
Journal of Computer and Knowledge Engineering, Vol. , No.. 2024.

DOI:

An Efficient Resource Allocation Algorithm for Task

Offloading in the Internet of Vehicles

Ahmad Salehi1 and Sadoon Azizi1, *

Abstract—The Internet of Vehicles (IoV) represents a

transformative paradigm in Intelligent Transportation Systems

(ITS), enabling real-time communication between vehicles,

infrastructure, and cloud platforms to improve traffic

management, safety, and efficiency. However, the resource

limitations in vehicles pose significant challenges for delay-

sensitive applications such as autonomous driving and automated

navigation. Vehicular Edge Computing (VEC) offers a promising

solution by offloading tasks to edge servers near vehicles, reducing

transmission delays and enhancing computational efficiency. In

this paper, we address the complex task offloading and resource

allocation problem in VEC environments. We model this challenge

as an Integer Linear Programming (ILP) problem, aiming to

maximize the system’s overall profit. To mitigate the

computational complexity of solving the ILP problem, we propose

an efficient heuristic algorithm. This approach considers various

task types, accounting for the diversity and specific requirements

of each. The algorithm optimizes CPU resource allocation based

on task generation rates, average task sizes, and a calculated

weight coefficient for each task type. Simulation results

demonstrate that the proposed algorithm reduces memory costs

and penalties from rejected tasks, while improving overall system

profit. In particular, it outperforms existing algorithms by an

average of 18.26% in terms of profit, demonstrating its

effectiveness in practical VEC applications.

Index Terms—Internet of vehicle, vehicular edge computing,

task offloading, resource allocation, profit maximization.

1. INTRODUCTION

s modern automotive industries with sensing and wireless

communication technologies rapidly advance, vehicles are

becoming smarter, giving rise to the Internet of Vehicles (IoVs)

as a new paradigm in Intelligent Transportation Systems (ITS)

[1]. The IoVs combines vehicular ad hoc networks (VANETs)

with the Internet of Things (IoT) to improve transportation

efficiency and vehicle safety [2]. The rapid development of

vehicular networks has enabled numerous delay-sensitive

applications, including autonomous driving, automated

navigation, vehicular augmented reality, and intelligent object

recognition, each requiring substantial data processing and

computational resources. These advancements are pushing

current infrastructures to their limits, as they demand stringent

Quality of Service (QoS) while processing large volumes of

sensor data and communicating with the network [3]. However,

the limited computational resources available within vehicles

often prevent them from meeting the low-latency QoS

 Manuscript received, Revised, Accepted.
1 Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Iran, Emails: {ahmad.salehi, s.azizi}@uok.ac.ir.

* Corresponding Author.

requirements essential for these applications, creating a

bottleneck in the advancement of vehicular networks.

To address these challenges, mobile edge computing (MEC)

is considered a promising paradigm [4]. MEC enhances service

efficiency for vehicles and reduces transmission delays between

vehicles and cloud servers by bringing cloud computing

resources closer to the network edge. Additionally, Vehicular

Edge Computing (VEC) offers an effective solution to this

problem [5]. In VEC, computational and storage resources of

cloud servers are deployed at the edge of the radio access

network, such as roadside units (RSUs), located near vehicles.

This proximity enables service with high QoS and provides a

cost-efficient, low-latency solution [6]. VEC offloads vehicle

tasks to edge servers located on or near RSUs or to other

vehicles with surplus computing resources. Compared to

traditional cloud-based systems, edge-based solutions offer

significantly lower communication latency by reducing the

distance over which tasks are transmitted to computing

resources, enhancing responsiveness for latency-sensitive

applications [7], [8]. Vehicle applications can greatly benefit

from the advantages of VEC, leading to a safer and more

efficient transportation system [9]. However, optimizing task

offloading and resource allocation in VEC remains a

fundamental challenge, as these systems must handle

heterogeneous user demands, each with unique resource

requirements, all while utilizing shared resources. Efficient

resource allocation strategies are needed to maximize QoS

while minimizing operational costs.

In this paper, we propose a mathematical model for the task

offloading and resource allocation problem in heterogeneous

VEC systems, formulated as an Integer Linear Programming

(ILP) problem. The objective is to maximize the system's total

profit while adhering to QoS constraints. We introduce a

heuristic weighted algorithm that takes into account the number

of tasks in the system and their computational demands. Using

this information, the algorithm calculates a weight for each task

type and allocates available resources across the MEC servers

accordingly. Extensive experiments were conducted across

various scenarios to compare the performance of our proposed

algorithm against existing algorithms using multiple

performance metrics. The results demonstrate that our

algorithm significantly improves the system’s total profit.

A

https://orcid.org/0000-0002-5788-0438

Our main contributions are summarized as follows:

 We present a mathematical framework for addressing

task offloading and resource allocation in

heterogeneous VEC systems, formulated as an Integer

Linear Programming problem, with the goal of

optimizing system-wide profit while meeting QoS

requirements.

 We propose an innovative heuristic weighted

algorithm that dynamically calculates task weights

based on both the number of tasks present in the

system and their specific computational demands. This

algorithm effectively allocates available resources

across MEC servers, optimizing system performance

by balancing workload and enhancing resource

utilization.

 We perform comprehensive experiments across

different scenarios to evaluate the performance of the

proposed algorithm. These experiments demonstrate

that our algorithm consistently outperforms existing

approaches across multiple performance metrics,

leading to substantial improvements in total system

profit, resource efficiency, and overall service quality.

The rest of this paper is organized as follows: In Section 2,

we review the related works. Section 3 presents the proposed

system model and formulates the optimization problem for task

offloading and resource allocation. In Section 4, we introduce

our proposed method, a weighted algorithm for task offloading

and resource allocation. Section 5 provides an evaluation of our

algorithm and simulation results. Finally, Section 6 concludes

the paper and discusses future work.

2. RELATED WORK

In recent years, MEC has gained significant attention for its

role in computation offloading, leading to the development of

various optimization strategies for offloading [10]. Wang et al.

[1] introduce a fuzzy logic-based dynamic pricing strategy to

optimize offloading decisions and model vehicle interactions as

a two-stage Stackelberg game, considering social factors such

as reputation and task satisfaction. Wu et al. [11] model the

interactions between vehicles and MEC servers using a Markov

decision process and optimize decisions using the twin delayed

deep deterministic policy gradient (TD3) algorithm. Load

balancing is enhanced through edge collaboration and a server

selection algorithm based on TOPSIS. Cheng et al. [10] propose

the CO-MATCH algorithm, which includes a dynamic

programming-based service caching (DPSC) algorithm and a

Many-to-One Matching Game (MOMG) algorithm. These

components encourage edge services and vehicles to cache

tasks and optimize task offloading.

Zhang et al. [12] propose enhancing VECNs with fiber-

wireless (FiWi) technology and introduce a software-defined

networking (SDN) based load-balancing task offloading

scheme. This approach aims to minimize processing delays by

efficiently managing computation resources. Fan et al. [7]

develop an algorithm using Generalized Benders

Decomposition (GBD) and Reformulation Linearization (RL)

methods for optimal solutions, as well as a heuristic algorithm

for sub-optimal solutions with lower computational

complexity. They aim to minimize the total task processing

delay by optimizing task scheduling, channel allocation, and

computing resource distribution between vehicles and RSUs.

Zhao et al. [13] model the joint optimization problem of task

offloading and resource allocation as a Markov decision

process, taking into account communication, computing, and

system costs. They introduce a multi-agent deep deterministic

policy gradient (MADDPG) algorithm to address convergence

issues in dynamic environments and incorporate federated

learning to manage non-IID data and ensure privacy protection.

Du et al. [14] propose a comprehensive IoV architecture and

formulate a joint optimization problem to minimize the system

function value. They employ a Simulated Spring System

Algorithm (SSSA), which decouples the problem into two sub-

problems: allocating computing resources based on KKT

conditions and optimizing the task offloading strategy using the

simulated spring system. These sub-problems iteratively update

each other until a solution is achieved. Liu et al. [15] address

the challenge of efficient task execution in Vehicular Edge

Computing Networks (VECNs) by accounting for the variations

in channel and access times due to high vehicle mobility. They

propose a multi-path dynamic offloading scheme (MPDOS),

designed to minimize the maximum task completion time for

vehicles handling serial tasks. MPDOS includes three key

components: optimizing communication links to boost

processing capability, employing a multi-knapsack algorithm

for allocating tasks to RSUs, and implementing a load-

balancing scheme to ensure even distribution of computing

tasks.

Huang et al. [16] propose a multi-objective optimization

model for dynamic, heterogeneous VEC networks, formulated

as a multi-objective Markov Decision Process (MOMDP).

They introduce EMOTO, a novel multi-objective reinforcement

learning algorithm designed to minimize task execution delay

and vehicle energy consumption while maximizing service

provider revenue. EMOTO integrates a preference priority

sampling module and a model-augmented environment

estimator to address the challenges of the highly dynamic VEC

environment, enhancing decision-making accuracy and

efficiency. Wan et al. [17] propose a framework where idle

vehicles (IVs) collaborate with busy vehicles (BVs) as edge

nodes to reduce task computation latency. They model the

matching and resource allocation between BVs and IVs to

minimize latency and consider energy consumption,

introducing a low-complexity solution for one-to-one matching

and an improved biogeography-based optimization (IBBO)

algorithm for one-to-many matching. Mao et al. [18] address

security challenges in vehicular ad hoc networks (VANETs) by

proposing a task offloading mechanism for the IoV that relies

on trusted RSUs. They introduce a novel infrastructure trust

management model incorporating social factors to enhance

RSU security. This mechanism models vehicle task offloading

with a focus on RSU reliability, aiming to ensure secure and

efficient task processing even under malicious attacks.

Azizi et al. [19] introduce a Mixed-Integer Nonlinear

Journal of Computer and Knowledge Engineering, Vol. , No.. 2024. 3

Programming (MINLP) model for task offloading, aimed at

maximizing the number of tasks meeting their deadlines while

minimizing the overall energy consumption of mobile devices.

They propose DECO, a heuristic algorithm designed to

optimize the trade-off between task deadlines and energy

consumption in IoT devices. DECO jointly considers the

deadline requirements of tasks and the energy consumed by

devices. Additionally, it accounts for task prioritization and the

heterogeneous capabilities of edge cloud servers (ECSs).

Yeganeh et al. [20] model task offloading and scheduling in

MEC networks as an optimization problem, aiming to minimize

execution time and energy consumption. They introduce a

hybrid algorithm, E-AEO-AOA, which combines Artificial

Ecosystem-based Optimization (AEO) and Arithmetic

Optimization Algorithm (AOA). The E-AEO-AOA

incorporates a modified Q-learning strategy for hybridization

and employs chaos theory to enhance local search capabilities.

While numerous studies have explored resource allocation

and task offloading in both MEC and VEC, this work introduces

several novel contributions that distinguish it from prior

research. First, this study considers a dynamic workload

environment, reflecting real-world conditions where task

demands fluctuate over time. This added variability increases

the complexity of the resource management problem, requiring

adaptive strategies to accommodate changing resource

requirements effectively. Second, we propose a low-

complexity, highly efficient algorithm specifically designed to

optimize resource allocation under these fluctuating conditions,

ensuring that the computational load is distributed effectively

across the available resources. This approach minimizes

computational overhead while maintaining responsiveness, an

essential factor in edge computing environments. Third, our

model incorporates the distinct QoS requirements associated

with varying task types. By introducing a specialized objective

function, we ensure that resource allocation not only maximizes

system performance but also addresses the diverse QoS needs

of each task type, which is critical in scenarios where task

prioritization and latency sensitivity differ. Through this multi-

faceted approach, our work provides a robust framework that

balances system performance, resource utilization, and QoS

compliance, advancing the state of resource management

methodologies in MEC and VEC contexts.

3. SYSTEM MODEL

 In this section, we provide an overview of our system model

and architecture, followed by a detailed discussion on the

mathematically modeled problem formulation.

3.1. System Architecture

Fig. 1 illustrates the VEC system model, designed for a two-

lane straight road with equally spaced roadside units positioned

along the route. Each RSU provides wireless communication

coverage, denoted by L. All RSUs are directly connected to a

base station which houses a MEC server. Each vehicle is

capable of generating multiple tasks, which are categorized into

different types. Each task type possesses unique attributes that

distinguish it from other task types. Task i generated by a

vehicle is characterized by three primary attributes, denoted as

𝑇𝑖 = {𝑇𝑖
𝑡𝑦𝑝𝑒

, 𝑇𝑖
𝑠𝑖𝑧𝑒 , 𝑇𝑖

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒}, where 𝑇𝑖
𝑡𝑦𝑝𝑒

 represents the

specific type of the task, 𝑇𝑖
𝑠𝑖𝑧𝑒 denotes the computational effort

required to complete the task, measured in millions of

instructions, and 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 indicates the maximum allowable

time before the task is rejected, measured in milliseconds for

precision.

Fig. 1. System architecture

All tasks generated by vehicles are offloaded to the nearest

RSU. Upon receiving these tasks, the RSU forwards them to the

base station, where the computing process is initiated in the

MEC server. Fig. 2 illustrates the architecture of the MEC

server, which includes three distinct First-In-First-Out (FIFO)

queues at the current time (t) for different task types, with each

queue linked to a corresponding instance for computation. Each

instance is characterized by three main attributes, denoted as

𝐶𝐼𝑗 = {𝐶𝐼𝑗
𝑠𝑡𝑎𝑡𝑒 , 𝐶𝐼𝑗

𝑐𝑜𝑟𝑒𝑠 , 𝐶𝐼𝑗
𝑚𝑒𝑚}, where 𝐶𝐼𝑗

𝑠𝑡𝑎𝑡𝑒 represents the

state of the instance (either on or off), 𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 represents the

number of CPU cores assigned to the instance, and 𝐶𝐼𝑗
𝑚𝑒𝑚

indicates the memory usage of the instance, measured in

megabytes. Each MEC server contains a CPU pool, comprising

all the CPU cores available for allocation among the active

instances.

Fig. 2. MEC server model

Each task type has its own QoS class and constraints to

ensure efficient handling and prioritization, enabling flexible

resource management by assigning income and penalties based

on task completion time to encourage timely task processing

and effective system resource management. The details for each

class are as follows:

• Task Type 1: This class has a single deadline constraint. If

the instance’s response time exceeds this standard deadline, the

task is rejected, and the system incurs a penalty due to the unmet

deadline.

• Task Type 2: The QoS class for Task Type 2 includes two

thresholds: the standard deadline and an extended deadline,

determined by a multiplier, denoted by θ, of the original

deadline. If the task is completed by the standard deadline, full

on-time income is earned. Completion after the standard

deadline but within the extended θ-adjusted deadline yields

reduced income, denoted by β. Exceeding this extended

deadline results in task rejection and a penalty.

• Task Type 3: Task Type 3 has three deadline-based QoS

thresholds: the standard deadline and two extended deadlines,

denoted by Δ1 and Δ2. Completion within the standard deadline

yields full on-time income. If completed after the standard

deadline but before Δ1, a partial income, denoted by Φ1, is

awarded. Completion between Δ1 and Δ2 yields a further

reduced income, denoted by Φ2. Exceeding Δ2 results in task

rejection and a penalty.

3.2. Problem Formulation

In this section, we formulate the task offloading process as

an Integer Linear Programming optimization problem. The

objective is to maximize the total profit while satisfying

constraints such as task deadlines, computational costs, and

QoS. TABLE 1 presents symbols and notations used in our

problem formulation. We model the number of tasks generated

for each type within a time slot using a Poisson distribution,

where each task type has a unique generation rate, denoted by

λm for task type m. Upon the task's entry into the MEC server,

the server calculates the response time for the task. The

response time for task i on container j is expressed as:

𝑇𝑖,𝑗
𝑟𝑒𝑠 = 𝑄𝑗

𝑤𝑎𝑖𝑡 +
𝑇𝑖

𝑠𝑖𝑧𝑒

(𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑃)

 (1)

where 𝐶𝑃 represents the CPU power of each core, measured in

million instructions per second (MIPS), and is assumed to be

homogeneous across the system. Since a FIFO system has been

implemented for each queue, 𝑄𝑗
𝑤𝑎𝑖𝑡 represents the waiting time

for task execution in the queue of container j and is expressed

as:

𝑄𝑗
𝑤𝑎𝑖𝑡 =

∑ 𝑇𝑘
𝑠𝑖𝑧𝑒𝑁𝑗

𝑘=1

(𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑃)

 (2)

where 𝑁𝑗 represents the total number of tasks waiting to be

executed in the queue of container j before task 𝑖.

TABLE 1

Key notations used in the problem formulation

Symbol Description Unit

λm Task generation rate for task type m -

𝑇𝑖
𝑠𝑖𝑧𝑒 Size of task i [MI]

𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 Deadline for task i [ms]

𝑂𝑇𝑚 Number of tasks executed before the original deadline for task type 𝑚 -

𝑇𝑇𝑚
𝑜𝑡𝑝

 Income earned for completing a task on time for task type m [$]

𝑇𝐻 Number of tasks executed within the time frame θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 but after the original deadline -

β Income earned for completing tasks within the time frame θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$]

𝐷1𝑇 Number of tasks completed between the original deadline and 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 -

Φ1 Profit for completing a task during the time frame 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$]

𝐷2𝑇 Number of tasks executed between 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and 𝛥2 × 𝑇𝑖

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 -

Φ2 Profit for completing tasks within the time frame 𝛥2 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$]

𝑅𝐽𝑇𝑚 Number of rejected tasks for task type m -

𝑇𝑇𝑚
𝑝𝑒𝑛

 Penalty amount for rejected tasks for task type m [$]

𝑇𝑇𝑚
𝑚𝑒𝑚 Memory usage for task type m [$]

𝑇𝑇𝑚
𝑚𝑐 Cost per 100 MB of memory for task type m [$]

𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 Number of CPU cores allocated to container j -

𝐶𝑃 CPU power of each core [MIPS]

𝑄𝑗
𝑤𝑎𝑖𝑡 Waiting time for task execution in the queue of container [ms]

𝑁𝑗 Total number of tasks waiting to be executed in the queue of container j before task 𝑖 -

𝐶𝐼𝑗
𝑖𝑛𝑐 Total income earned by container j [$]

𝐶𝐼𝑗
𝑝𝑒𝑛

 Total penalty incurred by container j for rejected tasks [$]

𝑅𝑇𝑗
𝑖𝑑𝑙𝑒 Idle runtime for container j [ms]

𝑅𝑇𝑗
𝑎𝑐𝑡𝑖𝑣𝑒 Active runtime for container j [ms]

𝐶𝐼𝑗
𝑚𝑒𝑚 Memory usage of container j [MB]

𝐶𝐼𝑗
𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 Total memory usage for container j [MB]

𝐶𝐼𝑗
𝑚𝑒𝑚𝑐𝑜𝑠𝑡 Total memory cost for container j [$]

𝑃𝑅𝑂𝐹𝑗 Profit of container j [$]

𝑇𝑖,𝑗
𝑟𝑒𝑠 Response time for task i on container j [ms]

𝐼𝑁𝑡𝑜𝑡𝑎𝑙 Total income earned across all containers [$]

𝑃𝐸𝑁𝑡𝑜𝑡𝑎𝑙 Total penalty incurred across all containers [$]

𝑃𝑅𝑂𝐹𝑡𝑜𝑡𝑎𝑙 Total profit of the system [$]

Journal of Computer and Knowledge Engineering, Vol. , No.. 2024. 5

Once the response time is calculated, the system determines

whether the server can execute task i before its deadline,

denoted as 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒. Based on the task type and the QoS class,

the system decides whether to reject the task or add it to the

instance's queue for execution. If the task is accepted, the

associated income is added to the total income of the container,

denoted by 𝐶𝐼𝑗
𝑖𝑛𝑐. Conversely, if the task is rejected, the penalty

incurred by the system is added to the total penalty of the

container, denoted by 𝐶𝐼𝑗
𝑝𝑒𝑛

. Therefore, the income for each

task type can be expressed as:

𝐶𝐼1
𝑖𝑛𝑐 = 𝑂𝑇1 × 𝑇𝑇1

𝑜𝑡𝑝
 (3)

and

𝐶𝐼2
𝑖𝑛𝑐 = (𝑂𝑇2 × 𝑇𝑇2

𝑜𝑡𝑝
) + (𝑇𝐻 × β) (4)

and

𝐶𝐼3
𝑖𝑛𝑐 = (𝑂𝑇3 × 𝑇𝑇3

𝑜𝑡𝑝
) + (𝐷1𝑇 × Φ1) + (𝐷2𝑇 × Φ2) (5)

where, for all task types, 𝑂𝑇𝑚 represents the number of tasks

executed before the original deadline, 𝑇𝑇𝑚
𝑜𝑡𝑝

 is the amount of

income earned for executing a task on time. For task type 2, 𝑇𝐻

denotes the number of tasks executed before θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and

after the original deadline, with β being the income earned for

executing tasks within this timeframe. For task type 3, 𝐷1𝑇

represents the number of tasks completed after the original

deadline but before 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, with Φ1 indicating the

profit for executing a task during this period. Similarly, 𝐷2𝑇 is

the number of tasks executed after 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and before

𝛥2 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, with Φ2 being the profit for completing tasks

within this timeframe. Therefore, the total income can be

expressed as:

𝐼𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝐼𝑗
𝑖𝑛𝑐

3

𝑗=1

(6)

The penalty is determined by the number of rejected tasks,

with each task type incurring a different penalty amount. Thus,

the total penalty amount for each task type can be expressed as:

𝐶𝐼𝑚
𝑝𝑒𝑛

= 𝑅𝐽𝑇𝑚 × 𝑇𝑇𝑚
𝑝𝑒𝑛

(7)

where 𝑅𝐽𝑇𝑚 represents the number of rejected tasks for task

type m, and 𝑇𝑇𝑚
𝑝𝑒𝑛

 is the penalty amount assigned to that task

type. The total penalty for all containers can be expressed as:

𝑃𝐸𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝐼𝑗
𝑝𝑒𝑛

3

𝑗=1

(8)

In this system, we consider two types of runtimes for each

container. The first is idle runtime, which occurs when the

container's state is 'On' but no tasks are being executed. This is

denoted by 𝑅𝑇𝑗
𝑖𝑑𝑙𝑒 . The second type is active runtime, which

occurs when the container's state is 'On' and a task is being

executed. This is denoted by 𝑅𝑇𝑗
𝑎𝑐𝑡𝑖𝑣𝑒 . As previously

mentioned, each container has its own memory usage, denoted

by 𝐶𝐼𝑗
𝑚𝑒𝑚. Additionally, each task type has its own memory

usage, which can be expressed as 𝑇𝑇𝑚
𝑚𝑒𝑚 for task type m.

Therefore, the total memory usage for container j and task type

m can be expressed as:

𝐶𝐼𝑗
𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 = (𝑅𝑇𝑗

𝑎𝑐𝑡𝑖𝑣𝑒 × 𝑇𝑇𝑚
𝑚𝑒𝑚) + (𝑅𝑇𝑗

𝑖𝑑𝑙𝑒 × 𝐶𝐼𝑗
𝑚𝑒𝑚) (9)

and the total memory cost for container j and task type m can

be expressed as:

𝐶𝐼𝑗
𝑚𝑒𝑚𝑐𝑜𝑠𝑡 = 𝐶𝐼𝑗

𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 ×
𝑇𝑇𝑚

𝑚𝑐

100

(10)

where 𝑇𝑇𝑚
𝑚𝑐 represents the cost per 100 megabytes of memory

for task type m. For each container, our goal is to maximize its

profit, so the profit for container j can be expressed as:

𝑃𝑅𝑂𝐹𝑗 = 𝐶𝐼𝑗
𝑖𝑛𝑐 − 𝐶𝐼𝑗

𝑝𝑒𝑛
− 𝐶𝐼𝑗

𝑚𝑒𝑚𝑐𝑜𝑠𝑡 (11)

and the total profit of the system can be expressed as:

𝑃𝑅𝑂𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑅𝑂𝐹𝑗

3

𝑗=1

(12)

To reiterate, our optimization objective is to maximize the

total profit of the system; therefore, the total profit serves as our

objective function. In the following section, we propose a

weighted algorithm to solve this optimization problem. This

algorithm is designed to allocate tasks to the appropriate

instances efficiently while considering multiple factors such as

task deadlines, resource availability, and QoS.

4. PROPOSED ALGORITHM

In this section, we propose a heuristic weighted task

offloading and resource allocation algorithm. To design this

weighted algorithm, we make the following assumptions:

Assumption 1: We assume that the task generation for each task

type follows a Poisson distribution, with a given generation rate

λ and an average task size, denoted as 𝑇𝑇𝑎𝑣𝑔𝑠𝑖𝑧𝑒 .

Assumption 2: We assume the size of each task follows a

normal distribution, with 𝑇𝑇𝑎𝑣𝑔𝑠𝑖𝑧𝑒 as the mean and a standard

deviation of σ.

Assumption 3: The number of epochs within a specific

timeframe is assumed to be known.

Assumption 4: All instances are assumed to remain in the ‘On’

state during each epoch and are allocated at least one CPU core.

As mentioned previously, our system design is based on time

slots. The total number of time slots is divided into a series of

epochs, during which the task offloading and resource

allocation algorithm is executed. For each epoch, the task

generation rate varies across all three task types. At the

beginning of each epoch, our algorithm makes two key

decisions: first, it determines which containers will be in the

'Off' state and which will remain ‘On’; second, it decides the

number of CPU cores to allocate from the CPU pool to each

container that is in the 'On' state. As stated in our assumptions,

we assume that all instances remain in the ‘On’ state, and the

number of CPU cores allocated to each instance is determined

by the weight of the queue for each task type. The weight

calculation for each task type can be expressed as:

𝑤𝑚
𝑒𝑝

= 𝜆𝑚
𝑒𝑝

× 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

 (13)

where 𝜆𝑚
𝑒𝑝

 represents the generation rate and 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

represents the average task size of task type m in epoch number

ep. The total weight of all task types can be expressed as:

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

= ∑ 𝑤𝑗
𝑒𝑝

3

𝑗=1

(14)

We use the weight for each task type to calculate a

coefficient, which is then utilized to assign a specific number of

CPU cores to each task type’s instance in the current epoch. The

coefficient for task type m in epoch ep can be expressed as:

𝑐𝑜𝑚
𝑒𝑝

=
𝑤𝑚

𝑒𝑝

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

(15)

The number of CPU cores assigned to the instance of task type

m, denoted by 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠, can be specified as:

𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = ⌊𝑐𝑜𝑚

𝑒𝑝
× 𝐴𝐶⌋ (16)

where AC represents the total number of available CPU cores

in the CPU pool. After assigning the floor of the calculated

number of CPU cores based on the coefficient to each instance,

there may be some remaining extra cores that need to be

allocated. For each instance, a "luck percentage," denoted by

𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 is assigned, with the sum of all luck percentages totaling

100%. These extra cores are distributed to instances based on

their luck percentage. For example, if 𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 = 70, it means

there is a 70% chance that an extra core will be allocated to that

instance. For each extra core, a random number between 0 and

100 is generated, and if the number falls within the range of

𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 , the extra core is added to 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠. The pseudocode of

the proposed weighted algorithm is presented in Algorithm 1.

As presented in the pseudocode, the algorithm iterates

through each epoch, with the maximum number of epochs

denoted as 𝑒𝑐, allowing it to adapt dynamically to changing

conditions. Lines 2 through 5 calculate the weight for each task

type, with line 5 computing the total weight across all task types

to provide an overview of the computational demands during

the current epoch. Line 6 then initiates an iteration through each

instance, with lines 7 and 8 ensuring that each instance is

allocated at least one CPU core to maintain operational

integrity. Using the total weight, lines 9 through 12 calculate a

coefficient for each task type, determining the proportion of

resources allocated based on their weighted importance. The

algorithm then allocates the floor of the calculated number of

cores to each instance to ensure feasibility. Lastly, lines 13

through 19 address the distribution of any remaining cores,

which are allocated individually based on each instance's luck

percentage if extra cores remain after the initial allocation.

In analyzing the time complexity of the proposed algorithm,

the outer loop iterates 𝑒𝑐 times, resulting in a time complexity

of 𝑂(𝑒𝑐). The two inner loops in lines 2 through 4 and lines 6

through 12 each run a constant number of times (specifically,

three iterations), giving them a time complexity of 𝑂(1).

Therefore, these inner loops do not impact the overall

complexity. Lines 13 through 19 consist of a while loop that

executes up to 𝐴𝐶 times, contributing a time complexity of

𝑂(𝐴𝐶). Consequently, combining the contributions from the

outer loop and the while loop, the total complexity of the

proposed algorithm is 𝑂(𝑒𝑐 × 𝐴𝐶).

Algorithm 1 Proposed Resource Allocation Algorithm

Input: 𝐴𝐶, 𝜆𝑚
𝑒𝑝

, 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

, 𝑒𝑐

Output: 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠

1: for ep=0;ep<ec;ep++ do
2: for m=0;m<3;m++ do
3: calculate weight for each task type m in epoch

ep:

 𝑤𝑚
𝑒𝑝

= 𝜆𝑚
𝑒𝑝

× 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

4: end for

5: calculate total weight for the current epoch:

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

= ∑ 𝑤𝑗
𝑒𝑝

3

𝑚=1

6: for m=0;m<3;m++ do

7: 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠 + 1

8: 𝐴𝐶 = 𝐴𝐶 − 1

9: calculate coefficient for task type m in epoch ep:

𝑐𝑜𝑚

𝑒𝑝
=

𝑤𝑚
𝑒𝑝

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

10: allocate the floor of calculated number of cores

to the instance of task type m:

 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = ⌊𝑐𝑜𝑚

𝑒𝑝
× 𝐴𝐶⌋

11: 𝐴𝐶 = 𝐴𝐶 − 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠

12: end for

13: while 𝐴𝐶 > 0 do

14: generate a random number from 0 to 100

15: if Random number is in range of 𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 do

16: 𝐴𝐶 = 𝐴𝐶 − 1

17: 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠 + 1

18: end if

19: end while

20: end for

21: return 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠

5. EVALUATION

In this section, we evaluate the performance of our proposed

weighted algorithm by conducting a series of simulation

experiments under various scenarios and comparing the

corresponding numerical results.

5.1. Simulation Setup

Our experiment was conducted using Python 3.10.4 to

simulate a VEC environment with multiple users. The

simulation was performed on a computer with the following

specifications: an AMD Ryzen 7 5800X3D processor, 32 GB

of RAM, and an NVIDIA RTX 3080 GPU. The total number of

time slots was set to 1000, divided into four epochs. Each time

Journal of Computer and Knowledge Engineering, Vol. , No.. 2024. 7

slot had a duration of 1000 ms, with the time slot indices

assigned to the epochs being [0, 250, 500, 750]. TABLE 2

presents other simulation parameters used in the experiments.

TABLE 2

Simulation parameters

Parameter Value

Number of CPU cores 15

CPU core power 2000 MIPS

Set of task types [1, 2, 3]

Task type deadlines [200, 800, 4000] (ms)

Task type rejection penalties [-0.2, -0.05, -0.02] ($)

Task type size means [200, 1000, 4000]

Task type size standard deviations [20, 100, 400]

On time income [0.5, 0.8, 1] ($)

β income for task type 2 0.5 $

Φ1 and Φ2 income for task type 3 [2, 4] ($)

Memory usage for task types [0.1, 0.2, 0.5] (MB/ms)

θ 1.5

Δ1, Δ2 [2, 4]

Cost of memory per 100 MB [0.002, 0.004, 0.008] ($)

Idle memory usage for instances [200, 500, 1000] (MB/ms)

5.2. Experiment Scenarios

We compared our proposed weighted algorithm with other

algorithms across three distinct scenarios, each characterized by

unique task generation rates for every task type within each

epoch. This dynamic task generation rate allowed us to assess

the effectiveness of our algorithm and its impact on the metrics

considered in this experiment. The task generation parameters

for all three scenarios are presented in TABLE 3. For each task

type in each scenario, a list is provided, where the index

corresponds to the epoch index, and the value represents the

task generation rate for that task type in the respective epoch.

TABLE 3

Scenarios parameters

 𝛌1 𝛌2 𝛌3

Scenario 1 [4, 16, 10, 2] [4, 6, 6, 0] [2, 3, 4, 1]

Scenario 2 [10, 2, 13, 0] [2, 1, 0, 4] [4, 1, 3, 2]

Scenario 3 [1, 8, 5, 12] [0, 4, 4, 6] [3, 3, 1, 4]

5.3. Compared Algorithms

We evaluated the performance of our proposed weighted

algorithm by comparing it with the following algorithms:

1) RAND-RAND: In this approach, the state of each instance

is assigned randomly (either On or Off), and the number of

cores allocated to each instance in the 'On' state is also

determined randomly.

2) WARM-EVEN [21]: This algorithm maintains all instances

in a warm state (On) and distributes the CPU cores evenly

among them.

3) WARM-RAND [22]: In this method, all instances are kept

in a warm state, and the allocation of CPU cores is performed

randomly.

5.4. Metrics

In this subsection, we present the metrics used to evaluate the

performance of our proposed algorithm. These metrics offer a

comprehensive assessment of the algorithm's effectiveness in

comparison to other algorithms. The selected metrics are

designed to capture various dimensions of performance and

include:

1) Memory Cost: This metric quantifies the total memory cost,

calculated based on memory consumption across all instances

in each scenario. It considers both active and idle runtime, as

outlined in Eq. (9) and Eq. (10).

2) Penalty: This metric assesses the total penalty incurred by

the system for each algorithm within each scenario. The penalty

is determined by the number of rejected tasks, reflecting the

algorithm's impact on task acceptance

3) Income: This metric measures the total net income earned by

the system in each scenario. It captures the financial

performance of the system based on task execution and resource

utilization.

4) Profit: This metric calculates the total profit by accounting

for both costs and income, as described in Eq. (12). It provides

an overarching measure of the algorithm’s effectiveness in

optimizing the system’s financial outcomes.

These metrics collectively provide a comprehensive view of

the algorithm's performance, enabling a detailed comparison

with other algorithms.

5.5. Results

In this subsection, we analyze the different metrics in our

experiments and review the numeral results. As shown in Fig.

3, the RAND-RAND algorithm exhibits lower memory costs,

primarily because instances can be completely turned off during

some epochs, thereby reducing memory consumption.

However, this approach has several drawbacks, including a

decrease in QoS due to an increase in rejected tasks. This

increase in rejected tasks leads to higher penalties incurred by

the system and ultimately results in a reduction in total profit.

Examining the numerical results of the other three algorithms,

where all instances remain in the 'On' state, we observe that our

proposed algorithm reduces memory cost by an average of

2.54% across all three scenarios compared to the WARM-

EVEN algorithm. Additionally, WARM-EVEN outperforms

WARM-RAND by an average of 2.17%.

Fig. 3. Comparison of total memory cost

Fig. 4 illustrates the impact of penalties incurred by the

system as a result of the number of rejected tasks. Our proposed

algorithm demonstrates superior performance compared to the

other three algorithms, achieving an average penalty reduction

of 11.4% relative to the WARM-EVEN algorithm, which

outperforms the other two algorithms in this metric. Notably, in

scenario two, our proposed algorithm achieves a remarkable

25.98% reduction in penalties. This significant improvement is

attributed to the algorithm's sophisticated allocation strategy,

which intelligently assigns CPU cores to each instance based on

the load of each task type's queue. By effectively managing

resources and minimizing task rejection, our algorithm reduces

the associated penalties and enhances overall system efficiency.

This reduction in penalties highlights the algorithm's ability to

optimize resource use and improve system performance, even

when task loads and demands fluctuate.

Fig. 4. Comparison of total penalty

Fig. 5 illustrates the impact of different algorithms on system

income, highlighting that our proposed weighted algorithm

consistently demonstrates superior optimization performance.

It can be observed that our proposed algorithm outperforms the

other three algorithms across all three scenarios. On average,

our proposed algorithm achieves a 10.43% increase in income

compared to the WARM-EVEN algorithm, which consistently

outperforms the remaining two algorithms across all scenarios

in this metric. In particular, scenario 2 reveals an even more

pronounced advantage, with our algorithm exceeding the

income earned by WARM-EVEN by 18.79%. This

enhancement in performance is primarily due to the proposed

algorithm's more effective resource allocation strategy. By

optimizing the distribution of resources, the algorithm enables

a higher number of tasks to be executed. Since each

successfully executed task contributes to the overall income of

the system, this improved allocation significantly boosts the

system's total income. The results represent the impact of our

proposed algorithm in maximizing system income through

better management of computational resources.

Fig. 5. Comparison of total income

Fig. 6 represents the total profit of the system which is the

main objective of this optimization problem. When comparing

the algorithms across all three scenarios, it is evident that our

algorithm outperforms the other three by a significant margin.

On average, the weighted algorithm increases the system's total

profit by 18.26% compared to the WARM-EVEN algorithm,

which has the best performance among the remaining three. The

most notable improvement is observed in scenario 2, where the

total profit increases by 34.16%. This substantial gain is

attributable to the weighted algorithm's capacity to minimize

system penalties by maintaining instances in a warm state,

thereby reducing memory consumption and overall costs.

Moreover, the algorithm facilitates the execution of a greater

number of tasks through efficient resource allocation, tailored

to the load of each instance. This enhanced resource

management not only boosts the total income but also

contributes to a considerable increase in the system's total

profit. The synergy of effective instance management and

optimized resource allocation results in a markedly improved

overall system profit.

Fig. 6. Comparison of total profit

Journal of Computer and Knowledge Engineering, Vol. , No.. 2024. 9

6. CONCLUSION AND FUTURE WORK

 In this paper, we reviewed the task offloading and resource

allocation problem in vehicular edge computing and formulated

the problem mathematically. We proposed a weighted

algorithm to optimize this problem, considering QoS, cost, and

profit. We compared our algorithm across three different

scenarios with other algorithms based on metrics such as

memory cost, penalties, income, and profit. The results showed

that our algorithm increased total profit by an average of

18.26%, while also reducing total costs and increasing system

income. These experiments demonstrate that our algorithm is

well-suited for real-time environments due to its low response

time. This study did not account for heterogeneous CPU cores,

which could be explored in future research. Additionally,

energy consumption should be addressed by implementing

strategies such as turning off unused instances, disabling

unnecessary cores, or leveraging technologies like Dynamic

Voltage and Frequency Scaling (DVFS) to reduce energy

usage. Furthermore, utilizing deep learning methods to predict

system workload may enhance resource allocation and overall

responsiveness. These aspects could be incorporated into future

work to further improve the proposed solution.

REFERENCES

[1] S. Wang, D. He, M. Yang, and L. Duo, “Cost-aware task offloading in

vehicular edge computing: A Stackelberg game approach,” Veh.
Commun., vol. 49, no. 202001, p. 100807, 2024, doi:

10.1016/j.vehcom.2024.100807.

[2] L. L. Wang, J. S. Gui, X. H. Deng, F. Zeng, and Z. F. Kuang, “Routing
Algorithm Based on Vehicle Position Analysis for Internet of Vehicles,”

IEEE Internet Things J., vol. 7, no. 12, pp. 11701–11712, 2020, doi:

10.1109/JIOT.2020.2999469.

[3] M. K. Farimani, S. Karimian-Aliabadi, R. Entezari-Maleki, B. Egger,

and L. Sousa, “Deadline-aware task offloading in vehicular networks

using deep reinforcement learning,” Expert Syst. Appl., vol. 249, no. PB,

p. 123622, 2024, doi: 10.1016/j.eswa.2024.123622.

[4] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on

Architecture and Computation Offloading,” IEEE Commun. Surv.
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017, doi:

10.1109/COMST.2017.2682318.

[5] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular Edge
Computing and Networking: A Survey,” Mob. Networks Appl., vol. 26,

no. 3, pp. 1145–1168, 2021, doi: 10.1007/s11036-020-01624-1.

[6] M. Khayyat, I. A. Elgendy, A. Muthanna, A. S. Alshahrani, S. Alharbi,
and A. Koucheryavy, “Advanced Deep Learning-Based Computational

Offloading for Multilevel Vehicular Edge-Cloud Computing Networks,”

IEEE Access, vol. 8, pp. 137052–137062, 2020, doi:

10.1109/ACCESS.2020.3011705.

[7] W. Fan et al., “Joint Task Offloading and Resource Allocation for

Vehicular Edge Computing Based on V2I and V2V Modes,” IEEE
Trans. Intell. Transp. Syst., vol. 24, no. 4, pp. 4277–4292, 2023, doi:

10.1109/TITS.2022.3230430.

[8] R. Salimi, S. Azizi, and J. Abawajy, “A greedy randomized adaptive
search procedure for scheduling IoT tasks in virtualized fog–cloud

computing,” Trans. Emerg. Telecommun. Technol., vol. 35, no. 5, 2024,

doi: 10.1002/ett.4980.

[9] F. Gu, X. Yang, X. Li, and H. Deng, “Computational Resources

Allocation and Vehicular Application Offloading in VEC Networks,”

Electron., vol. 11, no. 14, pp. 1–16, 2022, doi:

10.3390/electronics11142130.

[10] C. Cheng, L. Zhai, X. Zhu, Y. Jia, and Y. Li, “Dynamic task offloading

and service caching based on game theory in vehicular edge computing

networks,” Comput. Commun., vol. 224, no. January, pp. 29–41, 2024,

doi: 10.1016/j.comcom.2024.05.020.

[11] Z. Wu, Z. Jia, X. Pang, and S. Zhao, “Deep Reinforcement Learning-

Based Task Offloading and Load Balancing for Vehicular Edge

Computing,” Electron., vol. 13, no. 8, 2024, doi:

10.3390/electronics13081511.

[12] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task Offloading in Vehicular

Edge Computing Networks: A Load-Balancing Solution,” IEEE Trans.
Veh. Technol., vol. 69, no. 2, pp. 2092–2104, Feb. 2020, doi:

10.1109/TVT.2019.2959410.

[13] X. Zhao, Y. Wu, T. Zhao, F. Wang, and M. Li, “Federated deep
reinforcement learning for task offloading and resource allocation in

mobile edge computing-assisted vehicular networks,” J. Netw. Comput.

Appl., vol. 229, no. June, p. 103941, 2024, doi:

10.1016/j.jnca.2024.103941.

[14] Z. Du, Y. Ni, H. Tao, and M. Yin, “Joint optimization of offloading

strategy and resource allocation for multi-user in dynamic vehicular edge
computing systems,” Simul. Model. Pract. Theory, vol. 136, no. January,

p. 103001, 2024, doi: 10.1016/j.simpat.2024.103001.

[15] X. Liu, J. Zheng, Y. Li, M. Zhang, R. Wang, and Y. He, “Multi-path
serial tasks offloading strategy and dynamic scheduling optimization in

vehicular edge computing networks,” Veh. Commun., vol. 49, no. July,

p. 100827, 2024, doi: 10.1016/j.vehcom.2024.100827.

[16] Z. D. Huang, X. F. Wu, and S. Bin Dong, “Multi-objective task

offloading for highly dynamic heterogeneous Vehicular Edge
Computing: An efficient reinforcement learning approach,” Comput.

Commun., vol. 225, no. June, pp. 27–43, 2024, doi:

10.1016/j.comcom.2024.06.018.

[17] N. Wan, Y. Luo, G. Zeng, and X. Zhou, “Minimization of VANET

execution time based on joint task offloading and resource allocation,”

Peer-to-Peer Netw. Appl., vol. 16, no. 1, pp. 71–86, 2023, doi:

10.1007/s12083-022-01385-6.

[18] M. Mao, T. Hu, and W. Zhao, “Reliable task offloading mechanism

based on trusted roadside unit service for internet of vehicles,” Ad Hoc
Networks, vol. 139, p. 103045, Feb. 2023, doi:

10.1016/j.adhoc.2022.103045.

[19] S. Azizi, M. Othman, and H. Khamfroush, “DECO: A Deadline-Aware
and Energy-Efficient Algorithm for Task Offloading in Mobile Edge

Computing,” IEEE Syst. J., vol. 17, no. 1, pp. 952–963, 2023, doi:

10.1109/JSYST.2022.3185011.

[20] S. Yeganeh, A. Babazadeh Sangar, and S. Azizi, “A novel Q-learning-

based hybrid algorithm for the optimal offloading and scheduling in

mobile edge computing environments,” J. Netw. Comput. Appl., vol.

214, no. March, p. 103617, 2023, doi: 10.1016/j.jnca.2023.103617.

[21] A. Fuerst and P. Sharma, “FaasCache: Keeping serverless computing

alive with greedy-dual caching,” Int. Conf. Archit. Support Program.
Lang. Oper. Syst. - ASPLOS, pp. 386–400, 2021, doi:

10.1145/3445814.3446757.

[22] H. Ko and S. Pack, “Function-Aware Resource Management Framework
for Serverless Edge Computing,” IEEE Internet Things J., pp. 1–10,

2022, doi: 10.1109/JIOT.2022.3205166.

