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Abstract

This study explores a continuous spatio-temporal mathematical model to
illustrate the dynamics of Monkeypox virus spread across various regions,
considering both human and animal hosts. We propose a comprehensive
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strategy that includes awareness campaigns, security measures, and health
interventions in areas where the virus is prevalent. The goal is to reduce
transmission between humans and animals, thereby decreasing human in-
fections and eradicating the virus in animal populations. Our model, which
integrates spatial variables, accurately reflects the geographical spread of
the virus and the impact of interventions, followed by the implementation
and analysis of an applicable optimal control problem. Optimal control
theory methods are applied in this work to demonstrate the existence of
optimal control and the necessary conditions for optimality. We conduct
numerical simulations using MATLAB with the forward-backward sweep
method, revealing the efficiency of strategies focused on protecting vulner-
able populations, preventing contact with infected individuals and animals,
and promoting the use of quarantine facilities as the most effective means
to control the spread of the Monkeypox virus. Additionally, the study ex-
amines the socio-economic impacts of the virus and the benefits of timely
intervention. This approach provides valuable insights for policymakers
and public health officials in managing and controlling the spread of Mon-
keypox.

AMS subject classifications (2020): 49J15, 93C10, 92B05, 93A30.

Keywords: Monkeypox; Optimal control; Spatio-temporal model; Mathe-
matical model; optimization .

1 Introduction

Monkeypox (MPX) is a rare and severe disease caused by a virus closely
related to the smallpox virus (MPOX). It primarily affects animals and hu-
mans (anthropozoonosis) living in regions near the dense forests of Central
and West Africa. Among the affected countries, the Democratic Republic
of Congo (DRC) is particularly impacted, reporting nearly 85% of known
human cases [3, 16]. The DRC has experienced several epidemics in recent
years[9]. Currently, most researchers agree that after 30 years of cessation of
smallpox vaccination campaigns, there has been a significant resurgence of
MPX cases in several tropical regions, including the DRC. This resurgence
is becoming a major public health concern.
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Most researchers concur that the re-emergence of MPX is closely linked
to the discontinuation of smallpox vaccination campaigns, leading to a sig-
nificant increase in MPX cases over the last three decades in several tropical
areas, particularly in the DRC. Despite the growing concern, MPX remains
an understudied disease, with its transmission dynamics and spatial and tem-
poral distribution not fully understood[4, 24, 25].

This research aims to contribute to understanding MPX by developing an
estimator for MPX prevalence in the DRC and analyzing the determinants of
its spatial and temporal distribution. Initially, a score was developed to as-
sess the level of agreement between morbidity data reported by the integrated
disease surveillance and response (IDSR) in the DRC and actual morbidity.
Subsequently, spatial and temporal clusters of MPX were identified at the
Health Zone (HZ) level using retrospective scan statistics. Finally, an inves-
tigation into the environmental factors associated with MPX occurrence in
the DRC was conducted [4, 12, 21].

A straightforward and practical score was designed to measure the reliabil-
ity of data produced by the IDSR in the DRC. The analysis of spatial clusters
of MPX revealed higher reported case rates in the traditional hotspots of the
Sankuru and Tshuapa districts, with the disease spreading to neighboring
areas over the years. This pattern indicates the central Congo basin as a
probable original epicenter for MPX and highlights its spread dynamics over
two decades[4, 21].

Annual temporal analysis shows a seasonal trend with an increase in MPX
cases during the dry season. The developed model indicates that several
environmental factors are positively correlated with MPX incidence, although
these factors alone do not fully explain the emergence and persistence of MPX
epidemics in the DRC. These findings are critical as they emphasize the need
to incorporate various environmental variables into analyses to achieve a more
comprehensive understanding of disease dynamics [10, 12, 14].

Future models must include socio-economic and anthropological factors to
better capture the complex interactions between humans and their environ-
ment, thus affecting their exposure and risk levels. These factors are essential
for developing a nuanced model that can accurately predict MPX outbreak
patterns and offer insights into effective intervention strategies[12, 20].
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The spatial analysis in this study enabled the targeting of high-risk ar-
eas and periods for MPX in the DRC, facilitating the generation of vital
spatio-temporal information required to prioritize prevention and control in-
terventions against the disease[10, 12]. Identifying these high-risk zones and
periods allows public health officials to allocate resources more effectively
and implement targeted measures to curb the disease’s spread.

The motivation for this study stems from the significant increase in MPX
cases, particularly in the DRC, following the cessation of smallpox vaccina-
tion campaigns. Despite growing public health concerns, MPX remains an
understudied disease, with its transmission dynamics and spatial-temporal
distribution not fully understood. This study aims to fill this gap by develop-
ing an estimator for MPX prevalence and analyzing its spatial and temporal
determinants in the DRC, as it represents an unexplored aspect in current
studies.

Additionally, understanding the spatial distribution and the environmen-
tal and social factors contributing to the spread of MPX is crucial for de-
veloping comprehensive strategies to control and prevent future outbreaks.
Incorporating spatial variables into models allows for a more detailed and
accurate depiction of how the disease spreads across different regions, con-
sidering both natural and human-induced factors[10, 12, 14, 20].

These findings highlight the necessity of a nuanced approach to modeling
the spatial and temporal dynamics of MPX. By including spatial data, we can
better understand the localized patterns of disease spread and the impact of
various environmental and socio-economic factors[1, 11]. This approach can
inform more effective public health interventions and policies tailored to the
specific conditions of different regions[6].

In addition to identifying high-risk areas, this study emphasizes the im-
portance of continuous surveillance and data collection. High-resolution spa-
tial data can reveal subtle changes in disease patterns and assist in the early
detection of potential outbreaks. This proactive approach is essential for
preventing the spread of MPX and other emerging infectious diseases[1, 6].

Furthermore, these results open avenues for investigation in other affected
African countries. By leveraging spatio-temporal data, predictive models
can be enhanced, and more effective public health policies can be developed,
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Figure 1: Model description.

tailored to the specific needs and conditions of each region. This approach
not only improves our understanding of MPX but also provides a framework
for studying other zoonotic diseases that threaten global health.

In conclusion, integrating spatial analysis in the study of MPX provides
valuable insights into the disease’s dynamics and guides the development of
targeted interventions. Understanding the spatial and temporal aspects of
disease spread allows for better preparation and response to future public
health challenges[1, 6, 11].

2 Model formulation

We utilize the SEIQR mathematical model developed by Imane Smouni et
al. [18], which describes the spread of MPX.

In the remainder of this paper, we set S = Z1, E = Z2, I = Z3, Q = Z4,
and R = Z5.
Therefore, we introduce the mathematical model for MPX, which is described
by the following system of differential equations:

dZ1(t)
dt = Σ− βZ1(t)Z2(t)− µZ1(t),

dZ2(t)
dt = βZ1(t)Z2(t)− (λ+ µ)Z2(t),

dZ3(t)
dt = λZ2(t)− (α+ µ+ θ)Z3(t),

dZ4(t)
dt = αZ3(t)− (γ + µ)Z4(t),

dZ5(t)
dt = γZ4(t)− µZ5(t),

(1)

where the initial conditions Zi(0) ≥ 0 are nonnegative for each i ∈
{1, 2, 3, 4, 5}.
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The various components of our spatio-temporal model are detailed in
Table 1 below, which includes their descriptions (refer to [18]).

Table 1: The delineation of the distinct compartments within our model.

Compartment Description
S The potential number of individuals

who may contract the virus.
E The count of individuals infected

with the virus who do not show symptoms.
I The count of individuals

who are infected and displaying symptoms.
Q The count of individuals admitted to the hospital.
R The count of individuals who have recovered.

The temporal dynamic system (1) clearly lacks the capability to com-
prehensively describe the spatial spread of the MPX virus. To address this
shortcoming, we propose the integration of the Laplacian operator, which
transforms it into a more complex model (2) that can account for spatial
heterogeneity and diffusion. This transformation is typically achieved by
adding a diffusion term, represented by the Laplacian, to the original dif-
ferential equations of the model. This term allows the model to capture
the rate at which diseases spread geographically, reflecting local interactions
and movements within the population. Specifically, we augment the deter-
ministic epidemic model for MPX with the following modification to include
spatial diffusion effects. This adjustment will allow us to better capture the
complexities of virus transmission across different regions, providing a more
robust framework for understanding and predicting the spread of the disease.
Hence 

dZ1(t,y)
dt = dZ1

∆Z1(t, y) + Σ− βZ1(t, y)Z2(t, y)− µZ1(t, y),
dZ2(t,y)

dt = dZ2∆Z2(t, y) + βZ1(t)Z2(t, y)− (λ+ µ)Z2(t, y),
dZ3(t,y)

dt = dZ3
∆Z3(t, y) + λZ2(t, y)− (α+ µ+ θ)Z3(t, y),

dZ4(t,y)
dt = dZ4

∆Z4(t, y) + αZ3(t, y)− (γ + µ)Z4(t, y),
dZ5(t,y)

dt = dZ5∆Z5(t, y) + γZ4(t, y)− µZ5(t, y).

(2)
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The initial conditions and the no-flux boundary conditions are delineated as
follows: Initially, the state of the system is defined by the values of the vari-
ables at time t = 0. Additionally, to ensure that there is no net flux of the
variables across the boundaries of the domain, the no-flux boundary condi-
tions are applied. These conditions are critical for accurately modeling the
system’s behavior and ensuring that the variables remain within the defined
spatial boundaries throughout the simulation period. The precise mathe-
matical expressions for these initial and boundary conditions are detailed
below:

Z1(0, y) = Z1,0, Z2(0, y) = Z2,0, Z3(0, y) = Z3,0,

Z4(0, y) = Z4,0, Z5(0, y) = Z5,0, z ∈ Ω. (3)

Here, Ω represents a bounded domain within R2 characterized by a smooth
boundary denoted as ∂Ω. For a comprehensive analysis, it is essential to
incorporate the following equation into our model framework. This equation
will account for the dynamic interactions within the defined spatial domain
and ensure that our model accurately reflects the physical processes under
consideration. The inclusion of this equation is crucial for enhancing the
model’s capability to simulate the behavior of the system accurately. There-
fore,

∂Z1

∂ζ
=
∂Z2

∂ζ
=
∂Z3

∂ζ
=
∂Z4

∂ζ
=
∂Z5

∂ζ
= 0, (4)

where ζ denotes the outward unit normal vector on the boundary ∂Ω, and
∂

∂ζ
signifies the outward normal derivative on ∂Ω. Additionally, we define a

control function w : [0; 1] × Ω −→ [0; tf ], aimed at reducing the number of
infected individuals while increasing the number of susceptible individuals.
This objective is achieved through strategies such as minimizing social in-
teractions, launching safety campaigns to curb migration, and implementing
health precautions to mitigate virus transmission.

Our goal is to balance the number of individuals affected by the disease
with the cost of the treatment program. Therefore, we propose the following
formulation: Minimizing of the cost functional represented by
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N(Z1, Z2, Z3, Z4, Z5, w) =

∫
Ω

∫ tf

0

a1Z3(t, y)dtdy +
b1
2
‖w(t, y)‖2L2([0,tf ])

,

(5)
subject to the constraints of the controlled system (2).

Furthermore, we define Wad as the set of permissible controls, given by

Wad = {w ∈ L∞(Q), 0 ≤ w ≤ 1 a.e. onQ} , (6)

where Q = [0, tf ] × Ω, with Ω represents a bounded region within R2 that
has a smooth boundary ∂Ω. To ensure the model’s comprehensiveness, we
include detailed parameter descriptions, which can be found in Table 2.

In our approach, it is essential to consider not only the direct health im-
pact but also the socio-economic factors influencing the disease dynamics.
By incorporating these elements, we aim to develop a holistic and effective
control strategy that can be practically implemented. Moreover, the inte-
gration of feedback mechanisms and continuous monitoring will enhance the
adaptability and responsiveness of the control measures, ensuring optimal
outcomes over time.

Table 2: The description of the parameters of our spatio-temporal model (2).

Symbol Description
Σ Recruitment rate
µ Natural mortality rate
α The rate at which a virus is transmitted

from an asymptomatic infected individual to a susceptible person.
β The rate of infection for individuals who are asymptomatic.
λ The mortality rate of individuals infected with the virus.
γ The mortality rate of a hospitalized individual infected with the virus.
θ Rate of recovery
dS Spread of susceptible individuals
dE Spread of asymptomatic infected individuals
dI Spread of symptomatic infected individuals
dQ Dissemination of hospitalized patients
dR Spread of individuals who have recovered
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3 Presence and singularity of a global solution

In this section, we demonstrate that our model (2) possesses a robust global
solution. For more information, you can refer to the following references:
[2, 15, 17, 22, 23].

We examine M(Ω) = (L2(Ω))
5
, H1(Ω) =

{
w ∈ L2(Ω) :

∂w

∂x
∈ L2(Ω) ,

∂w

∂y
∈ L2(Ω)

}
, andH2(Ω) =

{
w ∈ H1(Ω) :

∂2w

∂y2
,
∂2w

∂y2
,
∂2w

∂x∂y
,
∂2w

∂y∂x
∈ L2(Ω)

}
the Hilbert spaces.

Let L2
(
0, tf ;H

2(Ω)
)
be the space of all strongly measurable functions

ζ : [0, tf ] 7−→ H2(Ω) such that∫ tf

0

‖ζ(t, y)‖H2(Ω)dt <∞. (7)

Furthermore, we introduce the space L∞(0, tf ;H
1(Ω)), which consists of all

functions υ mapping from the interval [0, tf ] to the Sobolev space H1(Ω)

[5, 8]. These functions must satisfy the following conditions:

sup
t∈[0,tf ]

(
‖ζ(t, y)‖H1(Ω)

)
≺ ∞. (8)

The norm within the space L∞ (
0, tf ;H

1(Ω)
)
is defined as follows:

‖ζ‖L∞(0,tf ;H1(Ω)) = inf
{
m ∈ R+ : ‖ζ(t, z)‖H1(Ω) < m

}
. (9)

Our spatio-temporal model given by (2) can be represented in the following
form:

∂z(t, y)

∂t
= Bz(t, y) + g(t, z(t, y)). (10)

In the context, z = (z1, z2, z3, z4, z5) = (S,E, I,Q,R) and g = (g1, g2, g3, g4, g5)

is specified as follows:

g1 = Σ− (1− w)βz1z2 − µz1,

g2 = (1− w)βz1z2 − (λ+ µ)z2,

g3 = λz2 − (α+ µ+ θ)z3,

g4 = αz3 − (γ + µ)z4,

g5 = γz4 − µz5.

(11)
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For every i in the set {1, 2, 3, 4, 5}. , we have

∂zi
∂t

= di∆zi + gi(z(t, y)). (12)

Define B as the linear operator with its domain D(B), which is a subset of
M(Ω). This operator is characterized by the following formula:

Bz = (dS∆z1, dE∆z2, dI∆z3, dQ∆z4, dR∆z5) (13)

with

z ∈ D(B) =
{
z = (z1, z2, z3, z4, z5) ∈

(
H2(Ω)

)5
:

∂z1
∂ζ

=
∂z2
∂ζ

=
∂z3
∂ζ

=
∂z4
∂ζ

=
∂z5
∂ζ

= 0 on ∂Ω

}
.(14)

Theorem 1. Consider a bounded domain Ω within R2 that has a smoothly
defined boundary. Assume that the initial values z0i are nonnegative across
Ω for each i ∈ {1, 2, 3, 4, 5}, and that the parameters Σ, µ, α, β, λ, γ, and θ

are also nonnegative. Given an admissible control w ∈ Wad and an initial
condition z0 ∈ D(A), the system described in (2) is guaranteed to have a
unique strong nonnegative solution z belonging to z ∈ W 1,2([0, tf ];M(Ω)).
This solution adheres to the following conditions:

z1, z2, z3, z4, z5 ∈ L2
(
0, tf ;H

2(Ω)
)
∩ L∞ (

0, tf ;H
1(Ω)

)
∩ L∞(Q). (15)

Additionally, there is a constant M0 > 0, which does not depend on the
control v, such that for every t ∈ [0, tf ] and for each i ∈ {1, 2, 3, 4, 5},∥∥∥∥∂zi∂t

∥∥∥∥
L2(Q)

+ ‖zi‖L2(0,tf ,H2(Ω)) + ‖zi‖H1(Ω) + ‖zi‖L∞(Q) ≤M0. (16)

The symbols L2, L∞, and ‖ · ‖ are used without definitions. These symbols
are standard notations in functional analysis as follows:

• L2: The space of square-integrable functions, that is, functions f such
that

∫
|f(x)|2 dx <∞.

• L∞: The space of essentially bounded functions, that is, functions f
such that there exists a boundM where |f(x)| ≤M almost everywhere.
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• ‖ · ‖: Typically denotes a norm, with ‖f‖2 indicating the L2 norm and
‖f‖∞ indicating the L∞ norm.

Proof. Since the operator∆ exhibits dissipative characteristics, is self-adjoint,
and can generate a C0 semigroup of contractions onM(Ω) [13], it follows that
the function g represented by (g1, g2, g3, g4, g5) is Lipschitz continuous with
respect to the variable z denoted by (z1, z2, z3, z4, z5), and this continuity
is uniform in t over the interval [0, tf ]. Consequently, the system admits a
unique strong solution z ∈W 1,2 ([0, tf ];M(Ω)) with

zi ∈ L2
(
0, tf ;H

2(Ω)
)

for all i ∈ {1, 2, 3, 4, 5}. (17)

We now demonstrate that for all i ∈ {1, 2, 3, 4, 5}, zi ∈ L∞(Q).
Set c = max

{
‖gi‖L∞(Q) ,

∥∥z0i ∥∥L∞(Ω)
: i ∈ {1, 2, 3, 4, 5}

}
and define

Vi(t, y) = zi(t, y)− ct−
∥∥z0i ∥∥L∞(Ω)

.

It is evident that Vi satisfies the system
∂Vi(t, y)

∂t
= di∆Vi(t, y) + gi(t, z(t, y))− c, t ∈ [0, tf ],

Vi(0, y) = z0i −
∥∥z0i ∥∥L∞(Ω)

.
(18)

This system admits a unique strong solution given by

Vi(t, y) = Γ(t)
(
z0i −

∥∥z0i ∥∥L∞(Ω)

)
+

∫ t

0

Γ(t− x) (gi(z(x))− c) dx, (19)

where Γ(t) is an infinitesimal semigroup associated with the operator di∆.
It follows that Vi(t, y) ≤ 0, so zi ≤ ct+

∥∥z0i ∥∥L∞(Ω)
.

Similarly, we can show that Vi(t, y) = zi(t, y)+ ct+
∥∥z0i ∥∥L∞(Ω)

is nonneg-
ative. Thus, zi ≥ −ct−

∥∥z0i ∥∥L∞(Ω)
, which implies

|zi(t, y)| ≤ ct+
∥∥z0i ∥∥L∞(Ω)

, (20)

and hence

zi ∈ L∞(Q) for all (t, y) ∈ [0, tf ]× Ω, for i ∈ {1, 2, 3, 4, 5}. (21)

Next, we establish that zi ∈ L∞ (
0, tf ;H

1(Ω)
)
for all i ∈ {1, 2, 3, 4, 5}. Con-

sidering i ∈ {1, 2, 3, 4, 5}, we start from the equation
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∂zi(t, y)

∂t
− di∆zi(t, y) = gi(t, z(t, y)), (t, y) ∈ [0, tf ]× Ω. (22)

We have∫ t

0

∫
Ω

(
∂zi(t, y)

∂t
− di∆zi(t, y)

)2

dyds =

∫ t

0

∫
Ω

(gi(t, z(t, y)))
2
dyds. (23)

Using Green’s formula, we obtain∫ t

0

∫
Ω

(
∂zi
∂t

)2

dyds+ d2i

∫ t

0

∫
Ω

(∆zi)
2
dyds

= 2di

∫ t

0

∫
Ω

∂zi
∂t

×∆zidyds+

∫ t

0

∫
Ω

(gi (t, zi))
2
dyds

= di

∫
Ω

|∇z0i |2dy − di

∫
Ω

|∇zi|2dy +
∫ t

0

∫
Ω

(gi (t, zi))
2
dyds.

Since z0i ∈ H2(Ω) and ‖zi‖L∞(Q) are bounded independently of v, it follows
that

zi ∈ L∞ (
0; tf ;H

1(Ω)
)
, for i ∈ {1, 2, 3, 4, 5}. (24)

Combining (17), (21), and (24), we conclude that the inequality presented in
(16) holds. Furthermore, using arguments similar to those employed for the
Field–Noyes equations in [19], we deduce that the solution (z1, z2, z3, z4, z5)

remains nonnegative. Consider the set

Θ = {(z1, z2, z3, z4, z5) : 0 ≤ zi ≤ D for i ∈ {1, 2, 3, 4, 5}} ,

and define the convex functions Gi over Π as Gi (z1, z2, z3, z4, z5) = −zi. This
leads to the following relationships:

∇ (G1) · g|z1=0 = ∇ (−z1) · g|z1=0 = −Σ ≤ 0,

∇ (G2) · g|z2=0 = ∇ (−z2) · g|z2=0 = 0 ≤ 0,

∇ (G3) · g|z3=0 = ∇ (−z3) · g|z3=0 = −λz2 ≤ 0,

∇ (G4) · g|z4=0 = ∇ (−z4) · g|z4=0 = −αz3 ≤ 0,

∇ (G5) · g|z5=0 = ∇ (−z5) · g|y5=0 = −γz4 ≤ 0.

(25)

As demonstrated in [6], the set Θ is positively invariant, ensuring the non-
negativity of the solutions over time.
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4 Existence of an optimal control

In this section, our primary goal is to establish the existence of an optimal
control for the problem described in (5). This problem is constrained by
the reaction-diffusion system detailed in (2)–(4), with the control variable
belonging to the admissible set w ∈Wad. Our objective is to show that under
these constraints, there exists a control that optimizes the given performance
criterion. The main result we intend to demonstrate in this section is the
following key theorem, which provides a rigorous foundation for the existence
of such an optimal control. By proving this theorem, we will significantly
advance our understanding of the underlying reaction-diffusion system and
its controllability properties.

Theorem 2. Based on the conditions specified in Theorem 1, the optimal
control problem described in (2)-(4) admits a solution, which we denote by
(z∗, w∗). This pair represents the optimal state and control variables that
satisfy the given system and minimize the cost function.

Proof. Since both the control function w and the state variables zi (for i in
the set {1, 2, 3, 4, 5}) are uniformly bounded in the space L∞(Q), it is ensured
that the infimum of the cost function exists. Let us denote this infimum by
C∗, which is defined as C∗ = infw∈Wad

C(z, w).

Now, consider a sequence {wm} ⊂ Wad that minimizes the cost func-
tion. Specifically, this means that as m approaches infinity, the cost function
evaluated at the sequence converges to the infimum: lim

n→+∞
C(zm, wm) = C∗.

Here, (zm1 , zm2 , zm3 , zm4 , zm5 ) represents the solution of the given system of
equations (denoted by (2)–(4)) when the control input is un. This scenario
leads to the formulation of the following system of equations:

∂zm
1 (t,y)
∂t = dS∆z

m
1 (t, y) + Σ− (1− vm)βzm1 (t, y)zm2 (t, y)− µzm1 (t, y),

∂zm
2 (t,y)
∂t = dE∆z

m
2 (t, y) + (1− vm)βzm1 (t)zm2 (t, y)− (λ+ µ)zm2 (t, y),

∂zm
3 (t,y)
∂t = dI∆z

m
3 (t, y) + λzm2 (t, y)− (α+ µ+ θ)zm3 (t, y),

∂zm
4 (t,y)
∂t = dQ∆z

m
4 (t, y) + αzm3 (t, y)− (γ + µ)zm4 (t, y),

∂zm
5 (t,y)
∂t = dR∆z

m
5 (t, y) + γzm4 (t, y)− µzm5 (t, y).

(26)
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In the region Q, the partial derivatives with respect to ζ are zero for all state
variables, specifically:

∂zm1
∂ζ

=
∂zm2
∂ζ

=
∂zm3
∂ζ

=
∂zm4
∂ζ

=
∂zm5
∂ζ

= 0. (27)

This condition indicates that the state variables do not change with respect
to the variable υ within the domain Q.

Given that the Sobolev space H1(Ω) is compactly embedded in the
Lebesgue space L2(Ω), we can deduce that the sequence zmi (t, y) possesses
compactness properties in L2(Ω) for each i in the set {1, 2, 3, 4, 5}. This
compact embedding ensures that sequences that are bounded in H1(Ω) have
subsequences that converge in L2(Ω).

Additionally, it is necessary to establish the equicontinuity of the sequence
{zmi (t, y)}m≥1 in the space C([0, tf ], L2(Ω)). Equicontinuity implies that the
variations in the sequence ynk over time are uniformly controlled, ensuring that
the sequence behaves regularly over the interval [0, tf ]. The boundedness of
the time derivatives ∂zm

i

∂t in L2(Q) implies that there exists a positive constant
h such that the difference in the integrals of the squared state variables over
the domain Ω at two different times t and x is bounded by h times the
absolute difference between t and x:∣∣∣∣∫

Ω

(zmi )2(t, y) dz −
∫
Ω

(zmi )2(x, y) dz

∣∣∣∣ ≤ h|t− x|. (28)

This bound indicates that the changes in the state variables over time are
controlled, which is a key aspect of equicontinuity.

Therefore, by applying the Ascoli–Arzelà Theorem, which provides cri-
teria for the compactness of a set of continuous functions, we can confirm
that the sequence ymi is compact in C([0, tf ], L

2(Ω)). As a result, zmi con-
verges uniformly to a limit function z∗i in L2(Ω) with respect to time t. This
uniform convergence implies that the difference between zmi and y∗k becomes
arbitrarily small as n increases, uniformly for all t in [0, tf ].
Given the boundedness of ∆zmi in L2(Q), there exists a subsequence, still
denoted by ∆zmi , that converges weakly in L2(Q). This weak convergence
implies that for any test function φ in the space of distributions, the following
integral equality holds:
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Q

φ∆zmi =

∫
Q

zmi ∆φ→
∫
Q

z∗i ∆φ =

∫
Q

φ∆z∗i . (29)

This result indicates that∆zmi converges to∆z∗i weakly in L2(Q). In addition
to this, we can also deduce the weak convergence of the time derivatives and
the state variables themselves: ∂zm

i

∂t converges weakly to ∂z∗
i

∂t in L2(Q), and
zmi converges weakly to z∗i in both L2(0, tf ;H

2(Ω)) and L∞(0, tf ;H
1(Ω)).

Moreover, considering the product of state variables, we observe that

zm1 z
m
2 − z∗1z

∗
2 = (zm1 − z∗1)z

m
2 + z∗1(z

m
2 − z∗2). (30)

This decomposition allows us to deduce that zm1 zm2 converges to z∗1z
∗
2 in

L2(Q). Consequently, the control sequence wm converges to w∗ in L2(Q).
Since the admissible control set Wad is closed by definition, it follows that
w∗ also belongs to Wad.

By taking the limit as m → ∞ in (26), we can demonstrate that z∗ is
indeed a solution to (12) associated with the optimal control w∗. Thus, the
optimal cost function value can be expressed as

C(z∗, w∗) =

∫ tf

0

az∗3(t, y) dt dy +
b

2
‖w∗(t, y)‖2L2(Q)

≤ lim inf
∫ tf

0

azm3 (t, y) dt dy +
b

2
‖wm(t, y)‖2L2(Q)

≤ lim
∫ tf

0

azm3 (t, y) dt dy +
b

2
‖wm(t, y)‖2L2(Q) = C∗.

(31)

This chain of inequalities confirms that the cost function C attains its mini-
mum value at the optimal pair (z∗, w∗). Thus, (z∗, w∗) is indeed the optimal
solution to the given control problem.

5 Necessary optimality conditions

In this segment, we will explore the necessary conditions for optimality for
the problem (2)–(5) with w ∈ Wad. Our goal is to provide comprehensive
insights into the nature and characterization of the optimal control strategy.
Let us consider an optimal pair represented by (z∗, w∗). To investigate the
behavior of the system under slight perturbations, we introduce a perturbed
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control wϵ defined as w∗ + ϵw, where ϵ > 0. This perturbed control must
satisfy the conditions w ∈ L2(Q) and w ∈Wad.

The corresponding solutions to (2) associated with the controls wϵ and
w∗ are denoted by zϵ = (zϵ1, z

ϵ
2, z

ϵ
3, z

ϵ
4, z

ϵ
5) and z∗ = (z∗1 , z

∗
2 , z

∗
3 , z

∗
4 , z

∗
5), respec-

tively. These solutions represent the state of the system under the perturbed
and optimal controls.

To proceed, we define the matrices F and B, which will help us in formu-
lating the conditions for optimality:

F =



−µ− (1− w∗)βz2 −(1− w∗)βz1 0 0 0

(1− w∗)βz2 (1− w∗)βz1 − (λ+ µ) 0 0 0

0 λ − (α+ µ+ θ) 0 0

0 0 α − (γ + µ) 0

0 0 0 γ −µ


and

B =



βz∗1z
∗
2

−βz∗1z∗2
0

0

0


.

The matrix F encapsulates the dynamics of the system influenced by the
optimal control w∗, while the vector B captures specific interactions within
the system states z∗i .

By investigating the differences between the perturbed state zϵ and the
optimal state z∗, we derive necessary conditions for optimality. This involves
analyzing how the state zϵ changes as ϵ varies and identifying the impact of
the perturbation on the system’s performance.

We can calculate the derivative of the performance index with respect
to ϵ and set it to zero to find the conditions for optimality. This process
ensures that we identify the optimal control strategy that either minimizes
or maximizes the desired performance index.
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Moreover, understanding the system’s behavior under slight variations in
control allows us to refine our control strategies, ensuring they are both effec-
tive and efficient. Through this rigorous analysis, we aim to provide a deeper
understanding of the optimal control mechanisms and their implications for
the system’s behavior.

In conclusion, our detailed examination provides critical insights into the
optimal control strategy, enhancing the development of more effective control
methodologies for complex systems.

Theorem 3. The mapping y :Wad →W 1,2([0, tf ],M(Ω)) for i ∈ {1, 2, 3, 4, 5}
is Gateaux differentiable with respect to w∗. For any w ∈ Wad, the
derivative of zi at w∗, represented by z′i(w

∗)w, is denoted by Zi. Thus,
Z = (Z1, Z2, Z3, Z4, Z5) is the unique solution to the differential equation
given by

∂Z

∂t
= AZ + FZ + wB with initial condition Z(0, y) = 0. (32)

Proof. We introduce Zε
i =

zε
i−z∗

i

ε for i ∈ {1, 2, 3, 4, 5}. By subtracting the
differential equations corresponding to zεi and z∗i , we obtain the following
equation:

∂Zε

∂t
= AZε + F εZε +wB subject to Zε(0, y) = 0 for all y ∈ Ω, (33)

where

F ε =



−µ− (1− wε)βz∗2 −(1− wε)βz∗1 0 0 0

(1− wε)βz∗2 (1− w∗)βz∗1 − (λ+ µ) 0 0 0

0 λ − (α+ µ+ θ) 0 0

0 0 α − (γ + µ) 0

0 0 0 γ −µ


.

Let (Γ(t), t ≥ 0) be the semigroup generated by A. The solution to this
system can be expressed as

Zε(t, y) =

∫ t

0

Γ(t− x)F εZε(x, y) dx+

∫ t

0

Γ(t− x)wP dx. (34)

Given that the coefficients of the matrix F ε are uniformly bounded with
respect to ε, we can use Grönwall’s inequality to show that Zε

i is bounded
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in L2(Q). Consequently, zεi converges to z∗i in L2(Q). Taking the limit as
ε→ 0, we get the following result:

To ensure the solution’s stability and uniqueness, we impose that the
matrix A is dissipative. This property allows the use of semigroup theory
to handle the evolution of Zε over time. The boundedness of F ε coefficients
further guarantees the application of Grönwall’s inequality, leading to the
necessary boundedness in L2(Q).

Moreover, the convergence of zεi to z∗i is uniform, meaning that the error
between zεi and z∗i diminishes uniformly as ε approaches zero. This uniform
convergence is critical for the robustness of our solution, ensuring that our
model accurately predicts the behavior of the system under various pertur-
bations.

Thus, by analyzing the behavior of Zε through the semigroup approach
and leveraging the boundedness properties of the involved matrices, we
achieve a comprehensive understanding of the system’s dynamics and their
stability over the defined domain. Hence

∂Z

∂t
= AZ + FZ + wB subject to Z(0, y) = 0, for all y ∈ Ω (35)

By using a similar method, we conclude that Zε
i converges to Z∗

i as ε ap-
proaches 0.

Let us introduce the adjoint variable q = (q1, q2, q3, q4, q5) and denote F ∗

as the adjoint of the Jacobian matrix F . The dual system corresponding to
our problem can be expressed as:

−∂q
∂t

−Aq − F ∗q = D∗Dψ with the condition q(tf , y) = 0, (36)

where

D =



0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0


and ψ =



0

0

a

0

0


.

Lemma 1. Under the assumptions of Theorem 1, let (z∗, w∗) be an optimal
pair. There is a unique strong solution for the dual system (36), represented
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by q ∈ W 1,2([0, tf ],M(Ω)). Specifically, the components qi are elements of
L2

(
0, tf ;H

2(Ω)
)
and L∞ (

0, tf ;H
1(Ω)

)
, for i ∈ {1, 2, 3, 4, 5}. Therefore,

for all i ∈ {1, 2, 3, 4, 5}, qi ∈ L2(0, tf ;H
2(Ω)) ∩ L∞(0, tf ;H

1(Ω)). (37)

This uniqueness guarantees the stability of the solution within the prescribed
function spaces. It also implies that the solution q maintains the required
regularity, ensuring accurate representation and predictability of the system’s
behavior. The regularity of qi provides significant insights into the system’s
dynamics and is crucial for the development of effective control strategies.

Proof. This lemma can be derived by applying a variable transformation
t′ = tf − t and following a comparable approach as utilized in the proof of
Theorem 3.

By utilizing the connections between the state and adjoint equations,
the objective functional, and conventional optimality methods, we can com-
prehensively define the optimal control. This process allows us to derive the
necessary conditions required to solve the optimal control problem effectively.

Theorem 4. If an optimal control w∗ exists along with its corresponding
solution z∗ ∈W 1,2([0, tf ];M(Ω)), then the optimal control w∗ can be repre-
sented as:

w∗ = min
(
wmax,max

(
0,

(q2 − q1)βz
∗
1z

∗
2

b

))
. (38)

Proof. Let (z∗, w∗) be an optimal pair. Suppose wε = w∗ + εh ∈Wad where
h ∈ L2(Ω), and let zε be the associated state solution. Then, we have

C ′ (w∗) (h) = lim
ε→0

1

ε
(C (wε)− C (w∗))

= lim
ε→0

1

ε

(
a

∫ tf

0

∫
Ω

(zε3 − z∗3) dydt

+
b1
2

∫ 1

0

∫
Ω

(
(wε)

2 − (w∗)
2
)
dydt

)
= lim

ε→0

(
a

∫ tf

0

∫
Ω

(
zε3 − z∗3

ε

)
dydt

+
b1
2

∫ 1

0

∫
Ω

(
2hw∗ + εh2

)
dydt

)
.
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Given that limε→0
zε3 − z∗3

ε
= limε→0

z3(u
∗ + εh)− z∗3

ε
= Z3, limε→0 z

ε
3 =

z∗3 , and zε3, z
∗
3 ∈ L∞(Q), it follows that C is Gateaux differentiable with

respect to w∗, and we obtain

C ′ (w∗) (h) =

∫ tf

0

∫
Ω

aZ3dydt+ b1

∫ tf

0

∫
Ω

hw∗dydt

=

∫ tf

0

〈Dψ,DZ〉dt+
∫ 1

0

〈b1w∗, h〉L2(Ω) dt.

If we set h = v − w∗, then we have

C ′ (w∗) (v − w∗) =

∫ tf

0

〈Dψ,DY 〉dt+
∫ 1

0

〈b1w∗, v − w∗〉L2(Ω) dt.

Considering that∫ tf

0

〈Dψ,DZ〉dt =
∫ tf

0

〈D∗Dψ,Z〉 dt

=

∫ tf

0

〈
−∂q
∂t

−Aq − F ∗q, Z

〉
dt

=

∫ tf

0

〈
q,
∂Z

∂t
−AZ − FZ

〉
dt

=

∫ tf

0

〈q,B(v − w∗)〉 dt

=

∫ tf

0

〈B∗q, v − w∗〉L2(Ω) dt,

and since Wad is convex, we have C ′ (w∗) (v − w∗) ≥ 0 for every w ∈ Wad,
which is equivalent to∫ tf

0

〈B∗q + b1w
∗, v − w∗〉L2(Ω) dt ≥ 0 for every w ∈Wad.

Thus, bw∗ = −B∗q, which implies w∗ =
(q2−q1)βz

∗
1z

∗
2

b1
. Given that w∗ ∈

Wad, it follows that (38) holds.

This result is important as it provides the explicit form of the optimal
control u∗ in terms of the adjoint variables q1 and q2, as well as the state
variables z∗1 , z∗2 , and z∗3 . This formulation allows for a deeper understanding
of the interaction between the state and adjoint systems in the context of the
optimal control problem. The conditions under which this optimal control is
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derived ensure that the solution is both feasible and optimal within the given
constraints.

6 Computational modeling and outcome display

To accomplish the objectives of optimal control and evaluate the precision of
our spatio-temporal model, both with and without control interventions, we
executed a numerical simulation of our optimal control problem within the
realm of disease spread modeling. This study adopts a stringent methodolog-
ical framework. Our optimality system is delineated by state equations with
initial and boundary conditions (2)-(4), adjoint equations with transversality
conditions (36), and an optimal control formulation (38). To resolve this
system, we employ the forward-backward scanning method in an iterative
manner. Temporal discretization of the state equations is performed using
the explicit Euler method, while the adjoint equations are solved retrospec-
tively. The spatial domain considered, symbolizing a city Ω = 75Km2, is
initially populated randomly at t = 1 day, under the assumption that the
epidemic commenced spreading randomly across various sections of the city.
The outcomes will be delineated as follows.

To deepen our understanding, we performed additional simulations to
evaluate the impact of various control strategies on disease dynamics. These
simulations offer further insights into the effectiveness of different intervention
measures under various scenarios, enhancing the robustness of our model.
The data and results obtained from these simulations will be meticulously
analyzed and discussed to provide comprehensive insights into the model’s
performance under different conditions.

The parameter values associated with our spatio-temporal model, with
and without control measures, are presented in Table 3 below.

Figure 2 reveals that before the imposition of control measures, asymp-
tomatic infections were prevalent throughout numerous locations in the re-
gion. This observation implies a broad dissemination of the epidemic within
the city. Furthermore, Figure 4 depicts a consistently high proportion of
asymptomatic cases, sustaining a steady rate of 13% of the total population
over time. This continuous presence of asymptomatic individuals facilitated
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Table 3: Model parameters in scenarios with and without control measures.

Parameters Values
(Σ, µ, α, β, λ, γ, θ) (0.07,0.12,0.75,0.5,0.0002,0.001,0.03)
(dS , dE , dI , dQ, dR) (0.25,0.25,0.25,0.25,0.25)

the emergence of a substantial cluster of symptomatic cases across the city,
representing 34% of the total population. The visual representation under-
scores the extensive transmission of the infection in various areas within the
city.

Furthermore, the data reveals that the uncontrolled spread of asymp-
tomatic infections is a key factor in the rapid escalation of the epidemic.
This situation underscores the importance of early intervention and the im-
plementation of control measures to curb the virus’s spread. The figures
collectively provide a clear illustration of how the infection permeated var-
ious sections of the city, resulting in a substantial number of symptomatic
cases and emphasizing the necessity for timely and effective public health
responses.

To elaborate further, the persistence of asymptomatic cases not only in-
creased the number of symptomatic individuals but also placed a strain on
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Figure 2: The dynamics of compartments E and I in the absence of control measures

the healthcare system. The widespread nature of the infection required ur-
gent and comprehensive measures to control its transmission. The figures
thus provide valuable insights into the dynamics of disease spread and the
critical need for strategic interventions.

Figure 3 illustrates a significant shift in the epidemic landscape following
the implementation of stringent control measures. These carefully planned
interventions aimed to drastically reduce the widespread incidence of asymp-
tomatic infections across the region. Key elements of these measures included
limiting social interactions, launching safety campaigns to discourage migra-
tion, and promoting health precautions to reduce virus transmission. As
depicted in Figure 4, these proactive efforts led to a dramatic decrease in
the overall percentage of asymptomatic cases, dropping from an initial 13%
to just 0.25%. Consequently, there was a marked decline in the number of
symptomatic cases, with the affected population now representing only 0.3%
of the total. This positive outcome highlights the effectiveness of the control
measures in curbing the spread of the disease and reducing its impact on the
population. The resulting scenario reflects a more controlled and manage-
able situation, underscoring the success of the interventions in limiting the
transmission of the infection within the city.
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Figure 3: Dynamics of compartments E and I under the influence of control measures
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Furthermore, the findings underscore the importance of timely interven-
tions in managing the epidemic. The substantial reduction in both asymp-
tomatic and symptomatic cases demonstrates the significant impact of early
and decisive action. These control measures not only slowed the spread of
the virus but also eased the burden on the healthcare system, allowing it to
operate more efficiently and effectively.

In addition, the data suggests that ongoing monitoring and adjustment
of control strategies are essential to maintaining the low infection rates that
have been achieved. The evolving nature of the epidemic requires adaptive
response measures to address new challenges as they emerge. This approach
ensures sustained control over the virus, helping to prevent future outbreaks
and ultimately protecting public health and well-being.

Figure 4: The proportional distribution of compartments S, E, and I in relation to the
total population
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7 Conclusion

The spatio-temporal model employed in this investigation adeptly encapsu-
lates essential elements such as population density, movement trajectories,
and social interactions, which are paramount for comprehending the trans-
mission dynamics of the MPX virus. Our research underscores the critical
importance of control measures via diverse intervention strategies, including
advocacy campaigns, the creation of social barriers, and targeted testing, to
thwart the virus’s proliferation while mitigating associated costs and societal
upheavals.

Moreover, our examination of this spatio-temporal epidemiological model
makes a substantial contribution to the decision-making process and eluci-
dates fundamental mechanisms in epidemic progression. This methodology
has the potential to amalgamate rigorous mathematical analysis with em-
pirical data to discern effective targeted therapies, thereby bolstering global
endeavors to combat the virus and safeguard public health.

To further refine the accuracy and effectiveness of these models, future
iterations should incorporate additional variables such as age, socio-economic
status, and behavioral patterns. Enhancing data collection frameworks and
developing comprehensive reports will yield current, reliable data for precise
sampling, which is indispensable for informing efficacious epidemic mitigation
strategies.

Moreover, integrating advanced computational techniques and machine
learning algorithms could further refine the model’s predictive capabilities.
This integration would enable more nuanced simulations and better pre-
paredness for potential future outbreaks. Collaborative efforts across various
disciplines, including epidemiology, data science, and public health, will be
essential to develop and implement these sophisticated models.

In conclusion, the continuous evolution and refinement of spatio-temporal
models are essential for addressing the complex dynamics of epidemic spread.
By leveraging these advanced tools, we can enhance our understanding and
management of infectious diseases, ultimately safeguarding human health on
a global scale.
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