- Adelkhani, , Beheshti, B., Minai, S., & Javadi Kia, H. (2015). Taste determination of Thompson orange using image processing based on ANFIS and ANN-GA methods. FSCT, 13(56), 45-55. (In Persian with English abstract). http://fsct.modares.ac.ir/article-7-2215-en.html
- Azadnia, R. (2022). Fast and accurate prediction of soil texture type based on deep learning algorithm and machine vision system. Journal of Researches in Mechanics of Agricultural Machinery, 11(1), 61-72. (In Persian with English abstract). https://doi.org/10.22034/jrmam.2022.10089.539
- Azadnia, R., Kheiralipour, K., & Jafarian, M. (2022). Classification of hawthorn fruit based on ripeness level by machine vision, Journal of Innovative Food Technologies, 9(4), 331-344. (In Persian with English abstract). https://doi.org/10.22104/ift.2022.5473.2091
- Azami, M., & Hasanpoor, K. (2020). Applying an integrated acceptance model and using technology for accepting innovations among farmers in Delfan County). Agricultural Education Administration Research, 12(52), 157-176. (In Persian with English abstract). https://doi.org/10.22092/jaear.2020.342593.1718
- Baharvand, F., Hosseinpour, M., & Jamshidi, M.J. (2022). Presenting adoption model of internet of things (IoT) in agricultural sector of Iran. J Entrepreneurial Strategies Agriculture,9(18), 22-32. (In Persian with English abstract).
- Banthia, V., & Chaudaki, G. (2022). The study on use of Artificial Intelligence in agriculture. Journal of Advanced Research in Applied Artificial Intelligence and Neural Network, 5(2), 18-22. <http://thejournalshouse.com/index.php/neural-network-intelligence-adr/article/view/590>
- Behneghar, H., Majidi, B., & Movaghar, A. (2021). Design of Hardware and Software Platform for Intelligent Automation of Livestock Farming using Internet of Things. Agricultural Mechanization and Systems Research, 22(78), 107-126. (In Persian with English abstract). https://doi.org/10.22092/amsr.2021.352371.1367
- Cabrera-Sánchez, J.P., Villarejo-Ramos, Á.F., Liébana-Cabanillas, F., & Shaikh, A.A. (2021). Identifying relevant segments of AI applications adopters–Expanding the UTAUT2’s variables. Telematics and Informatics, 58, 101529. https://doi.org/10.1016/j.tele.2020.101529
- Chikoye, D.M., Gupta, N.K., & Kandadi, K.R. (2018). Application of UTAT in understanding the adoption of technologies for reducing post-harvest maize in Zambia. International Journal of Agriculture and Environmental Research, 4(3), 610-636. https://ijaer.in/more2018.php?id=49
- Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62, 101257. https://doi.org/10.1016/j.techsoc.2020.101257
- Dhanush, G., Khatri, N., Kumar, S., & Shukla, P.K. (2023). A comprehensive review of machine vision systems and artificial intelligence algorithms for the detection and harvesting of agricultural produce. Scientific African, e01798. https://doi.org/10.1016/j.sciaf.2023.e01798
- Fatahi, S., Taheri geravand, A., & Shahbazi, F. (2017). Estimate freshness of chicken meat using image processing and artificial intelligent techniques. Iranian Journal of Biosystems Engineering, 48(4), 491-503. (In Persian with English abstract). https://doi.org/10.22059/ijbse.2017.63814
- Fallah, M., & Ghanbari Parmehr, E. (2023). Detection of Chilo Suppressalis using Smartphone Images and Deep Learning. Journal of Agricultural Machinery, 13(2), 195-211. (In Persian with English abstract) https://doi.org/10.22067/jam.2022.72647.1064
- Food and Agriculture Organization. 2020. Available at https://www.fao.org/faostat/en/#home
- Hadipour Rokni, R., Askari Aslirad, A., & Sabzi, S. (2022). Identification of citrus pests using unmanned aerial vehicles and artificial intelligence methods. Journal of Researches in Mechanics of Agricultural Machinery, 11(3), 59-68. (In Persian with English abstract). https://doi.org/22034/jrmam.2022.10139.558
- Hair F., Hult, T.T.M., Ringle, C.M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM), Sage publications. https://doi.org/10.1007/978-3-030-80519-7
- Hosseini, J., Tahmasebi-Sarvestani, Z., Pirdashti, H., Modarres Sanavi, S.A.M., Mokhtassi-Bidgoli, A., & Hazrati, S. (2019). Study of diversity and estimation of leaf area in different mint ecotypes using artificial intelligence and regression models under salinity stress conditions. Journal Crop Breeding,11(32), 59-73. (In Persian with English abstract).
- Islamic Parliament Research Center of I.R. Iran. (2021). Review of the government's performance in supporting the agriculture and natural resources sector, Deputy of Infrastructure Studies, 17498. (In Persian)
- Javaid, M., Haleem, A., Khan, I.H., & Suman, R. (2023). Understanding the potential applications of artificial intelligence in agriculture sector. Advanced Agrochem, 2(1), 15-30. https://doi.org/10.1016/j.aac.2022.10.001
- Kelly, S., Kaye, S.A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. https://doi.org/10.1016/j.tele.2022.101925
- Khayam Nekouei, M., Ghaffari, M.R., Mardi, M., Ghorbanzadeh, Z., Hamid, R., & Zeinalabedini, M. (2024). Artificial intelligence technology in agriculture; Prospects, applications and challenges. Crop Biotechnology, 13(1), 15-29. (In Persian with English abstract). https://doi.org/30473/cb.2024.70090.1941
- Khosravizadeh, M., & Khalilinasr, A. (2019). Factors affecting the adoption of artificial intelligence technology in Iranian companies. The 17th international management conference, Tehran. (In Persian) https://civilica.com/doc/1162190/
- Kothari, C.R. (2004). Research methodology: Methods and techniques. New Age International. ISBN (13): 978-81-224-2488-1
- Korkmaz, H., Fidanoglu, A., Ozcelik, S., & Okumus, A. (2022). User acceptance of autonomous public transport systems: Extended UTAUT2 model. Journal of Public Transportation, 24, 100013. https://doi.org/10.5038/2375-0901.23.1.5
- Lada, S., Chekima, B., Karim, M.R.A., Fabeil, N.F., Ayub, M.S., Amirul, S.M., & Zaki, H.O. (2023). Determining factors related to artificial intelligence (AI) adoption among Malaysia's small and medium-sized businesses. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100144. https://doi.org/10.1016/j.joitmc.2023.100144
- Leal Filho, W., Wall, T., Mucova, S.A.R., Nagy, G.J., Balogun, A.L., & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180, 121662. https://doi.org/10.1016/j.techfore.2022.121662
- Lorestani, A.N., Yazdanpanah, K., & Sabzi, S. (2020). Design of tangerine sorting algorithm based on color using image processing. Journal of Researches in Mechanics of Agricultural Machinery, 9(1), 92-99. (In Persian with English abstract). https://jrmam.sku.ac.ir/article_10135.html
- Masoudi, H. (2016). Robotics; a new field for innovation and entrepreneurship development in the animal husbandry sector. Journal of Studies in Entrepreneurship and Sustainable Agricultural Development, 3(3), 19-38. (In Persian with English abstract). https://doi.org/22069/jead.2017.11635.1204
- Mercurio, D.I., & Hernandez, A.A. (2020). Understanding user acceptance of information system for sweet potato variety and disease classification: an empirical examination with an extended technology acceptance model. In 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA) (pp. 272-277). IEEE. 1109/CSPA48992.2020.9068527
- Michels, M., Bonke, V., & Musshoff, O. (2020). Understanding the adoption of smartphone apps in crop protection. Precision Agriculture, 21, 1209-1226. https://doi.org/10.1007/s11119-020-09715-5
- Michels, M., Fecke, W., Feil, J.H., Musshoff, O., Pigisch, J., & Krone, S. (2020). Smartphone adoption and use in agriculture: empirical evidence from Germany. Precision Agriculture,21, 403-425. https://doi.org/10.1007/s11119-019-09675-5
- Nascimento, A., & Meirelles, F. (2021). An artificial intelligence adoption model for large and small Businesses. Available at SSRN 4194043. http://dx.doi.org/10.2139/ssrn.4194043
- Najafabadiha, M., Mohammad Zamani, D., & Gholami Parashkoohi, M. (2023). Diagnosis of Three Types of Grape Leaf Diseases Based on Image Processing using Butterfly Optimization Algorithm and Support Vector Machine. Agricultural Mechanization and Systems Research, 24(87), 39-54. (In Persian with English abstract) https://doi.org/10.22092/amsr.2024.365272.1482
- NoruziAjabshir, F., Lashgarara, F., Mirdamadi, M., OmidiNajafabadi, M. (2020). Factors influencing adoption of improved wheat varieties and their impacts on food security dimensions: Application of unified theory of acceptance and use of technology (UTAUT2) in East Azarbaijan. Journal of Agricultural Extension and Education Research, 12(4), 1-12. (In Persian with English abstract) https://www.magiran.com/p2100958
- Ostad Hashemi, A., AllafJafari, E., & Rousta, A. (2024). Factors affecting the acceptance of the use of artificial intelligence in the sale of saffron products. Journal of Intelligent Marketing Management, 5(3), 135-155. (In Persian with English abstract).
- Rezaei, M.J., yazdian-dehkordi, M., & Sarram, M.A. (2021). Intelligent identification and classification of nutrient deficiency in pistachio trees using support vector machine. Journal of Researches in Mechanics of Agricultural Machinery, 10(3), 9-19. https://jrmam.sku.ac.ir/article_10024.html
- Ronaghi, M.H., & Forouharfar, A. (2020). A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern country within the context of Unified Theory of Acceptance and Use of Technology model (UTAUT). Technology in Society, 63, 101415. https://doi.org/10.1016/j.techsoc.2020.101415
- Rübcke von Veltheim, F., Theuvsen, L., & Heise, H. (2021). German farmers’ intention to use autonomous field robots: a PLS-analysis. Precision Agriculture, 1-28. https://doi.org/10.1007/s11119-021-09854-3
- Sabzi, S., Abbaspour-Gilande, Y., & Javadikia, H. (2019). Recognition of secale cereal L weed from potato plant using video processing and computational intelligence. Agricultural Mechanization and Systems Research, 20(72), 1-18. (In Persian with English abstract). https://doi.org/22092/erams.2017.106915.1113
- Saedi, S.I. (2023). Determining apple fruit harvest time using color images and deep learning. Journal of Researches in Mechanics of Agricultural Machinery, 12(3), 45-53. (In Persian with English abstract). https://doi.org/22034/jrmam.2023.14078.619
- Sani Heidary, A., Daneshvar Kakhki, M., Shanoushi, N., & Sabouhi Sabouni, M. (2020). Analysis of the effect of microcredit on rural sustainable development components: Application of propensity score regression approach and bootstrap algorithm. Agricultural Economics, 14(1), 47-87. (In Persian with English abstract). https://doi.org/22034/iaes.2020.124925.1765
- Salimi, M., Pourdarbani, R., & Asgarnezhad Nouri, B. (2021). Ranking the effective factors in the technology acceptance model for the actual use of agricultural automation (Case study: Ardebil). Journal of Agricultural Machinery, 11(2), 525-534. (In Persian with English abstract). https://doi.org/10.22067/jam.v11i2.81398
- Salimi, M., Pourdarbani, R., & Nouri, B.A. (2020). Factors affecting the adoption of agricultural automation using Davis’s acceptance model (case study: Ardabil). Acta Technologica Agriculturae, 23(1), 30-39. https://doi.org/10.2478/ata-2020-0006
- Sayahi, F., Divband Hafshejani, L., Tishehzan, P., & Abdolabadi, H. (2024). The combination of dimensionality reduction methods and machine learning algorithms in the optimization of Maroon River water quality prediction. Iranian Journal of Soil and Water Research, 55(9), 1601-1615. (In Persian with English abstract). https://doi.org/22059/ijswr.2024.376275.669708
- Scur, G., da Silva, A.V.D., Mattos, C.A., & Gonçalves, R.F. (2023). Analysis of IoT adoption for vegetable crop cultivation: Multiple case studies. Technological Forecasting and Social Change, 191, 122452. https://doi.org/10.1016/j.techfore.2023.122452
- Shadrin, D., Menshchikov, A., Somov, A., Bornemann, G., Hauslage, J., & Fedorov, M. (2019). Enabling precision agriculture through embedded sensing with artificial intelligence. IEEE Transactions on Instrumentation and Measurement, 69(7), 4103-4113. https://doi.org/1109/TIM.2019.2947125
- Sood, A., Sharma, R.K., & Bhardwaj, A.K. (2022). Artificial intelligence research in agriculture: a review. Online Information Review, 46(6), 1054-1075. https://doi.org/10.1108/OIR-10-2020-0448
- Sood, A., Bhardwaj, A.K., & Sharma, R.K. (2023). Empirical analysis and evaluation of factors influencing adoption of AI-based automation solutions for sustainable agriculture. In International Conference on Agriculture-Centric Computation (pp. 15-27). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43605-5_2
- Thomas, R.J., O'Hare, G., & Coyle, D. (2023). Understanding technology acceptance in smart agriculture: A systematic review of empirical research in crop production. Technological Forecasting and Social Change, 189, 122374. https://doi.org/10.1016/j.techfore.2023.122374
- Tzachor, A., Devare, M., King, B., Avin, S., & Ó hÉigeartaigh, S. (2022). Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nature Machine Intelligence, 4(2), 104-109. https://doi.org/10.1038/s42256-022-00440-4
- Vasileiou, M., Kyriakos, L.S., Kleisiari, C., Kleftodimos, G., Vlontzos, G., Belhouchette, H., & Pardalos, P.M. (2023). Transforming weed management in sustainable agriculture with artificial intelligence: A systematic literature review towards weed identification and deep learning. Crop Protection, 106522. https://doi.org/10.1016/j.cropro.2023.106522
- Venkatesh, V., Thong, J.Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 157-178. https://doi.org/10.2307/41410412
- Valizadeh, N., Haji, L., & Khannejad, S. (2022). Analyzing the drivers of adopting agricultural unmanned aerial vehicles (UAV) in wheat cultivation. Iranian Agricultural Extension and Education Journal,17(2), 251-263. (In Persian with English abstract). https://doi.org/1001.1.20081758.1400.17.2.16.4
- Vuppalapati, C. (2021). Machine learning and artificial intelligence for agricultural economics: Prognostic data analytics to serve small scale farmers worldwide(Vol. 314). Springer Nature. https://search.worldcat.org/title/1273913176
|