[1] https://www.skincancer.org/skin-cancer-information/ skin-cancer-facts/
[2] Calderón, C., Sanchez, K., Castillo, S., & Arguello, H. (2021) BILSK: A bilinear convolutional neural network approach for skin lesion classification. Computer Methods and Programs in Biomedicine Update, 1, 100036.
[3] Gessert, N., Nielsen, M., Shaikh, M., Werner, R., & Schlaefer, A. (2020). Skin lesion classification using ensembles of multi-resolution EfficientNets with metadata. MethodsX, 7, 100864.
[4] Zhang, N., Cai, Y. X., Wang, Y. Y., Tian, Y. T., Wang, X. L., & Badami, B. (2020). Skin cancer diagnosis based on optimized convolutional neural network. Artificial intelligence in medicine, 102, 101756.
[5] Maron, R. C., Weichenthal, M., Utikal, J. S., Hekler, A., Berking, C., Hauschild, A., ... & Thiem, A. (2019). Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. European Journal of Cancer, 119, 57-65.
[6] Khouloud, S., Ahlem, M., Fadel, T., & Amel, S. (2021). W-net and inception residual network for skin lesion segmentation and classification. Applied Intelligence, 1-19.
[7] Adegun, A. A., & Viriri, S. (2019). Deep learning-based system for automatic melanoma detection. IEEE Access, 8, 7160-7172.
[8] Hoshyar, A. N., Al-Jumaily, A., & Hoshyar, A. N. (2014). The beneficial techniques in preprocessing step of the skin cancer detection system comparing. Procedia Computer Science, 42, 25-31.
[9] Yilmaz, E., & Trocan, M. (2020, March). Benign and malignant skin lesion classification comparison for three deep-learning architectures. In Asian conference on intelligent information and database systems (pp. 514-524). Springer, Cham.
[10] Qin, Z., Liu, Z., Zhu, P., & Xue, Y. (2020). A GAN-based image synthesis method for skin lesion classification. Computer Methods and Programs in Biomedicine, 195, 105568.
[11] Annaby, M. H., Elwer, A. M., Rushdi, M. A., & Rasmy, M. E. (2021). Melanoma detection using spatial and spectral analysis on superpixel graphs. Journal of digital imaging, 34(1), 162-181.
[12] Gong, A., Yao, X., & Lin, W. (2020). Classification for dermoscopy images using convolutional neural networks based on the ensemble of individual advantage and group decision. IEEE Access, 8, 155337-155351.
[13] Al-Masni, M. A., Kim, D. H., & Kim, T. S. (2020). Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Computer methods and programs in biomedicine, 190, 105351.
[14] Hameed, N., Shabut, A. M., Ghosh, M. K., & Hossain, M. A. (2020). Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Systems with Applications, 141, 112961.
[15] Kassem, M. A., Hosny, K. M., & Fouad, M. M. (2020). Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access, 8, 114822-114832.
[16] Albahar, M. A. (2019). Skin lesion classification using convolutional neural network with novel regularizer. IEEE Access, 7, 38306-38313.
[17] Dinga, S., Wu, Z., Zheng, Y., Liu, Z., Yang, X., Yang, X., Yuan, G., & Xie, J. (2021). Deep attention branch networks for skin lesion classification. Computer Methods and Programs in Biomedicine, 212, 106447.
[18] Alsaade, F. W., Aldhyani, T. H., & Al-Adhaileh, M. H. (2021). Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Computational and Mathematical Methods in Medicine, 2021.
[19] Hsu, B. W., & Tseng, V.S. (2022). Hierarchy-Aware Contrastive Learning with Late Fusion for Skin Lesion Classification. Computer Methods and Programs in Biomedicine, (Jan. 2022), 106666.
[20] Wei, L., Pan, S. X., Nanehkaran, Y. A., & Rajinikanth, V. (2021). An Optimized Method for Skin Cancer Diagnosis Using Modified Thermal Exchange Optimization Algorithm. Computational and Mathematical Methods in Medicine, 2021.
[21] Fernando, K. R. M., & Tsokos, C. P. (2021). Dynamically weighted balanced loss: class imbalanced learning and confidence calibration of deep neural networks. IEEE Transactions on Neural Networks and Learning Systems.
[22] Pacheco, A. G., & Krohling, R. A. (2021). An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification. IEEE journal of biomedical and health informatics, 25(9), 3554-3563.
[23] Sun, Q., Huang, C., Chen, M., Xu, H., & Yang, Y. (2021). Skin lesion classification using additional patient information. BioMed research international, 2021.
[24] Putra, T. A., Rufaida, S. I., & Leu, J. S. (2020). Enhanced skin condition prediction through machine learning using dynamic training and testing augmentation. IEEE Access, 8, 40536-40546.
[25] Banerjee, S., Singh, S. K., Chakraborty, A., Basu, S., Das, A., & Bag, R. (2021). Diagnosis of Melanoma Lesion Using Neutrosophic and Deep Learning. Traitement du Signal, 38(5).
[26] Vaiyapuri, T., Balaji, P., Alaskar, H., & Sbai, Z. (2022). Computational Intelligence-Based Melanoma Detection and Classification Using Dermoscopic Images. Computational Intelligence and Neuroscience, 2022.
[27] Kaur, R., GholamHosseini, H., Sinha, R., & Lindén, M. (2022). Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images. Sensors, 22(3), 1134.
[28] Chabi Adjobo, E., Sanda Mahama, A. T., Gouton, P., & Tossa, J. (2022). Towards Accurate Skin Lesion Classification across All Skin Categories Using a PCNN Fusion-Based Data Augmentation Approach. Computers, 11(3), 44.
[29] Adegun, A. A., & Viriri, S. (2020). FCN-based DenseNet framework for automated detection and classification of skin lesions in dermoscopy images. IEEE Access, 8, 150377-150396.
[30] Oliveira, R. B., Pereira, A. S., & Tavares, J. M. R. (2017). Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation. Computer methods and programs in biomedicine, 149, 43-53.
[31] Mahbod, A., Tschandl, P., Langs, G., Ecker, R., & Ellinger, I. (2020). The effects of skin lesion segmentation on the performance of dermatoscopic image classification. Computer Methods and Programs in Biomedicine, 197, 105725.
[32] Haggenmüller, S., Maron, R. C., Hekler, A., Utikal, J. S., Barata, C., Barnhill, R. L., ... & Brinker, T. J. (2021). Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. European Journal of Cancer, 156, 202-216.
[33] Höhn, J., Krieghoff-Henning, E., Jutzi, T. B., von Kalle, C., Utikal, J. S., Meier, F., ... & Brinker, T. J. (2021). Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification. European Journal of Cancer, 149, 94-101.
[34] Dhivyaa, C. R., Sangeetha, K., Balamurugan, M., Amaran, S., Vetriselvi, T., & Johnpaul, P. (2020). Skin lesion classification using decision trees and random forest algorithms. Journal of Ambient Intelligence and Humanized Computing, 1-13.
[35] Thanh, D. N., Prasath, V. B., Hieu, L. M., & Hien, N. N. (2020). Melanoma skin cancer detection method based on adaptive principal curvature, colour normalisation and feature extraction with the ABCD rule. Journal of Digital Imaging, 33(3), 574-585.
[36] Song, L., Lin, J., Wang, Z. J., & Wang, H. (2020). An end-to-end multi-task deep learning framework for skin lesion analysis. IEEE journal of biomedical and health informatics, 24(10), 2912-2921.
[37] Thurnhofer-Hemsi, K., & Domínguez, E. (2021). A convolutional neural network framework for accurate skin cancer detection. Neural Processing Letters, 53(5), 3073-3093.
[38] Jha, S., & Mehta, A. K. (2022). A hybrid approach using the fuzzy logic system and the modified genetic algorithm for prediction of skin cancer. Neural Processing Letters, 54(2), 751-784.
[39] Araújo, R. L., de Araujo, F. H., & Silva, R. R. (2022). Automatic segmentation of melanoma skin cancer using transfer learning and fine-tuning. Multimedia Systems, 28(4), 1239-1250.
[40] Shorfuzzaman, M. (2022). An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection. Multimedia Systems, 28(4), 1309-1323.
[41] Ahmad, M., Ahmed, I., Ouameur, M. A., & Jeon, G. (2022). Classification and Detection of Cancer in Histopathologic Scans of Lymph Node Sections Using Convolutional Neural Network. Neural Processing Letters, 1-16.
[42] Kiani, K., & Sharafat, A. R. (2011). E-shaver: An improved DullRazor® for digitally removing dark and light-colored hairs in dermoscopic images. Computers in biology and medicine, 41(3), 139-145.
[43] Chao, X., & Zhang, L. (2021). Few-shot imbalanced classification based on data augmentation. Multimedia Systems, 1-9.
[44] Tschandl P., Rosendahl C. & Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 doi.10.1038/sdata.2018.161 (2018)
[45] Rotemberg, V., Kurtansky, N., Betz-Stablein, B., Caffery, L., Chousakos, E., Codella, N., Combalia, M., Dusza, S., Guitera, P., Gutman, D., Halpern, A., Helba, B., Kittler, H., Kose, K., Langer, S., Lioprys, K., Malvehy, J., Musthaq, S., Nanda, J., Reiter, O., Shih, G., Stratigos, A., Tschandl, P., Weber, J. & Soyer, P. A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci Data 8, 34 (2021). https://doi.org/10.1038/s41597-021-00815-z