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Abstract. Let X(t) denote the remaining lifespan of a device. Two-dimensional degenerate
diffusion processes (X(t),Y (t)), where Y (t) is a variable that influences the remaining lifespan,
are proposed to model the evolution of X(t) over time. These processes are defined in such a way
that X(t) will be strictly decreasing as time increases: dX(t) = ρ[X(t),Y (t)]dt, where ρ is a strictly
negative function and {Y (t), t ≥ 0} is a diffusion process. Next, optimal control problems for such
diffusion processes, in which the final time is the random time when the device is considered to
be worn out, are considered. This type of problems is known as homing problems. The dynamic
programming equation satisfied by the value function is derived and particular problems are
solved explicitly for diffusion processes {Y (t), t ≥ 0} that are important for applications. To do
so, we must solve non-linear partial differential equations, subject to the appropriate boundary
conditions.
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1 Introduction
Let D(t) be the amount of degradation, or wear, of a device at time t. Numerous papers have
been written on models for the evolution of degradation over time. Shahraki et al. (2017) wrote a
review paper in which they gave 126 relatively recent references on degradation modelling. The
models proposed by various authors include gamma, Wiener and inverse Gaussian processes.

Whitmore and Schenkelberg (1997), Nicolai and Dekker (2007), and Ye et al. (2013), in
particular, used one-dimensional Wiener processes as models for the stochastic process {D(t), t ≥
0}. More recently, Zhang et al. (2017) as well as Zhai et al. (2018) proposed random-effects
Wiener processes to model degradation. In Zhou et al. (2021), a generalized Wiener process
is used. Ghamlouch et al. (2015) considered a jump-diffusion process for the evolution of the
health indicator of a system.
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All these papers are of good quality. Indeed, depending on the choice for their infinitesimal
parameters, one-dimensional diffusion (or jump-diffusion) processes can produce good results.
However, in general degradation D(t) should be a strictly increasing function of t, while the
remaining useful lifetime (RUL) should decrease as time t increases. As is well known, any
diffusion process both increases and decreases in any time interval.

Rishel (1991) has pointed out that in order to obtain a strictly increasing degradation with
models based on diffusion processes, one must consider (n+1)-dimensional degenerate diffusion
processes defined by a system of stochastic differential equations of the following form (see
Øksendal (2003)):

dX(t) = ρ [X(t),Y1(t), . . . ,Yn(t)]dt, (1)
dYi(t) = f [X(t),Y1(t), . . . ,Yn(t)]dt +σ [X(t),Y1(t), . . . ,Yn(t)]dBi(t) (2)

for i = 1,2, . . . ,n, where Y1(t), . . . ,Yn(t) are variables that influence the wear or degradation X(t),
ρ is a function that is always positive, and B1(t), . . . ,Bn(t) are independent standard Brownian
motions. If X(t) represents the remaining lifespan, rather than the degradation, of the device at
time t, then the function ρ should be always negative.

The author has written a number of papers on the optimal control of wear processes; see, in
particular, Lefebvre and Gaspo (1996a) and Lefebvre and Gaspo (1996b), and Lefebvre (2000).
He also computed in Lefebvre (2010) the mean first-passage time to zero for wear processes.

In this paper, we will propose in Section 2 two degenerate two-dimensional diffusion processes
that could be used to model the remaining lifespan (or degradation) of various devices. Then,
in Section 3, optimal control problems for such processes will be set up and solved explicitly. In
these problems, the optimizer tries to maximize a certain performance criterion from the initial
time t0 = 0 until the time τ when the device is considered to be worn out. This time τ is a
random variable.
Remark. The function ρ must be strictly increasing (or decreasing) in the interval [0,τ], not
necessarily for any t. Moreover, if the probability that the remaining lifespan X(t) will increase
(or the wear will decrease) in [0,τ] is negligible, then the proposed model is considered to be
acceptable in practice.

Optimal control problems for which the final time is a random variable were called homing
problems by Whittle (1982). He also considered the case when the cost criterion is risk-sensitive;
Whittle (1990).

Finally, we will make a few concluding remarks in Section 4.

2 Integrated diffusion processes as models for the remaining
lifespan

First, we recall an important result on n-dimensional stochastic processes; see Lefebvre (2007).

Proposition 1. Let {X(t), t ≥ 0} be an n-dimensional stochastic process defined by

dX(t) = (AX(t)+a)dt +N1/2 dB(t),
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where {B(t), t ≥ 0} is an n-dimensional standard Brownian motion, A is a square matrix of order
n, a is an n-dimensional vector, and N1/2 is a positive definite square matrix of order n. Then,
given that X(t0) = x, we may write that

X(t)∼ N(m(t),K(t)) for t ≥ t0,

where
m(t) := Φ(t)

(
x+

∫ t

t0
Φ−1(u)adu

)
and

K(t) := Φ(t)
(∫ t

t0
Φ−1(u)N[Φ−1(u)]′du

)
Φ′(t),

where the symbol prime denotes the transpose of the matrix, and the function Φ(t) is given by

Φ(t) := eA(t−t0) =
∞

∑
n=0

An (t − t0)n

n!
.

In two dimensions, the system (1), (2) can be written as follows:

dX(t) = ρ [X(t),Y (t)]dt, (3)
dY (t) = f [X(t),Y (t)]dt +σ [X(t),Y (t)]dB(t). (4)

We will now give two examples of degenerate two-dimensional diffusion processes that could
serve as models for the remaining lifespan X(t) of devices, and for which Proposition 1 can be
used to obtain the distribution of X(t).
Example 1. Consider first the two-dimensional degenerate diffusion process (X(t),Y (t)) defined
by

dX(t) = cY (t)dt,

dY (t) = µ dt +σ dB(t), (5)

where c is a negative constant and {B(t), t ≥ 0} is a standard Brownian motion, so that {Y (t), t ≥
0} is a Wiener process with drift coefficient µ ∈ R and diffusion coefficient σ > 0. Moreover
{X(t), t ≥ 0} is an integrated Brownian motion multiplied by c. Assuming that (X(0),Y (0)) =
(x,y), we find (see Lefebvre (2007), p. 212) that

m(t) =
[

x+ cyt + 1
2 cµ t2

y+µ t

]
and

K(t) =
[

c2 σ 2 t3/3 cσ 2 t2/2
cσ2 t2/2 σ2 t

]
.

Now, in theory, the Wiener process {Y (t), t ≥ 0} could become negative before X(t) = 0, so
that the remaining lifespan would start to increase. Since Y (t)∼ N(y+µ t,σ 2 t), we have

p1(t) := P[Y (t)< 0] = Φ
(
−y−µ t

σ
√

t

)
,
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Figure 1: Value of p1(t) := Φ
(
−3−t√

t

)
in the interval [0,10].

where here Φ(·) denotes the distribution function of a N(0,1) random variable. Hence, if y is
large enough and µ > 0, the above probability becomes rapidly negligible. For instance, if y = 3
and µ = σ = 1, we see in Figure 1 that p1(t) := Φ

(
−3−t√

t

)
is smaller than approximately 0.00016.

Moreover, since Y (t) has a Gaussian distribution, the parameters µ and σ are easy to estimate.
Remark. To obtain an appropriate model for the degradation of the device, one has simply to
assume that the constant c in Eq. (5) is positive instead of negative.

Example 2. Next, we consider the degenerate two-dimensional diffusion process Z(t)= (X(t),Y (t))
defined by the system of stochastic differential equations

dX(t) = cY (t)dt,

dY (t) = −αY (t)dt +σ dB(t),

where c < 0 and σ > 0 are constants, α ̸= 0 and {B(t), t ≥ 0} is a standard Brownian motion.
Hence, if α > 0, {Y (t), t ≥ 0} is an Ornstein-Uhlenbeck process and {X(t), t ≥ 0} is its integral
times the constant c. We suppose that (X(t0),Y (t0)) = (x,y), with x ≥ 0 and y > 0.

We have
A =

(
0 c
0 −α

)
, a =

(
0
0

)
and N1/2 =

(
0 0
0 σ

)
.

We calculate
A2 =

(
0 c
0 −α

)(
0 c
0 −α

)
=

(
0 −cα
0 α2

)
,

A3 =

(
0 c
0 −α

)(
0 −cα
0 α2

)
=

(
0 cα2

0 −α3

)
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and
A4 =

(
0 c
0 −α

)(
0 cα2

0 −α3

)
=

(
0 −cα3

0 α4

)
.

Hence, we deduce that we can write that

An =

(
0 (−1)n−1 cαn−1

0 (−1)n αn

)
for n ∈ N.

It follows that

Φ(t) =
∞

∑
n=0

An (t − t0)n

n!

=

(
1 0
0 1

)
+

∞

∑
n=1

(
0 (−1)n−1 cαn−1

0 (−1)n αn

)
(t − t0)n

n!

=

(
1 0
0 1

)
+

(
0 c(t − t0)e−α(t−t0)

0 e−α(t−t0)−1

)
=

(
1 c(t − t0)e−α(t−t0)

0 e−α(t−t0)

)
.

Next,

Φ−1(t) = eα(t−t0)
(

e−α(t−t0) −c(t − t0)e−α(t−t0)

0 1

)
=

(
1 −c(t − t0)
0 eα(t−t0)

)
.

We have
m(t) = Φ(t)

[(
x
y

)
+

(
0
0

)]
=

(
x+ c(t − t0)e−α(t−t0) y

e−α(t−t0) y

)
and

Φ−1(u)N [Φ−1(u)]′

=

(
1 −c(u− t0)
0 eα(u−t0)

)(
0 0
0 σ2

)(
1 0

−c(u− t0) eα(u−t0)

)
=

(
0 −cσ 2 (u− t0)
0 σ 2 eα(u−t0)

)(
1 0

−c(u− t0) eα(u−t0)

)
=

(
c2 σ 2 (u− t0)2 −cσ 2 (u− t0)eα(u−t0)

−cσ 2 (u− t0)eα (u−t0) σ 2 e2α(u−t0)

)
,

so that we obtain the symmetric matrix

M(t) :=
∫ t

t0
Φ−1(u)N [Φ−1(u)]′du

=

 c2 σ 2 (t − t0)3

3
−cσ2 1+[α (t − t0)−1] eα(t−t0)

α2

— σ 2 e2α(t−t0)−1
2α

 .
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Finally, we calculate

K(t) := Φ(t)M(t)Φ′(t)

=

(
1 c(t − t0)e−α(t−t0)

0 e−α(t−t0)

)
M(t)

(
1 0

c(t − t0)e−α(t−t0) e−α(t−t0)

)
=

(
K11 K12
K12 K22

)
,

where

K11 :=
c2 σ 2 (t − t0)

3α2

[
6− (9/2)α (t − t0)+α2 (t − t0)2

− 6e−α(t−t0)− (3/2)(t − t0)α e−2α(t−t0)
]
,

K12 :=
cσ 2

2α2

[
2−α (t − t0)−2e−α(t−t0)−α (t − t0)e−2α(t−t0)

]
and

K22 :=
σ2

2α

[
1− e−2α(t−t0)

]
.

The probability

p2(t) := Φ

(
−e−αt y

σ√
2α

√
1− e−2αt

)
(6)

that Y (t)< 0 is negligible if α < 0, as can be seen in Figure 2. However, if α > 0, Y (0) = y must
be large for p2(t) to be very small. Finally, since Y (t) has again a Gaussian distribution, the
parameters α and σ can be easily estimated.

In the next section, optimal control problems for degenerate two-dimensional diffusion pro-
cesses that can be used to model the evolution of the remaining lifespan of devices over time
will be set up and solved explicitly.

3 Optimal control
In this section, we consider controlled versions of the two-dimensional diffusion processes defined
in the previous section (see Rishel (1991)):

dXu(t) = ρ [Xu(t),Yu(t),u(t)]dt,

dYu(t) = f [Xu(t),Yu(t),u(t)]dt +σ [Xu(t),Yu(t),u(t)]dB(t),

where u(t)(= u[Xu(t),Yu(t)]) is the control variable, which is assumed to be a continuous function.
We define the first-passage time

τ(x,y) = inf{t > 0 : X(t) = d | X(0) = x,Y (0) = y},
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Figure 2: Value of the function p2(t) defined in Eq. (6) in the interval [0,10], when α = −1,
σ = 1 and y = 3.

where x > d and y > 0, and d ≥ 0 is a value for which the device of interest is considered to be
worn out. The random variable τ(x,y) represents the remaining useful lifetime of the device,
denoted by RUL.

We look for the value u∗(t) of the control variable that maximizes the expected value of the
performance criterion

J(x,y) :=
∫ τ(x,y)

0
{r[u(t)]− c[Xu(t),Yu(t)]} dt,

where r[u(t)]> 0 and c[Xu(t),Yu(t)]> 0 are respectively the return and the cost per unit time.

To find the optimal control u∗(t), we will use dynamic programming. First, we define the
value function:

F(x,y) = sup
u(t),0≤t<τ(x,y)

E[J(x,y)]. (7)

That is, F(x,y) is the expected reward (or expected cost, if it is negative) obtained when the
optimizer chooses the optimal value of u(t) in the interval [0,τ(x,y)).



112 Lefebvre, M.

Let u(0) = u0. Making use of Bellman’s principle of optimality, we can write that

F(x,y) = sup
u(t),0≤t<τ(x,y)

E
[∫ ∆t

0
{r[u(t)]− c[Xu(t),Yu(t)]} dt

+ F [x+ρ(x,y,u0)∆t,y+ f (x,y,u0)∆t +σ(x,y,u0)B(∆t)]
]

+ o(∆t)

= sup
u(t),0≤t≤∆t

E
[
[r(u0)− c(x,y)] ∆t

+ F [x+ρ(x,y,u0)∆t,y+ f (x,y,u0)∆t +σ(x,y,u0)B(∆t)]
]

+ o(∆t). (8)

Next, assuming that the value function F(x,y) is differentiable with respect to x and twice
differentiable with respect to y, we deduce from Taylor’s formula for functions of two variables
that

F [x+ρ(x,y,u0)∆t,y+ f (x,y,u0)∆t +σ(x,y,u0)B(∆t)]

= F(x,y)+ρ(x,y,u0)∆t Fx(x,y)

+ [ f (x,y,u0)∆t +σ(x,y,u0)B(∆t)] Fy(x,y)

+ 1
2 [ f (x,y,u0)∆t +σ(x,y,u0)B(∆t)]2 Fyy(x,y)+o(∆t).

Since, as is well known, E[B(∆t)] = 0 and E[B2(∆t)] =V [B(∆t)] = ∆t, Eq. (8) implies that

0 = sup
u(t),0≤t≤∆t

{
[r(u0)− c(x,y)]∆t +ρ(x,y,u0)∆t Fx(x,y)

+ f (x,y,u0)∆t Fy(x,y)+ 1
2 σ 2(x,y,u0)∆t Fyy(x,y)

}
+ o(∆t). (9)

Finally, dividing both sides of Eq. (9) by ∆t and letting ∆t decrease to zero, we obtain the
following proposition.

Proposition 2. The value function F(x,y) defined in Eq. (7) satisfies the dynamic programming
equation (DPE)

0 = sup
u0

{
r(u0)− c(x,y)+ρ(x,y,u0)Fx(x,y)+ f (x,y,u0)Fy(x,y)

+ 1
2 σ 2(x,y,u0)Fyy(x,y)

}
, (10)

subject to the boundary condition
F(d,y) = 0 ∀y > 0. (11)
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Rishel (1991) has considered the following particular cases for the optimal control of wear
processes: first, he assumed that

ρ [Xu(t),Yu(t),u(t)] = ρ0[Xu(t),Yu(t)]u2(t),
f [Xu(t),Yu(t),u(t)] = f0[Xu(t),Yu(t)]u2(t),

σ [Xu(t),Yu(t),u(t)] = σ0[Xu(t),Yu(t)]u(t),
r[u(t)] = r0 u(t),


where r0 is positive constant. He proved that the optimal control can then be expressed as
follows:

u∗0 = u∗(x,y) =
2c(x,y)

r
.

Next, he chose

ρ[Xu(t),Yu(t),u(t)] = ρ0[Xu(t),Yu(t)]u(t),
f [Xu(t),Yu(t),u(t)] = f0[Xu(t),Yu(t)]u(t),

σ [Xu(t),Yu(t),u(t)] = σ0[Xu(t),Yu(t)]u(t),
r[u(t)] = r0 u(t).


Substituting these functions into the DPE (10), we obtain (after differentiating with respect to
u0) that the optimal control is given, in terms of the value function, by

u∗(x,y) =−
ρ0(x,y)Fx + f0(x,y)Fy + r0

σ 2
0 (x,y)Fyy

.

Remark. There is a minus sign missing in Eq. (26) of Rishel’s paper.
It follows that the value function satisfies the partial differential equation (PDE)

[ρ0(x,y)Fx + f0(x,y)Fy + r0]
2 +2c(x,y)σ 2

0 (x,y)Fyy = 0, (12)

subject to the boundary condition (11). This time, Rishel did not find an explicit expression for
u∗(x,y), but Lefebvre and Gaspo (1996a) first generalized Rishel’s result and then solved three
particular problems.

In this paper, we will solve three new problems for important diffusion processes {Y (t), t ≥ 0}
when X(t) represents the remaining lifespan of a device.
Problem I. Suppose that f0(x,y) ≡ f00 and σ2

0 (x,y) = σ 2
00 yν , where σ00 > 0 and ν ∈ {0,1,2}.

Then, Eq. (4) becomes
dY (t) = f00 dt +σ00Y ν/2(t)dB(t).

If ν = 0, {Y (t), t ≥ 0} is a Wiener process with drift f00 and dispersion parameter σ00. As we
have seen in Section 2, although this diffusion process is Gaussian, the probability that it will
become negative is negligible if f00 is large enough and Y (0) = y is not too small.

When ν = 1 (and σ2
00 = 2), {Y (t), t ≥ 0} is a squared Bessel process of dimension δ = f00. It

can be shown that if δ ≥ 2 and y > 0, then the process cannot attain the origin. Therefore, it is
a good model for the remaining lifespan (or the wear) of a device.

In the case when ν = 2, we have the following proposition.
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Proposition 3. The diffusion process {Y (t), t ≥ 0} with infinitesimal mean f00 > 0 and infinites-
imal variance σ 2

00 y2 has an exit boundary at the origin. That is, starting from Y (0) = y > 0, the
process can reach the origin in finite time and, if it does, it will remain equal to zero indefinitely.

Proof. We define (see Eq. (9.7.19) in Kannan (1979), p. 279, but there is a mistake in the
equation)

h(y) = exp
{∫ y

a
2

f00

σ2
00 u2 du

}
and

H(y) =
2

σ2
00 y2 h(y)

.

We calculate
µ1 :=

∫ a

0

∫ a

z
h(y)H(z)dydz

and
σ1 :=

∫ a

0

∫ a

z
H(y)h(z)dydz.

We find that µ1 = ∞ and σ1 < ∞. Then, we can state that the origin is indeed an exit boundary.

Assume that
ρ0(x,y) =−ρ00

(x−d)
y

,

where ρ00 > 0. We must then solve the PDE[
−ρ00

(x−d)
y

Fx + f00 Fy + r0

]2

+2c(x,y)σ 2
00 yν Fyy = 0, (13)

subject to the boundary condition F(d,y) = 0 for any y > 0.
Remark. We will see that with the function ρ0(x,y) defined above, the optimally controlled
process X∗

u (t) will actually decrease immediately to d if Y ∗
u (t) decreases to zero. Hence, here the

type of boundary at the origin for the diffusion process {Y (t), t ≥ 0} does not really matter.
Let us look for a solution of the form

F(x,y) = F0

[
e(x−d)y −1

]
for x ≥ d, y > 0, (14)

which satisfies the boundary condition F(d,y) = 0. Substituting F(x,y) into Eq. (13), we obtain
the following proposition.

Proposition 4. If ρ00 = f00 and the function c(x,y) is given by

c(x,y) =−
r2

0 e−(x−d)y

2F0 σ 2
00 yν (x−d)2 , (15)

where F0 < 0, then the function F(x,y) defined in Eq. (14) is the value function in Problem I.
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Remark. Notice that the value function is negative. Thus, with the cost c(x,y) defined in
Eq. (15), the best that the optimizer can do is to minimize the losses.

We deduce from Eq. (3) the value of the optimal control.

Corollary 1. The optimal control in Problem I is

u∗(x,y) =− r0 e−(x−d)y

F0 σ 2
00 yν (x−d)2 . (16)

Remarks. (i) The optimal control is positive, so that the optimizer does not try to make
ρ [Xu(t),Yu(t)] become positive.
(ii) We have

dX∗
u (t) = ρ[X∗

u (t),Y
∗
u (t),u

∗(t)]dt

= −ρ00
[X∗

u (t)−d]
Y ∗

u (t)
u∗[X∗

u (t),Y
∗
u (t)]dt

= ρ00
r0 exp{[d −X∗

u (t)]Y
∗
u (t)}

F0 σ 2
00 [Y ∗

u (t)]ν+1 [X∗
u (t)−d]

dt.

Therefore, as mentioned above, the optimally controlled process X∗
u (t) will decrease at once to

d if Y ∗
u (t) decreases to zero.

Problem II. Assume now that f0(x,y) = f00 (κ − y), where f00 and κ are real parameters, and
σ 2

0 (x,y) = σ2
00 y. With these choices, Eq. (4) becomes

dY (t) = f00 [κ −Y (t)]dt +σ00Y 1/2(t)dB(t).

Therefore, {Y (t), t ≥ 0} is a (generalized) Cox-Ingersoll-Ross (CIR) process. This process is used
in financial mathematics as a model for the evolution of interest rates. When

2 f00 κ ≥ σ 2
00, (17)

the process, starting from Y (0) = y > 0, will always remain positive.
The transition density function of {Y (t), t ≥ 0} is known to be

p(y, t;y0, t0) = γ e−u−v
( v

u

)q/2
Iq(2

√
uv),

where
γ :=

2 f00(
1− e− f00(t−t0)

)
σ 2

00
, u := γ y0 e− f00(t−t0), v := γ y, q :=

2 f00 κ
σ 2

00
−1

and Iq(·) is a modified Bessel function of the first kind of order q (see Abramowitz and Stegun
(1965)).

Assume that both f00 and κ are negative, and that the condition in Eq. (17) holds. We try
a solution of the PDE (12) of the same form as in Problem I: F(x,y) = F0

[
e(x−d)y −1

]
. One can
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check that this function is indeed a solution of Eq. (12) that satisfies the boundary condition
F(d,y) = 0 if and only if

ρ0(x,y) =− f00 (κ − y)
(x−d)

y
(< 0)

and c(x,y) is the same as in Eq. (15), with again F0 < 0. Moreover, the optimal control is given
by the function defined in Eq. (16), with ν = 1.
Problem III. In this last problem, we now assume that X(t) represents the wear of the device,
rather than its remaining lifespan. Therefore, the function ρ0(x,y) should be positive. Moreover,
we suppose that X(0) = x ∈ (0,d). The differential equation that we must solve is the same PDE
as above, and the boundary condition is still F(d,y) = 0.

Let us choose
ρ0(x,y) =

d − x
xy

, f0(x,y) =
1
x

and σ0(x,y)≡ 1.

We then find that the function

F(x,y) = F0

[
e(x−d)y −1

]
for 0 < x ≤ d, y > 0

is a solution of Eq. (12) that satisfies F(d,y) = 0 if and only if

c(x,y) =−
r2

0 e(d−x)y

2F0 (d − x)2 ,

where F0 is negative. Furthermore, the optimal control is

u∗(x,y) =− r0 e(d−x)y

F0 (d − x)2 .

Remarks. (i) In this problem, the value function is positive. Therefore, it is a reward, rather
than a cost as in the previous problems.
(ii) The diffusion process {Y (t), t ≥ 0} is a Bessel process of dimension or parameter α = 3. For
Bessel processes of dimension α ≥ 2, the origin is an entrance boundary, which means that if
X(0) = x > 0, the process will never hit the origin. The transition density function of {Y (t), t ≥ 0}
is (see Karlin and Taylor (1981), p. 368)

p(y, t;y0,0) =

√
2

π t
exp
{
−

y2
0 + y2

2t

}
y
y0

sinh
(y0 y

t

)
for t > 0, y0 > 0 and y > 0.

4 Concluding remarks
In this paper, we proposed models for the evolution of the remaining lifespan X(t) of devices
that are more realistic than one-dimensional diffusion processes. Indeed, the degenerate two-
dimensional processes defined in the paper were such that X(t) was a strictly decreasing function
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of time, as should be. Actually, in Section 2, we mentioned the fact that there was a positive
probability that X(t) would increase before reaching the value d ≥ 0 for which the device is worn
out. However, we saw that in practice this probability can be really negligible. Moreover, the
aim in Section 2 was to give examples for which it is possible to compute the exact distribution
of X(t). This is possible, thanks to Proposition 1, when the diffusion process {Y (t), t ≥ 0} is
Gaussian and the function ρ [X(t),Y (t)] in Eq. (3) is affine.

In Section 3, we presented three optimal control problems for degenerate two-dimensional
diffusion processes that could serve as models for the remaining lifespan of devices. These prob-
lems are particular homing problems. Obtaining exact and explicit solutions to such problems
in two or more dimensions is generally a very difficult task. In Lefebvre and Gaspo (1996a),
the authors used the method of similarity solutions to reduce the PDE that must be solved to
an ordinary differential equation. Here, we proposed a simple function for the value function
F(x,y), and we saw that this simple function was indeed the exact solution to the problem con-
sidered, if certain conditions hold. Furthermore, the three problems solved in Section 3 were for
diffusion processes {Y (t), t ≥ 0} that are very important for the applications, whereas the ones
solved in Lefebvre and Gaspo (1996a) were purely mathematical problems.

When it is not possible to find the exact solution to a particular optimal control problem,
one may try to make use of numerical methods to obtain the value function and the optimal
control in any special case. It is also sometimes possible to determine upper bounds for both
the value function and the optimal control, as Makasu (2022) did for certain homing problems.
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