- Abdellatif, A.A., Alawadh, S.H., Bouazzaoui, A., Alhowail, A.H., & Mohammed, H.A. (2020). Anthocyanins rich pomegranate cream as a topical formulation with anti-aging activity. Journal of Dermatological Treatment, 1-8. https://doi.org/10.1080/09546634.2020.1721418
- Abdollahi, M., Rezaei, M., & Farzi, G. (2012). Improvement of active chitosan film properties with rosemary essential oil for food packaging. International Journal of Food Science and Technology, 47, 847-853. https://doi.org/10.1111/j.1365-2621.2011.02917.x
- Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A.A., Noman, M., & Muhammad, S. (2018). Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25(8), 7287-7298. https://link.springer.com/article/10.1007/S11356-018-1234-9
- Amit, S.K., Uddin, M.M., Rahman, R., Islam, S.R., & Khan, M.S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security, 6(1), 1-22. https://link.springer.com/article/10.1186/s40066-017-0130-8
- Dasgupta, N., Ranjan, S., & Gandhi, M. (2019). Nanoemulsions in food: market demand. Environmental Chemistry Letters, 17(2), 1003-1009. https://link.springer.com/article/10.1007/s10311-019-00856-2
- Diblan, S., Erdem, B.G., & Kaya, S. (2020). Sorption, diffusivity, permeability and mechanical properties of chitosan, potassium sorbate, or nisin incorporated active polymer films. Journal of Food Science and Technology, 57(10), 3708-3719. https://link.springer.com/article/10.1007/s13197-020-04403-8
- Díaz‐ García, M.C., Castellar, M.R., Obón, J.M., Obón, C., Alcaraz, F., & Rivera, D. (2015). Production of an anthocyanin‐ rich food colourant from Thymus moroderi and its application in foods. Journal of the Science of Food and Agriculture, 95(6), 1283-1293. https://doi.org/10.1002/jsfa.6821
- Fathiraja, P., Gopalrajan, S., Karunanithi, M., Nagarajan, M., Obaiah, M.C., Durairaj, S., & Neethirajan, N. (2021). Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polymer Bulletin, 1-27. https://link.springer.com/article/10.1007/s00289-021-03797-5
- Hanani, Z.N., Yee, F.C., & Nor-Khaizura, M.A.R. (2019). Effect of pomegranate (Punica granatum) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocolloids, 89, 253-259. https://doi.org/10.1016/j.foodhyd.2018.10.007
- Hosseini, M., Hassanzadeh, H., & Miri, P. (2023). Investigating the physicochemical and mechanical properties of edible active films based on gelatin containing essential oils of thyme, oregano and sage. Journal of Food Processing and Preservation. https://doi.org/10.22069/FPPJ.2023.21472.1768
- Ifmalinda, I., Kurnia, S.A., & Cherie, D. (2023). Characteristics of edible film from corn starch (Zea mays) with additional glycerol and variations of zinc oxide (ZnO) nanoparticles. Journal of Applied Agricultural Science and Technology, 7(3), 272-285. https://doi.org/10.55043/jaast.v7i3.87
- Jafari, S.M., Ghalenoei, M.G., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59-65. https://doi.org/10.1016/j.powtec.2017.01.070
- Jahed, E., Khaledabad, M.A., Almasi, H., & Hasanzadeh, R. (2017). Physicochemical properties of Carum copticum EO loaded chitosan films containing organic nanoreinforcements. Carbohydrate Polymers, 164, 325-338. https://doi.org/10.1016/j.carbpol.2017.02.022
- Koehler, J., Wallmeyer, L., Hedtrich, S., Goepferich, A.M., & Brandl, F.P. (2017). pH‐modulating poly (ethylene glycol)/alginate hydrogel dressings for the treatment of chronic wounds. Macromolecular bioscience, 17(5), 1600369. https://doi.org/10.1002/mabi.201600369
- Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., & Leng, X. (2011). Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(5), 1098-1104. https://doi.org/10.1016/j.foodhyd.2010.10.006
- Liu, C. , Jin, T. , Liu, W. , Hao, W. , Yan, L. , & Zheng, L. (2021). Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. LWT, 111770. https://doi.org/10.1016/j.lwt.2021.111770
- Matta Fakhouri, F., Nogueira, G.F., de Oliveira, R.A., & Velasco, J.I. (2019). Bioactive edible films based on arrowroot starch incorporated with cranberry powder: Microstructure, thermal properties, ascorbic acid content and sensory analysis. Polymers, 11(10), 1650. https://doi.org/10.3390/polym11101650
- Mileriene, J., Serniene, L., Henriques, M., Gomes, D., Pereira, C., Kondrotiene, K., & Malakauskas, M. (2021). Effect of liquid whey protein concentrate–based edible coating enriched with cinnamon carbon dioxide extract on the quality and shelf life of Eastern European curd cheese. Journal of Dairy Science, 104(2), 1504-1517. https://doi.org/10.3168/jds.2020-18732
- Misra, S., Pandey, P., & Mishra, H.N. (2021). Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends in Food Science & Technology, 109, 340-351. https://doi.org/10.1016/j.tifs.2021.01.039
- Moghadam, M., Salami, M., Mohammadian, M., & Emam-Djomeh, Z. (2021). Development and characterization of ph-sensitive and antioxidant edible films based on mung bean protein enriched with echium amoenum anthocyanins. Journal of Food Measurement, 15(4), 2984-2994. https://link.springer.com/article/10.1007/s11694-021-00872-3
- Momeni, R., Hosseini, M., Hassanzadeh, H., & Saifi, T. (2024). production of antimicrobial active edible film based on gelatin containing Salvia officinalis essential oil: physical, mechanical, antioxidant and antimicrobial properties. Food Research Journal, 33(4), 29-43. https://doi.org/10.22034/FR.2023.56857.1877
- Musso, Y.S., Salgado, P.R., & Mauri, A.N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea) extracts as solvent. Food Hydrocolloids, 89, 674-681. https://doi.org/10.1016/j.foodhyd.2018.11.036
- Nasiri, M., & Tamdan, M, (2014). Investigating the antimicrobial properties of zinc oxide nanoparticles synthesized with the help of ultrasonic waves. Yazd Health Dawn, 13(4), 115-128.
- Otoni, C.G., Avena‐Bustillos, R.J., Azeredo, H.M., Lorevice, M.V., Moura, M.R., Mattoso, L.H., & McHugh, T.H. (2017). Recent advances on edible films based on fruits and vegetables—a review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151-1169. https://doi.org/10.1111/1541-4337.12281
- Pala, Ç.U., & Toklucu, A.K. (2011). Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. Journal of Food Composition and Analysis, 24(6), 790-795. https://doi.org/10.1016/j.jfca.2011.01.003
- Panche, A., Diwan, A., & Chandra, S. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41
- Pino, P., Ronchetti, S., Mollea, C., Sangermano, M., Onida, B., & Bosco, F. (2021). Whey proteins–zinc oxide bionanocomposite as antibacterial films. Pharmaceutics, 13(9), 1426. https://doi.org/10.3390/pharmaceutics13091426
- Razmjoo, F., Sadeghi, E., Rouhi, M., Mohammadi, R., Noroozi, R., & Safajoo, S. (2021). Polyvinyl alcohol–Zedo gum edible film: Physical, mechanical and thermal properties. Journal of Applied Polymer Science, 138(8), 49875. https://doi.org/10.1002/app.49875
- Rhim, J.-W., Hong, S.-I., Park, H.-M., Ng, P.K.J.J., & Chemistry, F. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. 54(16), 5814-5822.
- Rodriguez-Amaya, D.B. (2019). Update on natural food pigments-A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 124, 200-205. https://doi.org/10.1016/j.foodres.2018.05.028
- Saedi, S., Shokri, M., Kim, J.T., & Shin, G.H. (2021). Semi-transparent regenerated cellulose/ZnONP nanocomposite film as a potential antimicrobial food packaging material. Journal of Food Engineering, 307, 110665. https://doi.org/10.1016/j.jfoodeng.2021.110665
- Solano Doblado, L. G., Heredia Mira, F. J., Gordillo Arrobas, B., Dávila Ortiz, G., Alamilla Beltrán, L., Maciel Cerda, A., & Jiménez Martínez, C. (2020). pH-indicating properties and storage stability of a smart edible film based on nopal-mucilage/gellan gum and red cabbage anthocyanins. Revista Mexicana de Ingeniería Química, 19(Sup. 1), 363-374. https://doi.org/10.24275/rmiq/Alim1583
- Taghizadeh, E., Alizadeh, M., & Hassanzadeh, H. (2023). Investigation of antimicrobial, antioxidant and physicochemical properties of active film based on whey protein containing pomegranate and red grape anthocyanins and zinc oxide nanoparticles. Innovative Food Technologies, 10(4), 397-410. https://doi.org/10.22104/IFT.2023.6374.2145
- Thulasisingh, A., Kumar, K., Yamunadevi, B., Poojitha, N., SuhailMadharHanif, S., & Kannaiyan, S. (2021). Biodegradable packaging materials. Polymer Bulletin, 1-30. https://link.springer.com/article/10.1007/s00289-021-03767-x
- Velásquez, P., Bustos, D., Montenegro, G., & Giordano, A.J.M. (2021). Ultrasound-assisted extraction of anthocyanins using natural deep eutectic solvents and their incorporation in edible films. Molecules, 26(4), 984. https://doi.org/10.3390/molecules26040984
- Wang, N., Liu, W., Zhang, T., Jiang, S., Xu, H., Wang, Y., & Chen, X. (2018). Transcriptomic analysis of red-fleshed apples reveals the novel role of mdwrky11 in flavonoid and anthocyanin biosynthesis. Journal of Agricultural and Food Chemistry, 66(27), 7076-7086. https://doi.org/10.1021/acs.jafc.8b01273
|