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Abstract—The Internet of Vehicles (IoV) represents a 

transformative paradigm in Intelligent Transportation Systems 

(ITS), enabling real-time communication between vehicles, 

infrastructure, and cloud platforms to improve traffic 

management, safety, and efficiency. However, the resource 

limitations in vehicles pose significant challenges for delay-

sensitive applications such as autonomous driving and automated 

navigation. Vehicular Edge Computing (VEC) offers a promising 

solution by offloading tasks to edge servers near vehicles, reducing 

transmission delays and enhancing computational efficiency. In 

this paper, we address the complex task offloading and resource 

allocation problem in VEC environments. We model this challenge 

as an Integer Linear Programming (ILP) problem, aiming to 

maximize the system’s overall profit. To mitigate the 

computational complexity of solving the ILP problem, we propose 

an efficient heuristic algorithm. This approach considers various 

task types, accounting for the diversity and specific requirements 

of each. The algorithm optimizes CPU resource allocation based 

on task generation rates, average task sizes, and a calculated 

weight coefficient for each task type. Simulation results 

demonstrate that the proposed algorithm reduces memory costs 

and penalties from rejected tasks, while improving overall system 

profit. In particular, it outperforms existing algorithms by an 

average of 18.26% in terms of profit, demonstrating its 

effectiveness in practical VEC applications. 

 
Index Terms—Internet of vehicle, vehicular edge computing, 

task offloading, resource allocation, profit maximization.  

1. INTRODUCTION 

s modern automotive industries with sensing and wireless 

communication technologies rapidly advance, vehicles are 

becoming smarter, giving rise to the Internet of Vehicles (IoVs) 

as a new paradigm in Intelligent Transportation Systems (ITS) 

[1]. The IoVs combines vehicular ad hoc networks (VANETs) 

with the Internet of Things (IoT) to improve transportation 

efficiency and vehicle safety [2]. The rapid development of 

vehicular networks has enabled numerous delay-sensitive 

applications, including autonomous driving, automated 

navigation, vehicular augmented reality, and intelligent object 

recognition, each requiring substantial data processing and 

computational resources. These advancements are pushing 

current infrastructures to their limits, as they demand stringent 

Quality of Service (QoS) while processing large volumes of 

sensor data and communicating with the network [3]. However, 

the limited computational resources available within vehicles 

often prevent them from meeting the low-latency QoS 
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requirements essential for these applications, creating a 

bottleneck in the advancement of vehicular networks. 

To address these challenges, mobile edge computing (MEC) 

is considered a promising paradigm [4]. MEC enhances service 

efficiency for vehicles and reduces transmission delays between 

vehicles and cloud servers by bringing cloud computing 

resources closer to the network edge. Additionally, Vehicular 

Edge Computing (VEC) offers an effective solution to this 

problem [5]. In VEC, computational and storage resources of 

cloud servers are deployed at the edge of the radio access 

network, such as roadside units (RSUs), located near vehicles. 

This proximity enables service with high QoS and provides a 

cost-efficient, low-latency solution [6]. VEC offloads vehicle 

tasks to edge servers located on or near RSUs or to other 

vehicles with surplus computing resources. Compared to 

traditional cloud-based systems, edge-based solutions offer 

significantly lower communication latency by reducing the 

distance over which tasks are transmitted to computing 

resources, enhancing responsiveness for latency-sensitive 

applications [7], [8]. Vehicle applications can greatly benefit 

from the advantages of VEC, leading to a safer and more 

efficient transportation system [9]. However, optimizing task 

offloading and resource allocation in VEC remains a 

fundamental challenge, as these systems must handle 

heterogeneous user demands, each with unique resource 

requirements, all while utilizing shared resources. Efficient 

resource allocation strategies are needed to maximize QoS 

while minimizing operational costs. 

In this paper, we propose a mathematical model for the task 

offloading and resource allocation problem in heterogeneous 

VEC systems, formulated as an Integer Linear Programming 

(ILP) problem. The objective is to maximize the system's total 

profit while adhering to QoS constraints. We introduce a 

heuristic weighted algorithm that takes into account the number 

of tasks in the system and their computational demands. Using 

this information, the algorithm calculates a weight for each task 

type and allocates available resources across the MEC servers 

accordingly. Extensive experiments were conducted across 

various scenarios to compare the performance of our proposed 

algorithm against existing algorithms using multiple 

performance metrics. The results demonstrate that our 

algorithm significantly improves the system’s total profit. 

A 

https://orcid.org/0000-0002-5788-0438


 

 

Our main contributions are summarized as follows: 

 We present a mathematical framework for addressing 

task offloading and resource allocation in 

heterogeneous VEC systems, formulated as an Integer 

Linear Programming problem, with the goal of 

optimizing system-wide profit while meeting QoS 

requirements. 

 We propose an innovative heuristic weighted 

algorithm that dynamically calculates task weights 

based on both the number of tasks present in the 

system and their specific computational demands. This 

algorithm effectively allocates available resources 

across MEC servers, optimizing system performance 

by balancing workload and enhancing resource 

utilization. 

 We perform comprehensive experiments across 

different scenarios to evaluate the performance of the 

proposed algorithm. These experiments demonstrate 

that our algorithm consistently outperforms existing 

approaches across multiple performance metrics, 

leading to substantial improvements in total system 

profit, resource efficiency, and overall service quality. 

The rest of this paper is organized as follows: In Section 2, 

we review the related works. Section 3 presents the proposed 

system model and formulates the optimization problem for task 

offloading and resource allocation. In Section 4, we introduce 

our proposed method, a weighted algorithm for task offloading 

and resource allocation. Section 5 provides an evaluation of our 

algorithm and simulation results. Finally, Section 6 concludes 

the paper and discusses future work. 

2. RELATED WORK 

In recent years, MEC has gained significant attention for its 

role in computation offloading, leading to the development of 

various optimization strategies for offloading [10]. Wang et al. 

[1] introduce a fuzzy logic-based dynamic pricing strategy to 

optimize offloading decisions and model vehicle interactions as 

a two-stage Stackelberg game, considering social factors such 

as reputation and task satisfaction. Wu et al. [11] model the 

interactions between vehicles and MEC servers using a Markov 

decision process and optimize decisions using the twin delayed 

deep deterministic policy gradient (TD3) algorithm. Load 

balancing is enhanced through edge collaboration and a server 

selection algorithm based on TOPSIS. Cheng et al. [10] propose 

the CO-MATCH algorithm, which includes a dynamic 

programming-based service caching (DPSC) algorithm and a 

Many-to-One Matching Game (MOMG) algorithm. These 

components encourage edge services and vehicles to cache 

tasks and optimize task offloading. 

Zhang et al. [12] propose enhancing VECNs with fiber-

wireless (FiWi) technology and introduce a software-defined 

networking (SDN) based load-balancing task offloading 

scheme. This approach aims to minimize processing delays by 

efficiently managing computation resources. Fan et al. [7] 

develop an algorithm using Generalized Benders 

Decomposition (GBD) and Reformulation Linearization (RL) 

methods for optimal solutions, as well as a heuristic algorithm 

for sub-optimal solutions with lower computational 

complexity. They aim to minimize the total task processing 

delay by optimizing task scheduling, channel allocation, and 

computing resource distribution between vehicles and RSUs. 

Zhao et al. [13] model the joint optimization problem of task 

offloading and resource allocation as a Markov decision 

process, taking into account communication, computing, and 

system costs. They introduce a multi-agent deep deterministic 

policy gradient (MADDPG) algorithm to address convergence 

issues in dynamic environments and incorporate federated 

learning to manage non-IID data and ensure privacy protection. 

Du et al. [14] propose a comprehensive IoV architecture and 

formulate a joint optimization problem to minimize the system 

function value. They employ a Simulated Spring System 

Algorithm (SSSA), which decouples the problem into two sub-

problems: allocating computing resources based on KKT 

conditions and optimizing the task offloading strategy using the 

simulated spring system. These sub-problems iteratively update 

each other until a solution is achieved. Liu et al. [15] address 

the challenge of efficient task execution in Vehicular Edge 

Computing Networks (VECNs) by accounting for the variations 

in channel and access times due to high vehicle mobility. They 

propose a multi-path dynamic offloading scheme (MPDOS), 

designed to minimize the maximum task completion time for 

vehicles handling serial tasks. MPDOS includes three key 

components: optimizing communication links to boost 

processing capability, employing a multi-knapsack algorithm 

for allocating tasks to RSUs, and implementing a load-

balancing scheme to ensure even distribution of computing 

tasks. 

Huang et al. [16] propose a multi-objective optimization 

model for dynamic, heterogeneous VEC networks, formulated 

as a multi-objective Markov Decision Process (MOMDP). 

They introduce EMOTO, a novel multi-objective reinforcement 

learning algorithm designed to minimize task execution delay 

and vehicle energy consumption while maximizing service 

provider revenue. EMOTO integrates a preference priority 

sampling module and a model-augmented environment 

estimator to address the challenges of the highly dynamic VEC 

environment, enhancing decision-making accuracy and 

efficiency. Wan et al. [17] propose a framework where idle 

vehicles (IVs) collaborate with busy vehicles (BVs) as edge 

nodes to reduce task computation latency. They model the 

matching and resource allocation between BVs and IVs to 

minimize latency and consider energy consumption, 

introducing a low-complexity solution for one-to-one matching 

and an improved biogeography-based optimization (IBBO) 

algorithm for one-to-many matching. Mao et al. [18] address 

security challenges in vehicular ad hoc networks (VANETs) by 

proposing a task offloading mechanism for the IoV that relies 

on trusted RSUs. They introduce a novel infrastructure trust 

management model incorporating social factors to enhance 

RSU security. This mechanism models vehicle task offloading 

with a focus on RSU reliability, aiming to ensure secure and 

efficient task processing even under malicious attacks. 

Azizi et al. [19] introduce a Mixed-Integer Nonlinear 
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Programming (MINLP) model for task offloading, aimed at 

maximizing the number of tasks meeting their deadlines while 

minimizing the overall energy consumption of mobile devices. 

They propose DECO, a heuristic algorithm designed to 

optimize the trade-off between task deadlines and energy 

consumption in IoT devices. DECO jointly considers the 

deadline requirements of tasks and the energy consumed by 

devices. Additionally, it accounts for task prioritization and the 

heterogeneous capabilities of edge cloud servers (ECSs). 

Yeganeh et al. [20] model task offloading and scheduling in 

MEC networks as an optimization problem, aiming to minimize 

execution time and energy consumption. They introduce a 

hybrid algorithm, E-AEO-AOA, which combines Artificial 

Ecosystem-based Optimization (AEO) and Arithmetic 

Optimization Algorithm (AOA). The E-AEO-AOA 

incorporates a modified Q-learning strategy for hybridization 

and employs chaos theory to enhance local search capabilities. 

While numerous studies have explored resource allocation 

and task offloading in both MEC and VEC, this work introduces 

several novel contributions that distinguish it from prior 

research. First, this study considers a dynamic workload 

environment, reflecting real-world conditions where task 

demands fluctuate over time. This added variability increases 

the complexity of the resource management problem, requiring 

adaptive strategies to accommodate changing resource 

requirements effectively. Second, we propose a low-

complexity, highly efficient algorithm specifically designed to 

optimize resource allocation under these fluctuating conditions, 

ensuring that the computational load is distributed effectively 

across the available resources. This approach minimizes 

computational overhead while maintaining responsiveness, an 

essential factor in edge computing environments. Third, our 

model incorporates the distinct QoS requirements associated 

with varying task types. By introducing a specialized objective 

function, we ensure that resource allocation not only maximizes 

system performance but also addresses the diverse QoS needs 

of each task type, which is critical in scenarios where task 

prioritization and latency sensitivity differ. Through this multi-

faceted approach, our work provides a robust framework that 

balances system performance, resource utilization, and QoS 

compliance, advancing the state of resource management 

methodologies in MEC and VEC contexts. 

3. SYSTEM MODEL 

 In this section, we provide an overview of our system model 

and architecture, followed by a detailed discussion on the 

mathematically modeled problem formulation. 

3.1. System Architecture 

Fig. 1 illustrates the VEC system model, designed for a two-

lane straight road with equally spaced roadside units positioned 

along the route. Each RSU provides wireless communication 

coverage, denoted by L. All RSUs are directly connected to a 

base station which houses a MEC server. Each vehicle is 

capable of generating multiple tasks, which are categorized into 

different types. Each task type possesses unique attributes that 

distinguish it from other task types. Task i generated by a 

vehicle is characterized by three primary attributes, denoted as 

𝑇𝑖  = {𝑇𝑖
𝑡𝑦𝑝𝑒

, 𝑇𝑖
𝑠𝑖𝑧𝑒 , 𝑇𝑖

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒}, where 𝑇𝑖
𝑡𝑦𝑝𝑒

 represents the 

specific type of the task, 𝑇𝑖
𝑠𝑖𝑧𝑒 denotes the computational effort 

required to complete the task, measured in millions of 

instructions, and 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒  indicates the maximum allowable 

time before the task is rejected, measured in milliseconds for 

precision. 

 
Fig. 1. System architecture 

All tasks generated by vehicles are offloaded to the nearest 

RSU. Upon receiving these tasks, the RSU forwards them to the 

base station, where the computing process is initiated in the 

MEC server. Fig. 2 illustrates the architecture of the MEC 

server, which includes three distinct First-In-First-Out (FIFO) 

queues at the current time (t) for different task types, with each 

queue linked to a corresponding instance for computation. Each 

instance is characterized by three main attributes, denoted as 

𝐶𝐼𝑗  = {𝐶𝐼𝑗
𝑠𝑡𝑎𝑡𝑒 , 𝐶𝐼𝑗

𝑐𝑜𝑟𝑒𝑠 , 𝐶𝐼𝑗
𝑚𝑒𝑚}, where 𝐶𝐼𝑗

𝑠𝑡𝑎𝑡𝑒 represents the 

state of the instance (either on or off), 𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 represents the 

number of CPU cores assigned to the instance, and 𝐶𝐼𝑗
𝑚𝑒𝑚 

indicates the memory usage of the instance, measured in 

megabytes. Each MEC server contains a CPU pool, comprising 

all the CPU cores available for allocation among the active 

instances. 

 
Fig. 2. MEC server model 

Each task type has its own QoS class and constraints to 

ensure efficient handling and prioritization, enabling flexible 

resource management by assigning income and penalties based 

on task completion time to encourage timely task processing 

and effective system resource management. The details for each 

class are as follows: 

• Task Type 1: This class has a single deadline constraint. If 

the instance’s response time exceeds this standard deadline, the 



 

 

task is rejected, and the system incurs a penalty due to the unmet 

deadline. 

• Task Type 2: The QoS class for Task Type 2 includes two 

thresholds: the standard deadline and an extended deadline, 

determined by a multiplier, denoted by θ, of the original 

deadline. If the task is completed by the standard deadline, full 

on-time income is earned. Completion after the standard 

deadline but within the extended θ-adjusted deadline yields 

reduced income, denoted by β. Exceeding this extended 

deadline results in task rejection and a penalty. 

• Task Type 3: Task Type 3 has three deadline-based QoS 

thresholds: the standard deadline and two extended deadlines, 

denoted by Δ1 and Δ2. Completion within the standard deadline 

yields full on-time income. If completed after the standard 

deadline but before Δ1, a partial income, denoted by Φ1, is 

awarded. Completion between Δ1 and Δ2 yields a further 

reduced income, denoted by Φ2. Exceeding Δ2 results in task 

rejection and a penalty. 

3.2. Problem Formulation 

In this section, we formulate the task offloading process as 

an Integer Linear Programming optimization problem. The 

objective is to maximize the total profit while satisfying 

constraints such as task deadlines, computational costs, and 

QoS. TABLE 1 presents symbols and notations used in our 

problem formulation. We model the number of tasks generated 

for each type within a time slot using a Poisson distribution, 

where each task type has a unique generation rate, denoted by 

λm for task type m. Upon the task's entry into the MEC server, 

the server calculates the response time for the task. The 

response time for task i on container j is expressed as:  

𝑇𝑖,𝑗
𝑟𝑒𝑠 = 𝑄𝑗

𝑤𝑎𝑖𝑡 +
𝑇𝑖

𝑠𝑖𝑧𝑒

(𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑃)

 (1) 

where 𝐶𝑃 represents the CPU power of each core, measured in 

million instructions per second (MIPS), and is assumed to be 

homogeneous across the system. Since a FIFO system has been 

implemented for each queue, 𝑄𝑗
𝑤𝑎𝑖𝑡  represents the waiting time 

for task execution in the queue of container j and is expressed 

as: 

𝑄𝑗
𝑤𝑎𝑖𝑡 =

∑ 𝑇𝑘
𝑠𝑖𝑧𝑒𝑁𝑗

𝑘=1

(𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 ∗ 𝐶𝑃)

 (2) 

where 𝑁𝑗 represents the total number of tasks waiting to be 

executed in the queue of container j before task 𝑖. 

TABLE 1 

Key notations used in the problem formulation 

Symbol Description Unit 

λm Task generation rate for task type m - 

𝑇𝑖
𝑠𝑖𝑧𝑒 Size of task i [MI] 

𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 Deadline for task i [ms] 

𝑂𝑇𝑚 Number of tasks executed before the original deadline for task type 𝑚 - 

𝑇𝑇𝑚
𝑜𝑡𝑝

 Income earned for completing a task on time for task type m [$] 

𝑇𝐻 Number of tasks executed within the time frame θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 but after the original deadline - 

β Income earned for completing tasks within the time frame θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$] 

𝐷1𝑇 Number of tasks completed between the original deadline and 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 - 

Φ1 Profit for completing a task during the time frame 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$] 

𝐷2𝑇 Number of tasks executed between 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and 𝛥2 × 𝑇𝑖

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 - 

Φ2 Profit for completing tasks within the time frame 𝛥2 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 [$] 

𝑅𝐽𝑇𝑚 Number of rejected tasks for task type m - 

𝑇𝑇𝑚
𝑝𝑒𝑛

 Penalty amount for rejected tasks for task type m [$] 

𝑇𝑇𝑚
𝑚𝑒𝑚 Memory usage for task type m [$] 

𝑇𝑇𝑚
𝑚𝑐 Cost per 100 MB of memory for task type m [$] 

𝐶𝐼𝑗
𝑐𝑜𝑟𝑒𝑠 Number of CPU cores allocated to container j - 

𝐶𝑃 CPU power of each core [MIPS] 

𝑄𝑗
𝑤𝑎𝑖𝑡 Waiting time for task execution in the queue of container [ms] 

𝑁𝑗  Total number of tasks waiting to be executed in the queue of container j before task 𝑖 - 

𝐶𝐼𝑗
𝑖𝑛𝑐  Total income earned by container j [$] 

𝐶𝐼𝑗
𝑝𝑒𝑛

 Total penalty incurred by container j for rejected tasks [$] 

𝑅𝑇𝑗
𝑖𝑑𝑙𝑒 Idle runtime for container j [ms] 

𝑅𝑇𝑗
𝑎𝑐𝑡𝑖𝑣𝑒 Active runtime for container j [ms] 

𝐶𝐼𝑗
𝑚𝑒𝑚 Memory usage of container j [MB] 

𝐶𝐼𝑗
𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 Total memory usage for container j [MB] 

𝐶𝐼𝑗
𝑚𝑒𝑚𝑐𝑜𝑠𝑡 Total memory cost for container j [$] 

𝑃𝑅𝑂𝐹𝑗 Profit of container j [$] 

𝑇𝑖,𝑗
𝑟𝑒𝑠 Response time for task i on container j [ms] 

𝐼𝑁𝑡𝑜𝑡𝑎𝑙 Total income earned across all containers [$] 

𝑃𝐸𝑁𝑡𝑜𝑡𝑎𝑙 Total penalty incurred across all containers [$] 

𝑃𝑅𝑂𝐹𝑡𝑜𝑡𝑎𝑙 Total profit of the system [$] 
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Once the response time is calculated, the system determines 

whether the server can execute task i before its deadline, 

denoted as 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒. Based on the task type and the QoS class, 

the system decides whether to reject the task or add it to the 

instance's queue for execution. If the task is accepted, the 

associated income is added to the total income of the container, 

denoted by 𝐶𝐼𝑗
𝑖𝑛𝑐. Conversely, if the task is rejected, the penalty 

incurred by the system is added to the total penalty of the 

container, denoted by 𝐶𝐼𝑗
𝑝𝑒𝑛

. Therefore, the income for each 

task type can be expressed as: 

𝐶𝐼1
𝑖𝑛𝑐 = 𝑂𝑇1 × 𝑇𝑇1

𝑜𝑡𝑝
 (3) 

and 

𝐶𝐼2
𝑖𝑛𝑐 = (𝑂𝑇2 × 𝑇𝑇2

𝑜𝑡𝑝
) + (𝑇𝐻 × β) (4) 

and 

𝐶𝐼3
𝑖𝑛𝑐 = (𝑂𝑇3 × 𝑇𝑇3

𝑜𝑡𝑝
) + (𝐷1𝑇 × Φ1) + (𝐷2𝑇 × Φ2) (5) 

 

where, for all task types, 𝑂𝑇𝑚 represents the number of tasks 

executed before the original deadline, 𝑇𝑇𝑚
𝑜𝑡𝑝

 is the amount of 

income earned for executing a task on time. For task type 2, 𝑇𝐻 

denotes the number of tasks executed before θ × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒  and 

after the original deadline, with β being the income earned for 

executing tasks within this timeframe. For task type 3, 𝐷1𝑇 

represents the number of tasks completed after the original 

deadline but before 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, with Φ1 indicating the 

profit for executing a task during this period. Similarly, 𝐷2𝑇 is 

the number of tasks executed after 𝛥1 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 and before 

𝛥2 × 𝑇𝑖
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, with Φ2 being the profit for completing tasks 

within this timeframe. Therefore, the total income can be 

expressed as: 

𝐼𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝐼𝑗
𝑖𝑛𝑐

3

𝑗=1

 

 

(6) 

The penalty is determined by the number of rejected tasks, 

with each task type incurring a different penalty amount. Thus, 

the total penalty amount for each task type can be expressed as: 

 

𝐶𝐼𝑚
𝑝𝑒𝑛

= 𝑅𝐽𝑇𝑚 × 𝑇𝑇𝑚
𝑝𝑒𝑛

 

 

 

(7) 

where 𝑅𝐽𝑇𝑚 represents the number of rejected tasks for task 

type m, and 𝑇𝑇𝑚
𝑝𝑒𝑛

 is the penalty amount assigned to that task 

type. The total penalty for all containers can be expressed as: 

𝑃𝐸𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝐼𝑗
𝑝𝑒𝑛

3

𝑗=1

 

 

(8) 

In this system, we consider two types of runtimes for each 

container. The first is idle runtime, which occurs when the 

container's state is 'On' but no tasks are being executed. This is 

denoted by 𝑅𝑇𝑗
𝑖𝑑𝑙𝑒 . The second type is active runtime, which 

occurs when the container's state is 'On' and a task is being 

executed. This is denoted by 𝑅𝑇𝑗
𝑎𝑐𝑡𝑖𝑣𝑒 . As previously 

mentioned, each container has its own memory usage, denoted 

by 𝐶𝐼𝑗
𝑚𝑒𝑚. Additionally, each task type has its own memory 

usage, which can be expressed as 𝑇𝑇𝑚
𝑚𝑒𝑚  for task type m. 

Therefore, the total memory usage for container j and task type 

m can be expressed as: 

𝐶𝐼𝑗
𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 = (𝑅𝑇𝑗

𝑎𝑐𝑡𝑖𝑣𝑒 × 𝑇𝑇𝑚
𝑚𝑒𝑚) + (𝑅𝑇𝑗

𝑖𝑑𝑙𝑒 × 𝐶𝐼𝑗
𝑚𝑒𝑚) (9) 

and the total memory cost for container j and task type m can 

be expressed as: 

𝐶𝐼𝑗
𝑚𝑒𝑚𝑐𝑜𝑠𝑡 = 𝐶𝐼𝑗

𝑡𝑜𝑡𝑎𝑙𝑚𝑒𝑚 ×
𝑇𝑇𝑚

𝑚𝑐

100
 

(10) 

where 𝑇𝑇𝑚
𝑚𝑐 represents the cost per 100 megabytes of memory 

for task type m. For each container, our goal is to maximize its 

profit, so the profit for container j can be expressed as: 

𝑃𝑅𝑂𝐹𝑗 = 𝐶𝐼𝑗
𝑖𝑛𝑐 − 𝐶𝐼𝑗

𝑝𝑒𝑛
− 𝐶𝐼𝑗

𝑚𝑒𝑚𝑐𝑜𝑠𝑡  (11) 

and the total profit of the system can be expressed as: 

𝑃𝑅𝑂𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑅𝑂𝐹𝑗

3

𝑗=1

 

 

(12) 

To reiterate, our optimization objective is to maximize the 

total profit of the system; therefore, the total profit serves as our 

objective function. In the following section, we propose a 

weighted algorithm to solve this optimization problem. This 

algorithm is designed to allocate tasks to the appropriate 

instances efficiently while considering multiple factors such as 

task deadlines, resource availability, and QoS. 

4. PROPOSED ALGORITHM 

In this section, we propose a heuristic weighted task 

offloading and resource allocation algorithm. To design this 

weighted algorithm, we make the following assumptions: 

Assumption 1: We assume that the task generation for each task 

type follows a Poisson distribution, with a given generation rate 

λ and an average task size, denoted as 𝑇𝑇𝑎𝑣𝑔𝑠𝑖𝑧𝑒 . 

Assumption 2: We assume the size of each task follows a 

normal distribution, with 𝑇𝑇𝑎𝑣𝑔𝑠𝑖𝑧𝑒 as the mean and a standard 

deviation of σ. 

Assumption 3: The number of epochs within a specific 

timeframe is assumed to be known. 

Assumption 4: All instances are assumed to remain in the ‘On’ 

state during each epoch and are allocated at least one CPU core. 

As mentioned previously, our system design is based on time 

slots. The total number of time slots is divided into a series of 

epochs, during which the task offloading and resource 

allocation algorithm is executed. For each epoch, the task 

generation rate varies across all three task types. At the 

beginning of each epoch, our algorithm makes two key 

decisions: first, it determines which containers will be in the 

'Off' state and which will remain ‘On’; second, it decides the 

number of CPU cores to allocate from the CPU pool to each 

container that is in the 'On' state. As stated in our assumptions, 

we assume that all instances remain in the ‘On’ state, and the 

number of CPU cores allocated to each instance is determined 



 

 

by the weight of the queue for each task type. The weight 

calculation for each task type can be expressed as: 

𝑤𝑚
𝑒𝑝

= 𝜆𝑚
𝑒𝑝

× 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

 (13) 

where 𝜆𝑚
𝑒𝑝

 represents the generation rate and 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

 

represents the average task size of task type m in epoch number 

ep. The total weight of all task types can be expressed as: 

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

= ∑ 𝑤𝑗
𝑒𝑝

3

𝑗=1

 

 

(14) 

We use the weight for each task type to calculate a 

coefficient, which is then utilized to assign a specific number of 

CPU cores to each task type’s instance in the current epoch. The 

coefficient for task type m in epoch ep can be expressed as: 

𝑐𝑜𝑚
𝑒𝑝

=
𝑤𝑚

𝑒𝑝

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝  

 

(15) 

The number of CPU cores assigned to the instance of task type 

m, denoted by 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠, can be specified as: 

𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = ⌊𝑐𝑜𝑚

𝑒𝑝
× 𝐴𝐶⌋ (16) 

where AC represents the total number of available CPU cores 

in the CPU pool. After assigning the floor of the calculated 

number of CPU cores based on the coefficient to each instance, 

there may be some remaining extra cores that need to be 

allocated. For each instance, a "luck percentage," denoted by 

𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 is assigned, with the sum of all luck percentages totaling 

100%. These extra cores are distributed to instances based on 

their luck percentage. For example, if  𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 = 70, it means 

there is a 70% chance that an extra core will be allocated to that 

instance. For each extra core, a random number between 0 and 

100 is generated, and if the number falls within the range of 

𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 , the extra core is added to 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠. The pseudocode of 

the proposed weighted algorithm is presented in Algorithm 1. 

As presented in the pseudocode, the algorithm iterates 

through each epoch, with the maximum number of epochs 

denoted as 𝑒𝑐, allowing it to adapt dynamically to changing 

conditions. Lines 2 through 5 calculate the weight for each task 

type, with line 5 computing the total weight across all task types 

to provide an overview of the computational demands during 

the current epoch. Line 6 then initiates an iteration through each 

instance, with lines 7 and 8 ensuring that each instance is 

allocated at least one CPU core to maintain operational 

integrity. Using the total weight, lines 9 through 12 calculate a 

coefficient for each task type, determining the proportion of 

resources allocated based on their weighted importance. The 

algorithm then allocates the floor of the calculated number of 

cores to each instance to ensure feasibility. Lastly, lines 13 

through 19 address the distribution of any remaining cores, 

which are allocated individually based on each instance's luck 

percentage if extra cores remain after the initial allocation. 

In analyzing the time complexity of the proposed algorithm, 

the outer loop iterates 𝑒𝑐 times, resulting in a time complexity 

of 𝑂(𝑒𝑐). The two inner loops in lines 2 through 4 and lines 6 

through 12 each run a constant number of times (specifically, 

three iterations), giving them a time complexity of 𝑂(1). 

Therefore, these inner loops do not impact the overall 

complexity. Lines 13 through 19 consist of a while loop that 

executes up to 𝐴𝐶 times, contributing a time complexity of 

𝑂(𝐴𝐶). Consequently, combining the contributions from the 

outer loop and the while loop, the total complexity of the 

proposed algorithm is 𝑂(𝑒𝑐 × 𝐴𝐶). 

Algorithm 1 Proposed Resource Allocation Algorithm 

Input: 𝐴𝐶, 𝜆𝑚
𝑒𝑝

, 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

, 𝑒𝑐 

Output: 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 

1: for ep=0;ep<ec;ep++ do 
2:  for m=0;m<3;m++ do 
3:   calculate weight for each task type m in epoch 

ep: 

   𝑤𝑚
𝑒𝑝

= 𝜆𝑚
𝑒𝑝

× 𝑇𝑇𝑚
𝑎𝑣𝑔𝑠𝑖𝑧𝑒

 

4:  end for 

5:  calculate total weight for the current epoch: 

  

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝

= ∑ 𝑤𝑗
𝑒𝑝

3

𝑚=1

 

 

6:  for m=0;m<3;m++ do 

7:   𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠 + 1 

8:   𝐴𝐶 = 𝐴𝐶 − 1 

9:   calculate coefficient for task type m in epoch ep: 

   
𝑐𝑜𝑚

𝑒𝑝
=

𝑤𝑚
𝑒𝑝

𝑤𝑡𝑜𝑡𝑎𝑙
𝑒𝑝  

10:   allocate the floor of calculated number of cores 

to the instance of task type m: 

   𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = ⌊𝑐𝑜𝑚

𝑒𝑝
× 𝐴𝐶⌋ 

11:   𝐴𝐶 = 𝐴𝐶 − 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 

12:  end for 

13:  while 𝐴𝐶 > 0 do 

14:   generate a random number from 0 to 100 

15:   if Random number is in range of  𝐶𝐼𝑚
𝑙𝑢𝑐𝑘 do  

16:    𝐴𝐶 = 𝐴𝐶 − 1 

17:    𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 = 𝐶𝐼𝑚

𝑐𝑜𝑟𝑒𝑠 + 1 

18:   end if 

19:  end while 

20: end for 

21: return 𝐶𝐼𝑚
𝑐𝑜𝑟𝑒𝑠 

5. EVALUATION 

In this section, we evaluate the performance of our proposed 

weighted algorithm by conducting a series of simulation 

experiments under various scenarios and comparing the 

corresponding numerical results. 

5.1. Simulation Setup 

Our experiment was conducted using Python 3.10.4 to 

simulate a VEC environment with multiple users. The 

simulation was performed on a computer with the following 

specifications: an AMD Ryzen 7 5800X3D processor, 32 GB 

of RAM, and an NVIDIA RTX 3080 GPU. The total number of 

time slots was set to 1000, divided into four epochs. Each time 
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slot had a duration of 1000 ms, with the time slot indices 

assigned to the epochs being [0, 250, 500, 750]. TABLE 2 

presents other simulation parameters used in the experiments. 

TABLE 2 

Simulation parameters 

Parameter Value 

Number of CPU cores 15 

CPU core power 2000 MIPS 

Set of task types [1, 2, 3] 

Task type deadlines [200, 800, 4000] (ms) 

Task type rejection penalties [-0.2, -0.05, -0.02] ($) 

Task type size means [200, 1000, 4000] 

Task type size standard deviations [20, 100, 400] 

On time income [0.5, 0.8, 1] ($) 

β income for task type 2 0.5 $ 

Φ1 and Φ2 income for task type 3 [2, 4] ($) 

Memory usage for task types  [0.1, 0.2, 0.5] (MB/ms) 

θ 1.5 

Δ1, Δ2 [2, 4] 

Cost of memory per 100 MB [0.002, 0.004, 0.008] ($) 

Idle memory usage for instances [200, 500, 1000] (MB/ms) 

5.2. Experiment Scenarios 

We compared our proposed weighted algorithm with other 

algorithms across three distinct scenarios, each characterized by 

unique task generation rates for every task type within each 

epoch. This dynamic task generation rate allowed us to assess 

the effectiveness of our algorithm and its impact on the metrics 

considered in this experiment. The task generation parameters 

for all three scenarios are presented in TABLE 3. For each task 

type in each scenario, a list is provided, where the index 

corresponds to the epoch index, and the value represents the 

task generation rate for that task type in the respective epoch. 

TABLE 3 

Scenarios parameters 

 𝛌1 𝛌2 𝛌3 

Scenario 1 [4, 16, 10, 2] [4, 6, 6, 0] [2, 3, 4, 1] 

Scenario 2 [10, 2, 13, 0] [2, 1, 0, 4] [4, 1, 3, 2] 

Scenario 3 [1, 8, 5, 12] [0, 4, 4, 6] [3, 3, 1, 4] 

5.3. Compared Algorithms 

We evaluated the performance of our proposed weighted 

algorithm by comparing it with the following algorithms: 

1) RAND-RAND: In this approach, the state of each instance 

is assigned randomly (either On or Off), and the number of 

cores allocated to each instance in the 'On' state is also 

determined randomly. 

2) WARM-EVEN [21]: This algorithm maintains all instances 

in a warm state (On) and distributes the CPU cores evenly 

among them. 

3) WARM-RAND [22]: In this method, all instances are kept 

in a warm state, and the allocation of CPU cores is performed 

randomly. 

5.4. Metrics 

In this subsection, we present the metrics used to evaluate the 

performance of our proposed algorithm. These metrics offer a 

comprehensive assessment of the algorithm's effectiveness in 

comparison to other algorithms. The selected metrics are 

designed to capture various dimensions of performance and 

include: 

1) Memory Cost: This metric quantifies the total memory cost, 

calculated based on memory consumption across all instances 

in each scenario. It considers both active and idle runtime, as 

outlined in Eq. (9) and Eq. (10). 

2) Penalty: This metric assesses the total penalty incurred by 

the system for each algorithm within each scenario. The penalty 

is determined by the number of rejected tasks, reflecting the 

algorithm's impact on task acceptance 

3) Income: This metric measures the total net income earned by 

the system in each scenario. It captures the financial 

performance of the system based on task execution and resource 

utilization. 

4) Profit: This metric calculates the total profit by accounting 

for both costs and income, as described in Eq. (12). It provides 

an overarching measure of the algorithm’s effectiveness in 

optimizing the system’s financial outcomes. 

These metrics collectively provide a comprehensive view of 

the algorithm's performance, enabling a detailed comparison 

with other algorithms. 

5.5. Results 

In this subsection, we analyze the different metrics in our 

experiments and review the numeral results. As shown in Fig. 

3, the RAND-RAND algorithm exhibits lower memory costs, 

primarily because instances can be completely turned off during 

some epochs, thereby reducing memory consumption. 

However, this approach has several drawbacks, including a 

decrease in QoS due to an increase in rejected tasks. This 

increase in rejected tasks leads to higher penalties incurred by 

the system and ultimately results in a reduction in total profit. 

Examining the numerical results of the other three algorithms, 

where all instances remain in the 'On' state, we observe that our 

proposed algorithm reduces memory cost by an average of 

2.54% across all three scenarios compared to the WARM-

EVEN algorithm. Additionally, WARM-EVEN outperforms 

WARM-RAND by an average of 2.17%. 

 

Fig. 3. Comparison of total memory cost 



 

 

Fig. 4 illustrates the impact of penalties incurred by the 

system as a result of the number of rejected tasks. Our proposed 

algorithm demonstrates superior performance compared to the 

other three algorithms, achieving an average penalty reduction 

of 11.4% relative to the WARM-EVEN algorithm, which 

outperforms the other two algorithms in this metric. Notably, in 

scenario two, our proposed algorithm achieves a remarkable 

25.98% reduction in penalties. This significant improvement is 

attributed to the algorithm's sophisticated allocation strategy, 

which intelligently assigns CPU cores to each instance based on 

the load of each task type's queue. By effectively managing 

resources and minimizing task rejection, our algorithm reduces 

the associated penalties and enhances overall system efficiency. 

This reduction in penalties highlights the algorithm's ability to 

optimize resource use and improve system performance, even 

when task loads and demands fluctuate. 

 

Fig. 4. Comparison of total penalty 

Fig. 5 illustrates the impact of different algorithms on system 

income, highlighting that our proposed weighted algorithm 

consistently demonstrates superior optimization performance. 

It can be observed that our proposed algorithm outperforms the 

other three algorithms across all three scenarios. On average, 

our proposed algorithm achieves a 10.43% increase in income 

compared to the WARM-EVEN algorithm, which consistently 

outperforms the remaining two algorithms across all scenarios 

in this metric. In particular, scenario 2 reveals an even more 

pronounced advantage, with our algorithm exceeding the 

income earned by WARM-EVEN by 18.79%. This 

enhancement in performance is primarily due to the proposed 

algorithm's more effective resource allocation strategy. By 

optimizing the distribution of resources, the algorithm enables 

a higher number of tasks to be executed. Since each 

successfully executed task contributes to the overall income of 

the system, this improved allocation significantly boosts the 

system's total income. The results represent the impact of our 

proposed algorithm in maximizing system income through 

better management of computational resources.  

 

 

Fig. 5. Comparison of total income 

Fig. 6 represents the total profit of the system which is the 

main objective of this optimization problem. When comparing 

the algorithms across all three scenarios, it is evident that our 

algorithm outperforms the other three by a significant margin. 

On average, the weighted algorithm increases the system's total 

profit by 18.26% compared to the WARM-EVEN algorithm, 

which has the best performance among the remaining three. The 

most notable improvement is observed in scenario 2, where the 

total profit increases by 34.16%. This substantial gain is 

attributable to the weighted algorithm's capacity to minimize 

system penalties by maintaining instances in a warm state, 

thereby reducing memory consumption and overall costs. 

Moreover, the algorithm facilitates the execution of a greater 

number of tasks through efficient resource allocation, tailored 

to the load of each instance. This enhanced resource 

management not only boosts the total income but also 

contributes to a considerable increase in the system's total 

profit. The synergy of effective instance management and 

optimized resource allocation results in a markedly improved 

overall system profit. 

 
Fig. 6. Comparison of total profit 
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6. CONCLUSION AND FUTURE WORK 

 In this paper, we reviewed the task offloading and resource 

allocation problem in vehicular edge computing and formulated 

the problem mathematically. We proposed a weighted 

algorithm to optimize this problem, considering QoS, cost, and 

profit. We compared our algorithm across three different 

scenarios with other algorithms based on metrics such as 

memory cost, penalties, income, and profit. The results showed 

that our algorithm increased total profit by an average of 

18.26%, while also reducing total costs and increasing system 

income. These experiments demonstrate that our algorithm is 

well-suited for real-time environments due to its low response 

time. This study did not account for heterogeneous CPU cores, 

which could be explored in future research. Additionally, 

energy consumption should be addressed by implementing 

strategies such as turning off unused instances, disabling 

unnecessary cores, or leveraging technologies like Dynamic 

Voltage and Frequency Scaling (DVFS) to reduce energy 

usage. Furthermore, utilizing deep learning methods to predict 

system workload may enhance resource allocation and overall 

responsiveness. These aspects could be incorporated into future 

work to further improve the proposed solution. 
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