1- Bao, S., Hua, C., Shen, L., & Yu, H. (2020). New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 62(1), 118-131. https://doi.org/10.1111/jipb.12892
2- Brunner, A.M., Rottmann, W.H., Sheppard, L.A., Krutovskii, K., DiFazio, S.P., Leonardi, S.L., & Straus, S.H. (2000). Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Molecular Biology, 44, 619–634. https://link.springer.com/article/10.1023/A:1026550205851.
3- Chen, M.K., Lin, I.C., & Yang, C.H. (2008). Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant and Cell Physiology, 49(5), 704-717. https://doi.org/10.1093/pcp/pcn046
4- Chuck, G., Meeley, R., & Hake, S. (2008). Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 135(18), 3013-3019. https://doi.org/10.1242/dev.024273
5- Deng, W., Ying, H., Helliwell, C. A., Taylor, J.M., Peacock, W.J., & Dennis, E.S. (2011). FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 108, 6680–6685. https://doi.org/10.1073/pnas.1103175108
6- Ding, L., Wang, Y., & Yu, H. (2013). Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium chao parya smile. Plant Cell Physiology, 54, 595–608. https://doi.org/10.1093/pcp/pct026.
7- Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., & Kater, M.M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiology, 135(4), 2207-2219. https://doi.org/10.1104/pp.104.045039.
8-Gocal, G.F., King, R.W., Blundell, C.A., Schwartz, O.M., Andersen, C.H., & Weigel, D. (2001) Evolution of floral meristem identity genes: Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of arabidopsis . Plant Physiology, 125, 1788–1801. https://doi.org/10.1104/pp.125.4.1788.
9-Ghaemizadeh, F., Dashti, F.A.R.S.H.A.D., & Shafeinia, A.R. (2018). Expression analysis of gaLFY and AsFT during reproductive development in different organs of some Iranian garlic ( Allium sativum L.) clones. Iranian Journal of Horticultural Science, 49(1), 269-278. (In Persian with English abstract). https://www.cabidigitallibrary.org/doi/full/10.5555/20203074943
10-Ghaemizadeh, F., Dashti, F., & Shafeinia, A. (2019). Expression pattern of ABCDE model genes in floral organs of bolting garlic clone. Gene Expression Patterns, 34, 119059. https://doi.org/10.1016/j.gep.2019.119059.
11-Ghaemizadeh, F., Dashti, F., & Mosavi, A. (2024). Expression pattern and structural analysis of AGAMOUS- LIKE 6 ( AGL6) in Iranian garlic clones ( Allium sativum L.). Agricultural Biotechnology Journal, 16(1), 155-174. (in Persian with English abstract). https://www.sid.ir/fileserver/jf/961-279249-fa-1129535.pdf
12-Greenup, A.G., Sasani, S., Oliver, S.N., Talbot, M.J., Dennis, E.S., Hemming, M.N., & Trevaskis, B. (2010). ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiology, 153(3), 1062-1073. https://doi.org/10.1104/pp.109.152488.
13-Hepworth, S.R. Valverde, F., Ravenscroft, D., Mouradov, A., & Coupland, G. (2002) Antagonistic regulation of flowering‐time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The European Molecular Biology Organization Journal, 21(16), 4327-4337. https://doi.org/10.1093/emboj/cdf432
14-Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., & Dennis, E.S. (2006). The arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high‐molecular‐weight protein complex. The Plant Journal, 46(2), 183-192. https://doi.org/10.1111/j.1365-313X.2006.02686.x
15-Hantari, D., Purnomo, D., & Triharyanto, E. (2020). The effects of fertilizer composition and gibberellin on flowering and true shallot seed formation of three shallot varieties at the highlands. Conference Series: Earth and Environmental Science, 423(1), 012032. https://doi.org/10.1088/1755-1315/423/1/012032.
16-Irish, V.F., & Litt, A.T. (2005). Flower development and evolution: Gene duplication, diversification and redeployment. Current Opinion in Genetics and Development, 15(4), 454-460. https://doi.org/10.1016/j.gde.2005.06.001.
17-Kamenetsky, R., Faigenboim, A., Mayer, E.S., Michael, T.B., Gershberg, C., Kimhi, S., & Sherman, A. (2015). Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic ( Allium sativum L.). Biomed Centeral Genomics, 16(1), 12. https://doi.org/10.1186/s12864-015-1212-2.
20-Lee, R., Baldwin, S., Kenel, F., McCallum, J., & Macknight, R. (2013). FLOWERING LOCUS T genes control onion bulb formation and flowering. Nature Communications, 4(1), 1-9. https://www.nature.com/articles/ncomms3884.
21-Pan, R., Xu, L., Wei, Q., Wu, C., Tang, W., Oelmüller, R., & Zhang, W. (2017). Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways. Plos One, 12(12), e0189791. https://doi.org/10.1371/journal.pone.0189791.
22-Liu, X.R., Pan, T., Liang, W.Q., Gao, L., Wang, X.J., Li, H.Q., & Liang, S. (2016) Overexpression of an orchid (Dendrobium nobile) SOC1/TM3-Like ortholog , DnAGL19, in Arabidopsis regulates HOS1-FT expression. Frontiers in Plant Science, 7(99), 1-12. https://doi.org/10.3389/fpls.2016.00099.
23-Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using Real-Time quantitative PCR and the 2− ΔΔCT methods . Methods, 25, 402-408. https://doi.org/10.1006/meth.2001.1262.
24-Murai, K., Miyamae, M., Kato, H., Takumi, S., & Ogihara, Y. (2003). WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant and Cell Physiology, 44(12), 1255-1265. https://doi.org/10.1093/pcp/pcg171.
25-Medard, N.G., & Yanofsky, M.F. (2001) . Function and evolution of the plant MADS-box gene family. Nature Reviews Genetics, 2(3), 186-195. https://doi.org/10.1038/35056041.
26-Nakamura, T., Song, I., Fukuda, T., Yokoyama, J., Maki, M., & Ochiai, T. (2005) Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family . Journal of Plant Research, 118, 229–234. https://link.springer.com/article/10.1007/s10265-005-0215-5.
27-Ohto, M.A., Fischer, R.L., Goldberg, R.B., Nakamura, K., & Harada, J.J. (2005). Control of seed mass by APETALA2. Proceedings of the National Academy of Sciences, 102, 3123–3128. https://doi.org/10.1073/pnas.040985810
28-Papaefthimiou, D., Kapazoglou, A., & Tsaftaris, A.S. (2012). Cloning and characterization of SOC1 homologs in barley (Hordeum vulgare) and their expression during seed development and in response to vernalization. Physiologia Plantarum, 146(1), 71-85. https://doi.org/10.1111/j.1399-3054.2012.01610.x
29-Pfaffl, M.W., Horgan, G.W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), 36-36. https://doi.org/10.1093/nar/30.9.e36.
30-Rotem, N., Einat, Sh., Yuval, P., Fouad, A., Orit, E., Haim. D., Rabinowitch, I., & Rina, K. (2007). Reproductive development and phenotypic differences ingarlic are associated with expression and splicing of LEAFY homologue gaLFY. Journal of Experimental Botany, 58(5), 1133–1141. https://doi.org/ 10.1093/jxb/erl272 .
32-Ruelens, P., De Maagd, R.A., Proost, S., Theißen, G., Geuten, K., & Kaufmann, K. (2013). FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nature Communications, 4(1), 2280. https://doi.org/10.1038/ncomms3280
33-Ryu, C.H., Lee, S., Cho, L.H., Kim, S.L., Lee, Y.S., & Choi, S.C. (2009). OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environment, 32, 1412–1427. https://doi.org/10.1111/j.1365-3040.2009.02008.x
34- Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Kröber, S., & Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development, 20(7), 898-912. https://doi.org/10.1101/gad.373506
37-Sharma, N., Ruelens, P., D'hauw, M., Maggen, T., Dochy, N., Torfs, S., & Geuten, K. (2017). A flowering locus C homolog is a vernalization-regulated repressor in Brachypodium and is cold regulated in wheat. Plant Physiology, 173(2), 1301-1315. https://doi.org/10.1104/pp.16.01161
38- Sharma, N., Geuten, K., Giri, B.S., & Varma, A. (2020). The molecular mechanism of vernalization in Arabidopsis and cereals: Role of Flowering Locus C and its homologs. Physiologia Plantarum, 170(3), 373-383. https://doi.org/10.1111/ppl.13163
39- Schilling, S., Kennedy, A., Pan, S., Jermiin, L.S., & Melzer, R. (2020). Genome‐wide analysis of MIKC‐type MADS‐box genes in wheat: Pervasive duplications, functional conservation and putative neo functionalization. New Phycologist Foundation, 225(1), 511-529. https://doi.org/10.1111/nph.16122
42- Winfield, M.O., Lu, C., Wilson, I.D., Coghill, J.A., & Edwards, K. (2009). Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biology, 9, 55. https://doi.org/10.1186/1471-2229-9-55
43- Yant, L., Mathieu, J., Dinh, T.T., Ott, F., Lanz, C., Wollmann, H., Chen, X., & Schmid, M. (2010). Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. The Plant Cell, 22(7), 2156-2170. https://doi.org/10.1105/tpc.110.075606.
44- Yalovsky, S., Rodríguez-Concepción, M., Bracha, K., Toledo-Ortiz, G., & Gruissem, W. (2000). Prenylation of the floral transcription factor APETALA1 modulates its function. The Plant Cell, 12(8), 1257-1266. https://doi.org/10.1105/tpc.12.8.1257
45-Yu, H., & Goh, C.J. (2000). Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiology, 123, 1325–1336. https://doi.org/10.1104/pp.123.4.1325
46-Yan, X., Wang, L.J., Zhao, Y.Q., & Jia, G.X. (2022). Expression patterns of key genes in the photoperiod and vernalization flowering pathways in Lilium longiflorum with different bulb sizes. International Journal of Molecular Sciences, 23(15), 8341. https://doi.org/10.3390/ijms23158341
47-Yant, L., Mathieu, J., Dinh, T.T., Ott, F., Lanz, C., Wollmann, H., Chen, X., & Schmid, M. (2010). Orchestration of the floral transition and floral development in Arabidopsis by the functional transcription factor APETALA2. The Plant Cell, 22(7), 2156-2170. https://doi.org/10.1105/tpc.110.075606.
48-Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., & Ahn, J.H. (2005) CONSTANTS activates SUPPRESSORS of OCEREXPRESSION of CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiology, 139(2), 770-778. https://doi.org/10.1104/pp.105.066928
|