 1 if and only if m <

∫ 1
0

dz′
g(z′) = mc. When m = mc > 1, zc = 1 and Φw (1) = 1. There is no

major impact of the mean value µ of the branching mechanism on the extinction possibility of
the increasing tree.
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