- American Association of Cereal Chemists (AACC). (1999). Approved methods of the American Association of Cereal Chemists (Vol. 2). St. Paul, MN: AACC.
- AbdRashid, N.Y., Manan, M.A., Pa'ee, K.F., Saari, N., & Wong, F.W.F. (2022). Evaluation of antioxidant and antibacterial activities of fish protein hydrolysate produced from Malaysian fish sausage (Keropok Lekor) by-products by indigenous Lactobacillus casei Journal of Cleaner Production, 347, 131303. https://doi.org/10.1016/j.jclepro.2022.131303
- Aguilar-Toalá, J., Santiago-López, L., Peres, C., Peres, C., Garcia, H., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2017). Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum Journal of Dairy Science, 100(1), 65-75. https://doi.org/10.3168/jds.2016-11846
- Agyei, D., & Danquah, M.K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances, 29(3), 272-277. https://doi.org/10.1016/j.biotechadv.2011.01.001
- Bhat, Z., Kumar, S., & Bhat, H.F. (2015). Bioactive peptides of animal origin: a review. Journal of Food Science and Technology, 52, 5377-5392. https://doi.org/10.1007/s13197-015-1731-5
- Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114(4), 1198-1205. https://doi.org/10.1016/j.foodchem.2008.10.075
- Chatterjee, R., Dey, T.K., Ghosh, M., & Dhar, P. (2015). Enzymatic modification of sesame seed protein, sourced from waste resource for nutraceutical application. Food and Bioproducts Processing, 94, 70-81. https://doi.org/10.1016/j.fbp.2015.01.007
- Cheng, G., Hao, H., Xie, S., Wang, X., Dai, M., Huang, L., & Yuan, Z. (2014). Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Microbiology, 5, 217. https://doi.org/10.3389/fmicb.2014.00217
- Chokshi, A., Sifri, Z., Cennimo, D., & Horng, H. (2019). Global contributors to antibiotic resistance. Journal of Global Infectious Diseases, 11(1), 36. https://doi.org/4103/jgid.jgid_110_18
- Huang, Y.H., Lai, Y.J., & Chou, C.C. (2011). Fermentation temperature affects the antioxidant activity of the enzyme-ripened sufu, an oriental traditional fermented product of soybean. Journal of Bioscience and Bioengineering, 112(1), 49-53. https://doi.org/10.1016/j.jbiosc.2011.03.008
- Hur, S.J., Lee, S.Y., Kim, Y.C., Choi, I., & Kim, G.B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346-356. https://doi.org/10.1016/j.foodchem.2014.03.112
- Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R.B.S.-B., Mehiri, M., & Nasri, M. (2014). Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis Process Biochemistry, 49(6), 963-972. https://doi.org/10.1016/j.procbio.2014.03.004
- Kaur, M., & Singh, N. (2007). Characterization of protein isolates from different Indian chickpea (Cicer arietinum) cultivars. Food Chemistry, 102(1), 366-374. https://doi.org/10.1016/j.foodchem.2006.05.029
- Lee, S., & Nguyen, M.T. (2015). Recent advances of vaccine adjuvants for infectious diseases. Immune Network, 15(2), 51-57.https://doi.org/4110/in.2015.15.2.51
- Lim, Y.H., Foo, H.L., Loh, T.C., Mohamad, R., & Abdullah, N. (2019). Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. Journal of Animal Science and Biotechnology, 10, 1-13.
- Li, W., & Wang, T. (2021). Effect of solid-state fermentation with Bacillus subtilis lwo on the proteolysis and the antioxidative properties of chickpeas. International Journal of Food Microbiology, 338, 108988. https://doi.org/10.1016/j.ijfoodmicro.2020.108988
- Liu, W., Cheng, G., Liu, H., & Kong, Y. (2015). Purification and identification of a novel angiotensin I-converting enzyme inhibitory peptide from sesame meal. International Journal of Peptide Research and Therapeutics, 21, 433-442.
- Lopez-Romero, J.C., González-Ríos, H., Borges, A., & Simões, M. (2015). Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/795435
- Moayedi, A., Hashemi, M., & Safari, M. (2016). Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: optimization of fermentation conditions. Journal of Food Science and Technology, 53, 390-400. https://doi.org/10.1007/s13197-015-1965-2
- Morone, P., Falcone, P.M., Imbert, E., Morone, M., & Morone, A. (2016). Tackling food waste through a sharing economy approach: an experimental analysis.
- Nweke, F.N., Ubi, B.E., & Kunert, K.J. (2011). Determination of proximate composition and amino acid profile of Nigerian sesame (Sesamum indicum) cultivars. Nigerian Journal of Biotechnology, 23.
- Onsaard, E., Pomsamud, P., & Audtum, P. (2010). Functional properties of sesame protein concentrates from sesame meal. Asian Journal of Food and Agro-Industry, 3(4), 420-431.
- Ortiz-Martinez, M., Winkler, R., & García-Lara, S. (2014). Preventive and therapeutic potential of peptides from cereals against cancer. Journal of Proteomics, 111, 165-183. https://doi.org/10.1016/j.jprot.2014.03.044
- Pane, K., Durante, L., Crescenzi, O., Cafaro, V., Pizzo, E., Varcamonti, M., & Notomista, E. (2017). Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: Application to the detection of “cryptic” antimicrobial peptides. Journal of Theoretical Biology, 419, 254-265. https://doi.org/10.1016/j.jtbi.2017.02.012
- Pant, G., Prakash, A., Pavani, J., Bera, S., Deviram, G., Kumar, A., & Prasuna, R.G. (2015). Production, optimization and partial purification of protease from Bacillus subtilis. Journal of Taibah University for Science, 9(1), 50-55. https://doi.org/10.1016/j.jtusci.2014.04.010
- Pokora, M., Eckert, E., Zambrowicz, A., Bobak, Ł., Szołtysik, M., Dąbrowska, A., & Trziszka, T. (2013). Biological and functional properties of proteolytic enzyme‐modified egg protein by‐ Food Science & Nutrition, 1(2), 184-195. https://doi.org/10.1002/fsn3.27
- Taniguchi, M., Ochiai, A., Kondo, H., Fukuda, S., Ishiyama, Y., Saitoh, E., & Tanaka, T. (2016). Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system. Journal of Bioscience and Bioengineering, 121(5), 591-598. https://doi.org/10.1016/j.jbiosc.2015.09.002
- Trang, H., & Pasuwan, P. (2018). Screening antimicrobial activity against pathogens from protein hydrolysate of rice bran and Nile Tilapia by-products. International Food Research Journal, 25(5), 2157-2163.
- Verma, A.K., Chatli, M.K., Kumar, P., & Mehta, N. (2017). Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. Indian Journal Animal Science, 87, 711-717.
- Wang, B., Li, L., Chi, C.-F., Ma, J.-H., Luo, H.-Y., & Xu, Y.-f. (2013). Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry, 138(2-3), 1713-1719. https://doi.org/10.1016/j.foodchem.2012.12.002
- Wouters, A.G., Rombouts, I., Fierens, E., Brijs, K., & Delcour, J.A. (2016). Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Comprehensive Reviews in Food Science and Food Safety, 15(4), 786-800.
- Yamauchi, K., Samanya, M., Seki, K., Ijiri, N., & Thongwittaya, N. (2006). Influence of dietary sesame meal level on histological alterations of the intestinal mucosa and growth performance of chickens. Journal of Applied Poultry Research, 15(2), 266-273. https://doi.org/10.1093/japr/15.2.266
- Zhang, Y., Liu, J., Lu, X., Zhang, H., Wang, L., Guo, X., & Qian, H. (2014). Isolation and identification of an antioxidant peptide prepared from fermented peanut meal using Bacillus subtilis International Journal of Food Properties, 17(6), 1237-1253. https://doi.org/10.1080/10942912.2012.675605
Zhu, Y., Fan, J., Cheng, Y., & Li, L. (2008). Improvement of the antioxidant activity of Chinese traditional fermented okara (Meitauza) using Bacillus subtilis B2. Food Control, 19(7), 654-661. https://doi.org/10.1016/j.foodcont.2007.07.009
|