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Abstract

In this paper, a numerical method for solving bounded continuous-time
nonlinear optimal control problems (NOCPs) that based on variable neigh-
borhood descent (VND) algorithm is proposed. First, the genetic algorithm
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425 A parallel hybrid variable neighborhood descent algorithm for nonlinear ...

(GA) is combined with an improved VND that uses efficient neighborhood
interchange. Then, to improve the efficiency of the algorithm for practical
and large-scale problems, the parallel processing approach is implemented
for discrete form of NOCP. It performs the required complex computations
in parallel. The resulting parallel algorithm is applied to a benchmark of
nine practical problems such as Van Der Pol problem and chemical reactor
problem. For large-scale problems, the parallel hybrid variable neighbor-
hood descent algorithm (PHVND) is capable of obtaining optimal control
values effectively. Our experimentation shows that PHVND outperforms
the best-known heuristics in terms of both solution quality and computa-
tional efficiency. In addition, computational results indicate that PHVND
produces superior results compared to sequential quadratic programming
or GA.

AMS subject classifications (2020): Primary 49M25; Secondary 65Y05, 68W50.

Keywords: Parallel algorithm; Neighborhood descent algorithm; Optimal
control problem.

1 Introduction

The main goal of optimal control is to find a control for a linear or non-
linear system that will makes the system satisfy physical constraints while
also minimizing or maximizing some performance measure. This involves
determining the best control inputs over a given time horizon to achieve the
desired system behavior [6]. Optimal control problems (OCPs) are utilized to
provide an explanation for problems in various industrial processes, such as
the control of robots, aircraft, and electrical systems [4]. An optimal control
strategy was proposed for dynamic transfer from a simple half-circular legged
monopod model in [27]. The development of the nonlinear optimal control
problems (NOCP) method for reverse osmosis desalination devices with an
induction motor (IM) to minimize energy dissipation and reduce the operat-
ing cost of the units is reviewed in [29]. In [28], a nonlinear optimal control
approach is proposed for the dynamic model of a gas centrifugal compressor
driven by an IM. One of the other applications of NOCPs to human health is
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reported in [2], where NOCP is used to determine the dynamics of hepatitis
E diseases.

The study of numerical methods has provided an attractive field for re-
searchers in mathematical sciences who have seen the emergence of differ-
ent numerical calculation methods and efficient algorithms to solve OCPs
[25]. Nowadays, meta-heuristic approaches have gained popularity in solv-
ing NOCPs. Researchers applied the particle swarm optimization (PSO), for
example, in [12], to optimize the parameters of a proportional integral deriva-
tive (PID) controller. The application of ant colony optimization (ACO) is
another meta-heuristic for numerically solving NOCPs. The method uses the
discrete form of the control values of the set. ACO solved the problems that
have transformed into quasi-assignment problems [5, 19]. The genetic algo-
rithm (GA) method is a population-based meta-heuristic. It was widely used
to solve many optimization problems. In recent decades, GA has been also
proposed to solve NOCP effectively [21, 30]. Continuous GA and improved
GA to solve NOCP can be found in [1, 33].

To improve the precision of the solutions and reduce the computational
time, hybrid methods were introduced [3, 20]. In [23], a modified hybrid GA
has been proposed to solve NOCP numerically. A hybrid improved GA using
a simple local search method is also provided to solve NOCP [34].

One of the advantages of the application of meta-heuristics for solving
NOCP is their independence to near-optimal initial guesses. So, one approach
to solving an NOCP with meta-heuristics is changing the NOCP into a non-
linear programming (NLP) problem with finite dimension. It is performed by
discretizing the space-time and control, which leads to a large-scale problem.

After the discretization of NOCP, a new initiative is proposed to solve
the problem more easily and faster. Due to the structural similarity of the
discretization problem with the uncapacitated single allocation p-hub median
problem (USApHMP), we will use this method to solve NOCP [32]. Due to
the simple nature of USApHMP, the NOCP optimization procedure is easily
programmed and can be solved effectively. It has many benefits, such as ease
of programming, short computation time, self-starting, and convergence to
the global minimum.
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427 A parallel hybrid variable neighborhood descent algorithm for nonlinear ...

The large dimension of large-scale NLP is a limitation that makes it diffi-
cult to find accurate solutions, especially with population-based algorithms.
Parallelization algorithms are used to speed up a wide range of algorithms,
for example, the ACO method, which is applied to solve NOCP, [19]. GA
uses hybridization, strategic search [31], and parallelization to reach high-
quality solutions in a low computational time. In [36, 37, 38], a parallel GA
for optimization is described. To reduce the computational time in solving
large-scale problems, parallelism is proposed in this paper.

One of the effective methods to solve USApHMP is variable neighborhood
descent (VND) [17]. It has been applied to solve the maximum clique problem
[16], scheduling problem [7], and hub location [26].

To find a promising region of search space, we use four local searches in
sequential VND (SVND). Then, to increase the quality of solutions obtained
from the phase search, the number of control partitions in NOCP is changed
as hubs in USApHMP [32]. Finally, we combine SVND with the GA in
mutations and reduce computational time with parallel processing.

The parallel hybrid variable neighborhood descent algorithm (PHVND)
is then evaluated by implementing some real-world examples. The results
show that the proposed method obtains more accurate solutions compared
with methods that search for control values in discrete form.

The remainder of this paper is organized as follows: Section 2 provides
a brief overview of the formulation problem. Section 3 describes the ba-
sics of the PHVND algorithm. In Section 4, we examine some benchmark
examples to compare the results of the proposed algorithm with the other
existing methods. Finally, Section 5 presents more analysis of the results and
concludes the paper.

2 Mathematical programming formulation

The goal of NOCP is to control a dynamical system from a given initial state
to a final optimal state in a desirable way. Find an optimal controller u∗(t)
and state variable x∗(t) that minimize the cost function J(x, u), where x(t) ∈
Rn, u(t) ∈ Rm are the state variable and the control variable respectively.
Suppose that g : R × Rn × Rm → R and f : R × Rn × Rm → Rn are both
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continuously differentiable functions in x and u, t0, tf are the initial and final
times, respectively, and that ϕ : Rn ×R → R is a continuous scaler function.
The Bolza problem is minimizing

J(x(·), u(·)) = ϕ(x(tf ), tf ) +

∫ tf

t0

g(t, x(t), u(t))dt, (1)

under the following constraints and boundary conditions:

ẋ = f(t, x(t), u(t)), (2)

c(t, x, u) = 0, (3)

d(t, x, u) ≤ 0, (4)

ψ(tf , x(tf )) = 0, (5)

x(t0) = x0, (6)

ul ≤ u ≤ ub, (7)

where all functions are assumed to be smooth enough in suitable open sets.
The cost function (1) should be minimized according to the dynamics (2),
control and restrictions of state equality (3) and control inequality and state
inequality constraints (4), final state constraints (5), initial condition (6),
and limitation of the control variable (7).

Minimum time problems, linear quadratic regulator (LQR) problem,
tracking problem, minimum energy, and terminal control problem are an-
other special case of NOCPs.

3 Parallel hybrid algorithm

Representation scheme. At first, the problem of minimizing (1) subject to
(2)–(7) is changed to a discrete form. To do this, the time interval is di-
vided to a number of equidistant nodes {t0, t1, . . . , tNt−1}. For any interval
[ti−1, ti], i = 1, 2, . . . , Nt−1, the interval [ul, ub] is divided into m subinterval
[uj−1, uj ], j = 1, 2, . . . ,m with the same length. Then, p values are deter-
mined as hub (u0, u1, . . . , up) in USApHMP from m subinterval. Therefore,
in direct form of the problem, we have to find an assignment
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429 A parallel hybrid variable neighborhood descent algorithm for nonlinear ...

{t0, t1, . . .} → {u0, u1, . . .} (8)

with minimum performance index. The new problem is an assignment type
of optimization problems with a finite dimension. Since the control interval is
divided into m partitions and the time interval is divided into Nt−1 sections,
and one control must be selected for each time. Then, this problem can be
extended to USApHMP, where every time is assigned to only one hub from
the set of u0, u2, . . . , up. (see details in [32])

Fitness function. Now, a piecewise control function is constructed as
follows:

u(t) =

Nt−1∑
j=1

χ[tj−1, tj ](t)uj , (9)

where χ is the indicator function:

χ[tj−1, tj ](t) =

 1, t ∈ [tj−1, tj ],

0, otherwise.
(10)

The time nodes are defined by

tj = t0 + jh, j = 0, . . . , Nt − 1, (11)

where h = (tf −t0)/Nt−1. This is a finite-dimensional optimization problem
with u1, . . . , up as unknowns.
Let ψ = [ψ1, ψ2, . . . , ψnψ ] is the vector form of constraints, defined in (5).
Then satisfaction of constraints can be relaxed as:

φf = ∥ψ∥ < ϵ, (12)

where ∥ · ∥ is the Euclidean norm and ϵ is a given small number indicating
the accuracy. The term integral of (1) can be calculated by a numerical
integration such as Runge-Kutta or Newton algorithms for each control input
u(tj), and the corresponding state variable x(tj), j = 0, 1, . . . , Nt − 1, which
satisfy in (2). The notations x(tj) and u(tj) are briefly indicated by xj and
uj respectively.

Then, the discrete form of the performance index (1) is as follows:
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minimize J(x(·), u(·)) =
Nt−1∑
j=0

wjg(tj , x(tj), u(tj)) +Mφf , (13)

where wj , j = 0, . . . , Nt − 1 are weights and M is a large enough positive
number. In the case of equality or inequality constraints (3) or (4), penalty
constants M1,M2,M31, . . . ,M3nψ are added to the fitness function:

I = J̃ +

Nt−1∑
j=0

M1 max{0, d(xj , uj , tj)}+
Nt−1∑
j=0

M2c
2(xj , uj , tj)

+

nψ∑
k=1

M3kψ
2
k(xNt−1, tNt−1), (14)

where J̃ is an approximation of J .

In the following, the GA is introduced in the first subsection and the
SVND algorithm in the next subsection. Then, the structure of the hybrid
PHVND algorithm is explained and then the parallelization process is men-
tioned.

3.1 Genetic algorithm

Initialization. The initial population is chosen randomly from candidate so-
lutions in the search space. Then, p control input values are selected from
the m control subintervals at random. This can be done in the following
stages. In our experiment, the population size is fixed at a value of 300
(Npop = 300). Then, each time tj , j = 0, . . . , Nt − 1 is randomly assigned to
the selected control values. With this selection pattern, initial chromosomes
are produced. When this repeats Npop times, then Npop feasible chromosomes{
C1, C2, . . . , CNpop

}
are generated.

Selection. For NOCP, the better chromosome is one with a smaller fitness
value. In the first, a certain number of individuals in the population are ran-
domly selected. Using this method of selection, we will have a great chance
to find better random chromosomes to produce children. This phase can be
also performed in parallel.
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Elitism. The incumbent from generation to generation is maintained. If
in crossover or mutations, the best chromosome (individual) within the pop-
ulation is lower than the existing solution, the better answer is replaced by
the worse one in the current population.

Crossover. The crossover is a combination of two or more parental solu-
tions to provide better solutions. There are several ways to achieve this,
and good performance depends on a well-designed recombination mecha-
nism [35]. Here, the standard one-point crossover operator is proposed,
where a crossover operator creates a child solution for selected parents. The
crossover parents are selected from

{
C1, C2, . . . , CNpop

}
and random j from

{0, . . . , Nt − 1}.

To construct a child solution, its first j genes are taken from the first par-
ent, and the remainingNt−1−j genes are taken from the second parent. After
applying the crossover on the arrays, if the number of assignments control is
more than p in the offsprings, we keep the feasible one, then for the remaining
gens if a time node ti was assigned to another control from {up+1, . . . , uNu},
then the node ti is randomly assigned to a selected {u1, . . . , up}.

Mutation. The modification of the mutation method preserves the entire
population. Repeat the selection to the mutation process until a termination
condition is met.

3.2 Local searches

The fundamental neighborhood structures can also be extended for muta-
tions in GA exchanges and node interpolation moves. Local search methods
are as follows:
1- First, we randomly choose one person in the population, pop(i) and ran-
domly choose gen position j1 ∈ {1, . . . , Nt − 1} and j2 ∈ {j1, . . . , Nt − 1}.
Then, exchange position of j1 and j2 and replace if the new offspring is
better than the worst person in the population. This means that we select
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(tj1 , uj1) and (tj2 , uj2) then exchange uj1 with uj2 and vice versa.
2- The second, randomly choosing one person, pop(i), then the local search
method is as follows. This local modification does not change the location of
the selected controls (u1, . . . , up). For all time nodes, we try to change their
membership. This means that we have to process every selected control and
try to replace the assignment time node with a new assignment. This does
not change other elements.
3- The location of selected controls uj (which in control array {u1, . . . , up})
is changed in pop(i) that choose randomly and move to this neighborhood
solution if the cost function is reduced. First, a control uk that is not in
control array, is selected. From the representation of the current assign-
ment, all nodes times that assignment to uj can generate and then change
its assignment to uk. But if the pop(i) has only one control, do nothing.
Otherwise, the change in the cost function for all populations is calculated.
We developed four neighborhood structures independently, although one of
them is essentially the same as the second local search method (Greassign
and Greplace) in [39] and one and the second are the same as local search in
[17], but these neighborhoods are applied in a different order.
4- The one parent pop(i), uj from the control array and uk that is not in
the control array was selected, randomly. The uj was deleted and uk was
replaced and randomly reassigned all time nodes in pop(i) to new control
that includes uk. Thus all assignments in pop(i) are changed.

3.3 SVND

Among available strategies for the exploration of several neighborhoods
within deterministic local search, the sequential strategy is more common.
In VND, the neighborhood structures are explored one by one in the given
sequence that is specified in Algorithm 1 (SVND) [14, 15]. SVND uses all
lmax neighborhood structures within VND. Then it performs local searches
with them, considering their orders. SVND stops whenever no better solution
in the last neighborhood exits.
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Algorithm 1 Sequential variable neighborhood descent
Require: Make an order of all lmax ≥ 2 neighborhoods that will be used in

the search, select the set of neighborhood structures Nl, l = 1, . . . , lmax,
an initial solution x.

1: xopt = x, fopt = f(x), l = 1

2: repeat
3: i = 0

4: repeat
5: i = i+ 1

6: find best neighbor x′
= argmin{f(x), f(xi)}, xi ∈ Nl(x)

7: until all solutions from neighborhood l are visited set
8: if solution x′ thus obtained is better than x then
9: x = x

′ , xopt = x, fopt = f(x) and l = 1

10: else
11: l = l + 1

12: end if
13: until l > lmax

14: return x

The last obtained solution is a local minimum with considering all lmax

neighborhood structures. After construction or update of the population, the
fitness values of the candidate solutions are evaluated using (14). Here, four
local search neighborhoods are used for each generated individual to refine
the allocation of time nodes to the control array. It will be explained in the
next subsection.

3.4 Parallelization

The size of the population is an important factor that affects the scalability
and performance of the genetic algorithm. However, increasing the size of
the population will increase the computational time. To solve this problem,
a parallel implementation is proposed. It will reduce the time and improves
the ability of solving complex problems. Due to independent operations in

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 424–456



Salimi, Borzabadi, Mehne and Heydari 434

a large amount of data, population-based optimization algorithms can run
in parallel. The first stages of discretization and population generation are
serial. Then, the iteration of GA including mutation, fitness evaluation and
crossover are implemented as loop parallelization.

The process is then repeated until the maximum allowed number of iter-
ations is reached. The parallel algorithm proposed by PHVND is effective in
solving the test criteria for the large-scale NOCP algorithm. The algorithm
of PHVND to solve NOCP is given as Algorithm 2.

In PHVND, GA is combined with the SVND method in the mutation step
as local search to improve the solutions.

Algorithm 2 The algorithm of the PHVND method
Require: Select the number of time steps, Nt, the number of control func-

tions, Nu, the size of the population, Npop, the maximum number of
iterations Maxiter, the mutation factor, pm, the crossover constant, pc,
and the number of the available processors, Np.
Generate a random initial population PA and distribute it among pro-
cessors by master processors.
let iter = 0

while (iter < Maxiter) do
Selection: Each processors receives its population, PB , and calcu-

lates the fitness function of its population.
Elitism: Each processors selects the best individual among PB and

send them the master processor.
The master processor determines the best global individuals, send

them to processors, and updates the PA.
Each processor receives the global best individuals and replace them

with the worst individual in the PB .
Crossover: Each processors performs a crossover for PB

Mutation: Each processors executes SVND for PB

let iter = iter + 1.
end while
Master processor returns the best individual in the final population (PA)
as an approximate solution of NOCP.
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4 Computational results for NOCP

To examine the efficiency of the proposed algorithm, some benchmark prob-
lems of NOCPs are considered in some examples. The absolute error of the
performance index, satisfaction of the problem’s constraints, and the effect
of particle size of control times and intervals are parameters for evaluating
the algorithms.

The codes are developed using MATLAB software and the OpenMP pro-
gramming interface. They were executed on a parallel computer at the
Aerospace Research Institute with 48 (1.8 GHz) cores.
Let J be the performance index obtained by an algorithm, let φf define the
error of final state constraints, and let J∗ be the best solution obtained among
all implementations, or the exact solution (when exists). Now, let Nt and m
be defined as the division of time and control interval, and let the absolute
error of J , gapJ , of the algorithm be defined by

gapJ = |J − J∗|. (15)

The parameters of PHVND are lmax = 4, uleft, uright, t0, and tf . We consider
pm = 0.4 and pc = 0.6. The other parameters of PHVND are given in what
follows. To find the best value for the algorithm parameters, we ran the
algorithm with different parameter values and then chose the best. However,
the sensitivity of the parameters Nt, m are studied in the tables. Table 1
indicates the details of each case.

4.1 Comparison of results

The results on instances of partition time and control function are summa-
rized in Table 12 where PHVND is compared with Modified Hybrid Ge-
netic (see [24]), GA (see [11]), sequential unconstrained minimization tech-
nique (SUMT) (see [10]), sequential quadratic programming (SQP) (see [10]),
hybrid algorithm by integrating an improved PSO with improved particle
swarm optimization (IPSO-SQP)(see [22]), novel continuous genetic algo-
rithm (CGA) (see [1]), numerical method proposed in [13] called Bézier, ho-
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motopy perturbation method (HPM) (see [9]), parallel numerical method
based on whale optimization algorithm (WOA) (see [20]), Linear interpola-
tion (LI)(see [24]), and Spline interpolation (SI)(see [24]).
Comparison the best numerical results in 300 different runs of the PHVND
method for different partitions of time and control function for each exam-

Table 1: The problem parameters for NOCPs examples

g =
1

2
(x21 + x22 + u2) x0 = (1, 0)

Example 1 f =
[
x2,−x2 + (1− x21)x2 + u

]T
t = [0, 5] M = 102

ψ = x1 − x2 + 1 u = [−0.5, 2]

g =
1

2
(x21 + x22 + 0.1u2) x0 = (0.05, 0)

Example 2 f = [x1 − 2(x1 + 0.25) + (x2 + 0.5) exp
(

25x1
x1 + 2

)
t = [0, 0.78] M = 1

−u(x1 + 0.25), 0.5− x2 − (x2 + 0.5) exp
(

25x1
x1 + 2

)
]T

ψ = [x1, x2]
T

u = [−1.5, 2]

g = u2 x0 = 0

Example 3 f = 1
2x

2 sin(x) + u t = [0, 1] M = 106

ψ = x− 0.5 u = [0, 1]

ϕ = −x3 x0 = (10,−2, 10)

Example 4 f = [x2,−2
u

x3
,−0.01u]T t = [0, 5] M = 1

ψ = [x1, x2]
T

u = [−30, 30]

ϕ = x1 x0 = (0, 1)

Example 5 f = [−620000e

(−5000

u

)
x1 + 4000e

(−2500

u

)
x22, t = [0, 1]

−4000e

(−2500

u

)
x22]

T u = [298, 398]

ϕ = x3 x0 = (0,−1, 0)

Example 6 f = [x2,−x2 + u, x21 + x22 + 0.005u2]T t = [0, 1] M = 1

ψ = (x1, x2) u = [−5, 5]

d(x, t) = x2 + 0.5− 8(t− 0.5)2

g = 2x1 x0 = (2, 0)

Example 7 f = [x2, u]
T t = [0, 3] M = 1

d(x, t) = −(6 + x1) u = [−2, 2]

g = x21 + x22 + 0.005u2 x0 = (0,−1)

Example 8 f = [x2,−x2 + u]T t = [0, 1] M = 102

d(x, t) = −(8(t− 0.5)(t− 0.5)− 0.5− x2) u = [−5, 5]

g =
1

2
(x21 + x22 + u2) x0 = (1, 0)

Example 9 f = [x2,−x1 + (1− x21)x2 + u]T t = [0, 5] M = 1

d(x, t) = −(x2 + 0.25) u = [−1, 1]
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ples are proposed in Table 2 and Tables 4–11. In the tables related to each
example, such as Table 2 or Tables 4–11, the value of gapJ is the result of
comparing the value of J for different partitions with the optimal value of
PHVND. In Table 12, the value of gapJ is the result of comparing the best
value of PHVND with other algorithms for each example.

4.2 Numerical Experiments

Example 1. This example is Van Der Pol Problem (VDP) [1], which has
to be minimized. After scaling by taking the best-known value reached by
PHVND, we obtain the following values: J∗ = 1.5404 for Nt = 100 and
m = 100. The numerical result for different Nt,m is given in Table 2. We
have also compared our result with other algorithms in Table 12. The results
objective function of implementing PHVND is less than the result of CGA,
which equals J∗ = 1.7404 and less than LI, J∗ = 1.5949, and SI, J∗ = 1.5950.

The error of proposed method is small around ϵ = 10−4. The value of
speedup in Table 3 for parallel computing, shows the performance of par-
allelization and reduction time in terms of number of CPUs. The resulting
control and states of Example 1 obtained from using the PHVND method
for (Nt,m) = (100, 100) are given in Figures 1 (a), 1(b). Figure 1 (c) shows
the performance index for 300 iterations and indicates the convergence rate.

(a)

Iterations

F
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s
s
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t(sec)

u
(t
)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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(b) (c)
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1
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Figure 1: (a) The resulting optimal trajectories for Nt = 100, m = 100 for Example 1,
(b) The resulting optimal control for Nt = 100, m = 100 for Example 1, (c) Performance
index for iterations for Example 1 (Nt = 100, m = 100)
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Figure 2: (a) The wall clock time of execution for Example 1, and (b) The speedup
curve for Example 1.

In addition, Figure 2(a) shows the wall clock time of running, which shows
that run time is decreased with increase the number of processors. The speed
of the performance curve is also given in Figure 2(b) and compared with the
ideal speedup. The resulting speedup curve is close to the ideal line up to 8
threads and its divergent behavior is normal after 8 threads because of the
serial fraction of the algorithm and other overheads.

Based on the figures, the efficiency of the method in controlling the system
to desired final states, rate of convergence and parallel performance can be
deduced.

Example 2. The Chemical Reactor Problem (CRP) [1] is solved in this
example. The proposed algorithm was applied to this problem where the
results are given in Table 4.

The results have been compared with CGA, LI, and SI algorithm in
Table 12. Although, in Table 12, the norm of final state constraints, φf ,
for CGA, equals 7.57 × 10−10 and for the LI and SI methods, which equal
1.15 × 10−9 and 5.99 × 10−9, respectively, is less than φf of the PHVND
methods, which equals 3.60 × 10−3, but the performance index gap is very
small, about 0.008 for CGA and 0.01 for LI and SI.
After solving with the proposed method, we obtain the following results: the
best value J∗ = 0.033 and the error function φf = 3.60× 10−3 that obtained
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Table 2: Comparison between the best numerical results of different partitions for Ex-
ample 1

Nt m J φf gapJ

10 10 1.5659 2.19× 10−3 0.025
30 50 1.6299 2.85× 10−3 0.089
30 100 1.5811 3.12× 10−3 0.047
50 50 1.5966 9.06× 10−4 0.056
50 100 1.5689 4.14× 10−4 0.028
75 75 1.661 7.15× 10−4 0.120
100 100 1.5404 1.75× 10−4 0.000
150 150 1.7587 1.00× 10−3 0.218

Table 3: Comparison the results of PHVND for different partitions of time and control
function for 16 number of threads for Example 1

Number of Nt = 100, m=100 Nt = 150, m=150 Nt = 200, m=200
threads time (sec) Speed up time (sec) Speed up time (sec) Speed up
1 778 1.00 3070 1.00 8967 1.00
2 497 1.56 1846 1.66 4849 1.85
3 418 1.86 1309 2.35 3425 2.62
4 366 2.13 1144 2.68 2904 3.09
5 353 2.20 998 3.08 2445 3.67
6 356 2.18 907 3.38 2235 4.01
7 355 2.19 879 3.49 2006 4.47
8 375 2.07 836 3.67 1843 4.86
9 359 2.17 811 3.78 1769 5.07
10 374 2.08 821 3.73 1736 5.16
11 406 1.92 830 3.70 1689 5.31
12 415 1.87 861 3.56 1684 5.32
13 460 1.69 873 3.52 1656 5.41
14 483 1.61 879 3.49 1646 5.45
15 525 1.48 939 3.27 1659 5.40
16 537 1.45 982 3.13 1678 5.35
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Table 4: Comparison between the best numerical results of different partitions for Ex-
ample 2

Nt m J φf gapJ

10 10 0.041 7.93× 10−3 0.007
30 50 0.033 3.60× 10−3 0.000
30 100 0.034 7.46× 10−4 0.000
50 50 0.045 5.09× 10−3 0.011
50 100 0.042 1.53× 10−3 0.008
75 75 0.059 1.02× 10−2 0.025
100 100 0.058 1.25× 10−2 0.024
150 150 0.060 1.11× 10−2 0.026

for Nt = 30 and m = 50. The resulting control and states of Example 2
obtained by the PHVND method are given in Figures 3(a) and 3(b). Fur-
thermore, the speed-up curve is also shown in Figure 3(c) and compared
with the ideal speedup. Figure 4(a) indicates the convergence rate of the
performance index for 300 iterations.

The results shown in Figures 3 and 4(a) specify that the method has the
ability to find nearly optimal control-trajectories with a reduction in time
with the aid of parallel processing.
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Figure 3: (a) The resulting optimal trajectories (Nt = 16, m = 20), (b) The resulting
optimal control (Nt = 30, m = 50), and (c) The speedup curve of Example 2.

Example 3. This example [9], is a constraint nonlinear model. After solving
this problem, the following results: the best value J∗ = 0.1825 and the error
function φf = 6.81 × 10−7 that obtained for Nt = 100 and m = 100. The
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convergence rate of the performance index for 300 iterations is shown in
Figure 4(b). The numerical results for different Nt,m are given in Table 5.
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Figure 4: (a) Convergence rate of the performance index for Example 2 (Nt = 30,
m = 50), and (b) Convergence rate of the performance index for Example 3 (Nt = 100,
m = 100).

Table 5: Comparison between the best numerical results of different partitions for Ex-
ample 3

Nt m J φf gapJ

10 10 0.2547 2.21× 10−7 0.072
30 50 0.1952 1.2× 10−6 0.012
30 100 0.2100 3.17× 10−6 0.027
50 50 0.1877 1.33× 10−7 0.005
50 100 0.1906 8.06× 10−7 0.013
75 75 0.1869 1.52× 10−6 0.004
100 100 0.1825 6.81× 10−7 0.000

From Table 5, it is obvious that the gap between the cost function and the
best one for different values of m and Nt is less than 0.07, indicating that the
objective functions in PHVND do not differ a lot. Although, from Table 5,
the norm of final state constraints, φf , for our method, is equal to 10−7 or
10−6. The numerical results of the proposed algorithm are compared with
algorithms: GA in [11], LI, SI, and HPM. For different n,m, the performance
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index, J ,in our method is also less than J∗ = 0.2015 which was proposed in
[24] and J∗ = 0.3526 which was taken by GA in [11].

Example 4. This problem [10] is to control the performance index with
minimum effort. The problem is compared with several numerical methods,
see Table 12. The best optimal objective was J∗ = −8.8157 for Nt = 30,m =

50 (see Table 6) which is close to the result of LI and SI,−8.8692 or SQP and
SUMT, −8.8690. The norm of final state constraint for LI and SI equals
1.45 × 10−10 and 2.79 × 10−10 and this criterion for the PHVND methods
equals 4.8 × 10−4. By increasing the repetition in the algorithm, better
solutions can be obtained, as the convergence rate of the performance index
for 300 iterations is shown in Figure 5(a).

Table 6: Comparison between the best numerical results of different partitions for Ex-
ample 4

Nt m J φf gapJ

10 10 -8.3931 0.586 0.422
30 50 -8.8157 0.036 0.000
30 100 -8.7597 0.075 0.056
50 50 -8.7945 0.063 0.021
50 100 -8.7829 0.051 0.032
75 75 -8.8074 0.036 0.008
100 100 -8.8099 0.042 0.005

Example 5. The problem of dynamic optimization of consecutive reaction
batch reactor (A → B → C) is a classical problem studied by several re-
searchers [41, 8, 34]. The aim is to find the optimal temperature profile that
maximizes the product performance of B temperature at the result of the
process in the batch reactor. The state constraints and initial conditions are
given in Table 1, where x1 shows the concentration of B, x2 represents the
concentration of A, and u is the temperature.

To compare the performance of PHVND with existing methods, the com-
parison results are given in Table 7. The maximum value by applying
PHVND is J∗ = 0.717 was obtained very rapidly. The computation time
with a discretization of Nt = 9,m = 10 subintervals, was 27.7 seconds.
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Figure 5: (a) Convergence rate of the performance index for Example 4 (Nt = 30,
m = 50), and (b) Performance index versus iterations number in Example 5 (Nt = 9,
m = 10).

Table 7: Comparison between the best numerical results of different partitions for Ex-
ample 5

Nt m J gapJ

9 10 0.717 0.000
10 10 0.677 0.04
30 50 0.612 0.105
30 100 0.612 0.105
50 50 0.609 0.108
50 100 0.609 0.108
75 75 0.608 0.109
100 100 0.607 0.11

In addition, we present our approach to the optimal control in Figure 5(b)
and the results from the approach of [40] and [18] are 0.6107 and 0.6128 that
exceeded by our method to 0.717 that shown in Table 12.

Example 6. This problem [22] contains an inequality constraint with mini-
mum control effort. After solving with the proposed method, the best value
J∗ = 0.2746 was obtained for Nt = 10 and m = 10.
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Figure 6: (a) Convergence rate of the performance index, and (b) the inequality con-
straint of Example 6 (Nt = 10, m = 10).

To see the convergence of the example in the 300 iterations, Figure 6(a) is
presented, and Figure 6(b) shows an inequality constraint for 300 iterations.
Table 8 shows the numerical results for different Nt,m.

Table 8: Comparison between the best numerical results of different partitions for Ex-
ample 6

Nt m J gapJ

10 10 0.2746 0.000
30 50 0.2797 0.005
30 100 0.2796 0.005
50 50 0.2839 0.009
50 100 0.2771 0.002
75 75 0.2871 0.012
100 100 0.2931 0.018

Example 7. This problem [13] contains an inequality constraint that should
be minimized. After solving with the proposed method, the best value J∗ =

−8.999 was obtained for Nt = 75 and m = 75.

The convergence rate of the performance index for 300 iterations is given
in Figure 7(a) and inequality constraint d is displayed in Figure 7(b). The
numerical results for different Nt,m are compared in Table 9. The perfor-
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Figure 7: (a) The performance index versus iterations number, and (b) The inequality
constraint of Example 7 (Nt = 75, m = 75).

Table 9: Comparison between the best numerical results of different partitions for Ex-
ample 7

Nt m J gapJ

10 10 -7.391 1.608
30 50 -8.885 0.114
30 100 -8.574 0.425
50 50 -8.917 0.082
50 100 -8.843 0.156
75 75 -8.999 0.000
100 100 -8.860 0.139

mance index in Table 12, J , for different Nt,m in our method is also low
than J = −5.3898 by Bézier and J = −5.4309 by LI and SI.

Example 8. This problem [10] contains an inequality constraint,that J has
to be minimized. After solving with the proposed method, the best value
J∗ = 0.2646 was obtained for Nt = 30 and m = 50.

The convergence rate of the performance index for 300 iterations is shown
in Figure 8(a) and inequality constraint d for 300 iterations is shown in Fig-
ure 8(b). The numerical result for different Nt,m is given in Table 10. From
Table 10, it is obvious that for different values of m and Nt, the gap of the
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Figure 8: (a) The performance index versus iterations number, and (b) The inequality
constraint of Example 8 (Nt = 30, m = 50).

Table 10: Comparison between the best numerical results of different partitions for
Example 8

Nt m J gapJ

10 10 0.2818 0.017
30 50 0.2646 0.000
30 100 0.3019 0.037
50 50 0.2846 0.02
50 100 0.2748 0.01
75 75 0.2755 0.01
100 100 0.2818 0.017

cost function from the best one, is less than 0.03, indicating that the objec-
tive functions in PHVND do not differ a lot. The performance index, J , for
different Nt,m in our method is also do not differ a lot than J = 0.2163

by SQP and J = 0.1703 which was obtained by SUMT and J = 0.1549 by
LI and SI. This difference will decrease with increasing repetition and will
converge to the optimal solution.

Example 9. The aim of this problem [10], is minimizing the performance
index. After solving with the proposed method, the best value J∗ = 1.476

that obtained for Nt = 30 and m = 50.
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Figure 9: (a) The performance index versus iterations number, and (b) the inequality
constraint of Example 9 (Nt = 30, m = 50).

The performance index convergence rate for 300 iterations is shown in
Figure 9(a) and inequality constraint d for 300 iterations is shown in Fig-
ure 9(b). The numerical result for different Nt,m is presented in Table 11.
According to Table 11, we find that increasing the number of partitions m
and Nt, does not necessarily improve the solution. The performance index

Table 11: Comparison between the best numerical results of different partitions for
Example 9

Nt m J gapJ

10 10 1.822 0.346
30 50 1.476 0.000
30 100 1.546 0.07
50 50 1.795 0.319
50 100 1.596 0.12
75 75 1.993 0.517
100 100 2.118 0.642

in Table 12, J , for different Nt,m in our method is also less than J = 1.7950

by SQP and J = 1.7980 which was obtained by SUMT and J = 1.6509 by LI
and SI. In general, its performance is influenced by the size of the problem.
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Table 12: Comparison of the best value of the PHVND with some algorithms for nine
examples

Problem Algorithm J φf gapJ

CGA 1.7404 2.67 × 10−11 0.2
LI 1.5949 1.08 × 10−13 0.054

Example 1 SI 1.5950 9.99 × 10−14 0.054
PHVND 1.5404 1.75 × 10−4 0.000
CGA 0.0163 7.57 × 10−10 0.003
LI 0.0127 1.15 × 10−9 0.000

Example 2 SI 0.0127 5.99 × 10−9 0.000
PHVND 0.033 3.60 × 10−3 0.021
HPM 0.2353 4.2 × 10−6 0.052
LI 0.2015 2.35 × 10−9 0.019

Example 3 SI 0.2015 2.82 × 10−10 0.019
GA 0.3526 4.09 × 10−5 0.17
PHVND 0.1825 6.81 × 10−7 0.000
SQP -8.8690 0 0.000
SUMT -8.8690 0 0.000

Example 4 LI -8.8692 1.45 × 10−10 0.000
SI -8.8692 2.79 × 10−10 0.000
PHVND -8.8157 3.6 × 10−2 0.053
Method of [18] 0.6107 - 0.106

Example 5 method of [40] 0.6128 - 0.104
PHVND 0.717 - 0.000
IPSO-SQP 0.1727 - 0.002
LI 0.1699 - 0.000

Example 6 SI 0.1700 - 0.000
PHVND 0.2746 - 0.104
LI -5.4309 - 3.56

Example 7 SI -5.4309 - 3.56
Bézier -5.3898 - 3.6
PHVND -8.999 - 0.000
SQP 0.2163 - 0.061
LI 0.1549 - 0.000

Example 8 SI 0.1549 - 0.000
SUMT 0.1703 - 0.015
PHVND 0.2646 - 0.109
SQP 1.7950 - 0.319
LI 1.6509 - 0.174

Example 9 SI 1.6509 - 0.174
SUMT 1.7980 - 0.322
PHVND 1.476 - 0.000

4.2.1 Analysis of the numerical examples

By analyzing the number of times and controls that an approach used to
reach its best solution, we can conclude that PHVND is more reliable than
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other heuristics for problems. The results obtained by the algorithm are
similar for small instances of the problem, but when the size increases, the
PHVND approach improves the results in terms of quality of solutions and
running times. Moreover, we improve the best-known solution for benchmark
data sets presented in examples.

According to our computational results, PHVND is an efficient method
in general since only a little computational time is added to the algorithm in
each iteration. Besides, it does not require large RAM for relatively medium
instances. Note that the PHVND can find optimal solutions (or feasible
solutions in some cases), however, others cannot load the problem due to
the shortage of memory. Whereas, the gap solution of others are larger than
those of our algorithm for most cases (see Table 12).

Thus, the PHVND together with efficient partitioning for solving trajec-
tory corresponding significantly improves our ability to tackle large instances
of NOCP. On the other hand, by comparison of computational results of
the number of partitions in Tables 2–12, our choice of the objective function
has a significant impact on the number of iterations. In general, the pro-
posed method can solve complex problems with accurate solutions as shown
in Table 12. Note that the method outperforms control problems in average
computational effort or the best solution gap for large instances. Tables 2–12
present results for network designs of NOCP for different partitions. Natu-
rally, the selection of the number of nodes in the partitions resulting from
the division of time and control space may depend on the dimensions of the
problem, e.g. the number of state variables, but in any case, the numerical
results show that the selection of finer partitions reduces the possibility of the
solution getting worse. Basically, by dividing the time interval and control
into more nodes, we can determine that in most cases, a worse criterion does
not occur.

5 Conclusion

This paper proposes a PHVND algorithm to solve large-scale NOCPs. Com-
paring the results of the proposed method with existing methods for NOCP
reveals that the proposed method leads to solutions closer to the optimal
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solutions. The algorithm also increases the efficiency of the solution pro-
cess, improves the scalability of performance by using the SVND process,
and increases the diversification of solutions at the same time while reducing
the execution time compared to the genetic algorithm. A set of large-scale
NOCPs was used to test this algorithm. Examining the parallel implementa-
tion of the method shows that this method uses parallelism, which reduces the
execution time. The proposed algorithm can significantly reduce execution
time compared to other well-known algorithms in lower-scale problems. In
most cases, our algorithm has achieved good results. In other cases, we have
found a very close to the optimal solution, which, as seen in the convergence
figures, will improve with the increasing number of repetitions. For future
research, methods can be used to solve the minimum-optimal-time control
problem, where the end of the time interval is not fixed. OCPs in dynamically
distributed systems may also be genetically analyzed. From a computational
point of view, this method can be used in computers with GPUs to take
advantage of the acceleration of graphics processing and compare parallel
performance on shared memory structures.

Abbreviations

ACO Ant Colony Optimization
CGA Continuous Genetic Algorithm
CRP Chemical Reactor Problem
GA Genetic Algorithm
HPM Homotopy Perturbation Method
IM Induction Motor
PSO Particle Swarm Optimization
IPSO Improved Particle Swarm Optimization
LI Linear Interpolation
LQR Linear Quadratic Regulator
NLP Nonlinear Programming
NOCP Nonlinear Optimal Control Problem
OPC Optimal Control Problem
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PHVND Parallel Hybrid Variable Neighborhood Descent
PID Proportional Integral Derivative
SI Spline Interpolation
SQP Sequential Quadratic Programming
SUMT Sequential Unconstrained Minimization Technique
VND Variable Neighborhood Descent
SVDN Sequential Variable Neighborhood Descent
USApHMP Uncapacitated Single Allocation p-hub Median problem
VDP Van Der Pol
WOA Whale Optimization Algorithm
Cj jth feasible chromosome
f A function representing the system dynamic
fopt Current optimal objective

Nomenclature

gapJ Absolute error of the resulting objective value
J Objective function
J̃ Discrete form of J
J∗ Optimal objective value
lmax Maximum number of iterations in Algorithm 1
m Number of divisions of the control interval
Maxiter Maximum number of iterations in Algorithm 2
M1,M2,M3k Penalty constants
Np Number of processors
Npop Number of population in GA
Nt Number of time interval divisions
pm Mutation factor
pc Crossover constant
pop(i) A randomly chosen individual
t Time variable
tj jth time node
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t0 Initial time
tf Final time
ul Lower bound on the control values
ub Upper bound on the control values
u(t), u Control variable
u∗(t) Optimal control
x(t), x State variable
x∗(t) Optimal state
xopt Current optimal state
x0 Initial state
xf Final state
φf Total error in constraints
χ(t) Indicator function
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