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Abstract

The article discusses the general Sturm-Liouville problem. To solve it
numerically, a new algorithm is proposed, which is based on the varia-
tional principle and does not use saturation. The problem of constructing
numerical methods for solving eigenvalue problems can be divided into
two stages. First, we need to reduce the infinite-dimensional problem into
a finite-dimensional one, and then find a method for solving this finite-
dimensional algebraic eigenvalue problem. In this paper, we only consider
the first stage, and solve the resulting algebraic problem using the QR al-
gorithm. A comparison with the results of other authors is also carried

out. Methodical calculations confirm the correctness of the new approach.
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1 Introduction

There are a number of competing methods for the numerical solution of
the eigenvalue problem. These are, first of all, projection methods: the Ritz
method, the Bubnov—Galerkin method, and so on. We know quite a lot about
the accuracy provided by these methods. For example, the approximations
for the eigenvalues of self-adjoint problems given by the Ritz method lie on
top of the exact values. A number of convergence results are known, and
in some special cases, error estimates of projection methods are obtained
[10]. Along with projection methods, difference methods have also become
widespread [9]. However, when designing these numerical methods, a number
of important circumstances are not taken into account, which significantly
reduces their effectiveness. Usually, when solving an eigenvalue problem,
we have colossal a priori information. Most often, the solutions sought are
infinitely differentiable or even analytical. Therefore, they are elements of
functional compacts, quite simply arranged. As a rule, the asymptotics of
their diameters are well known for such compacts. On the other hand, any
projection method is based on the choice of a certain set of finite-dimensional
subspaces and thereby some way of approximating the desired solution (and
this method, as a rule, is not consistent with the optimal methods mentioned
above). This naturally leads to the fact that the numerical algorithm based
on such a projection method is far from optimal in its properties. At the same
time, by basing the numerical algorithm on a rational way of approximating
the desired element, we obtain an algorithm close to the optimal one. This
approach will be developed below, and it is based on the ideas of the work [4].
The different methods have significant disadvantages [4] and, in particular,
the fact that they are methods with saturation (quite a lot of works have been
devoted to the accuracy of these methods, and of them we will point only to

[9, 5]). Therefore, the difference method of solving the eigenvalue problem
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647 Numerical study of the Sturm-Liouville problem

again ignores a priori information about the smoothness of the solution, and
taking into account the loss of smoothness inherent in difference methods,
we obtain algorithms that are far from optimal. The problem of constructing
numerical methods for solving the eigenvalue problem is divided into two.
First of all, you need to reduce an infinite-dimensional problem to a finite-
dimensional problem, and then specify a method for solving the resulting
algebraic eigenvalue problem. In this paper, only the first stage is considered,
and the resulting algebraic problem is solved by the QR method.

Abstract theorems on error estimation in eigenvalue problems are pub-
lished in [2, 7]. Note that in [7] only compact operators are considered, and
in [2] arbitrary closed operators are considered.

A special case of the Sturm-Liouville problem was considered earlier in
[3].

2 Problem statement and variational principle

Consider the eigenvalue problem (Sturm-Liouville problems):

—% (p(x)ji) + r(x)u(z) — Mp(x)u(x) = 0, a<z<b, (1)
u'(a) — Bu(a) =0, ~u'(b) + du(b) =0, (2)

with « > 0,v> 0,8 >0,§ > 0, and at least one of the coefficients 8 and
¢ is different from zero, p(x) > 0,r(x) > 0,A = fb pcé; < 00, po < p(z) <
P1, Po,p1 > 0. Then the problem (1)—(2) has a discrete spectrum [8].
Variational principle. Denote Au = —-L (p(z)%%) + r(z)u(x).
Differential operator is defined on functions satisfying boundary condi-
tions (2). Then

b
f? = () = [ o+ Spla)i?(@) + Sp(B ) = T(a)

Let @ = u + en(z). Then

b
J () =/ (p(u' +en')* +r(u+en)*)dx
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+ Zpla)ula) + 2n(@)* + Zp(B)(u(d) + en(b))?

=P(e).

Moreover,

b 8
3'(0) = / (e (2) '+ ) + e+ ) + 2 p(ayu(a)(u(a) + n(a)
4 §p<b>u<b><u<b> (b))

b b b
z/ p(x)(u'(x))2dx—|—/ pu’n'dx—F/ ru’de

a

b
+ [ runds + Epta)uta)ula) + (@) + ZpEu®)(u(b) + o).

Note that
b b b b
/ pu'n'dz = / pu'dn = pu'n|, — / (pu')'ndz,
a a a

b b b

/ pu’de:/ pu'du:pu'uﬂ—/ (pu') udz,
a b a a
/ [—(pu')" + rujudz = 0.

By virtue of the equation, it remains without 7:

pu'al, + Sotat @) + S0 0

= p(u/(8) + Zu)u() + pl—@) + Zula)uta) 0.

Due to the boundary conditions, it remains with n:

b
[+ radde s 0)+ Zubln®) + pla)l-u'(@) + Du@ln(a) =0

Because the function 7 is arbitrary, then we get from the condition

J(u) — min, equations and boundary conditions (1)—(2).

3 Interpolation formula

Let u = u(y),y € [a,b], and replacement y = =2z + 22, = € [-1, +1].
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The interpolation formula by = reads as follows:

n+1 2 _ x
Ppio(ziu) = Z m

j=0"

uj, uj = u(y;),

uq =u(a), up = u(b).

b—2  a+b 2j — 1
Yj :ij + —5 xj =cosbj, 0; = o m,
xo=—1, xpy1 =41, T,(x)= cos(narccosz).

From here we get that because

[. .]/ o=z, = 20T, (z) + (2% = 1)T) ()] = (xf — 1)T) (x;), then

T=Tj
n—1
T (2) e () _ 2 2
_— = T; = —Ty(z;) = — coskb;.
17 (z5) (x — x5) ];J a, Tr(@), ay” = DT(w;) = T cos k)
where symbol “/” of the sign of the sum indicates that the summand for k = 0
is taken with the coefficient %
Quadrature formula. Let us define the coefficients of the quadrature
formula of the integral. They are the sum of the weights on the function

values in the nodes as follows:

b
b—a a-+b b—a
/f(y)dy (y= gt o Ay = dz)

b—a Ug up oy +1
=2 94— I ..)d
2 A=) T AT "+/_1 (--)da,

T,(1) =1,  T,(-1)=(-1)™

Here T),41(z) = 22T, (z) — T,,—1(2) which implies

Tp(z)de = —————— =

+1 (—1) + (—1)k+1 07 k'Odda
/_1 k2 - ].

—2
%21 k -even,

2

+1 po ) k—eVen,
I :/ (& — DT (x)de = ™

-1 —2., k-odd,
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+1 —;21, k-even,
Ib:/ (4 DTy (2)de = { ™

~1 —, k-odd,

1 1 1
I = / H(aﬂ2 ~DT(a)de = BT HAemeEs + FoEa s keven,

1 0, k -odd,
ey
I,
o= S S
k=0(2)
Iy = —§7

b +1
b—a b—a a+b
/Qf(y)dy— 5 /_1 f( 5Tt >dw
n
=Cafa+6bfb+chfj, fij=cosb;, j=1,2,...,n.

Jj=1

Numerical differentiation. Let us differentiate the interpolation for-

mula by x as follows:

(_;>”(x )T ()

Poio(z,u) :%(x + DT (z)up —

*Z

{Z cos k0 Ty (x) u;,

Sln j =0

a+b, ., ,b—a 2,

v obh—qa'"

fly) =

Pl yalwn) =2 (@ + DT, (@) + T(@)) - S (e - DTu(a) + T
+ = Z{ 20

{Z{ZmTk (2% — 1)T}(z)} cos kb; }uy,

J k=0
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Let x = +1, or let © = cos6;, i =1,2,...,n. Then

. _Ub 1+ 2n?
Plyp(~Lu) =22y - L2,
2
+EZ o 9] {Z{Q ¥} cos k6 } b hu;,
j=1 k=0

1+ 2n? (—=1)"
Uy —

P o(+1,u) = Ug

2 2
+ = Z:{sm 7o, {kZOZcos kO;}u,,
, A _@ A sinnb; ,  (=1)" . sinnb;
P o(xiu) =—{n(z; + 1) S0 } {n(z; —1) sin Yua
n—1

T Z{sm 0

{2{2%‘ cosk; — ksin®; sin kb;} coskb;})}u;.
k=0

4 Discretization

The problem of discretizing a quadratic functional can be reduced to the

problem of finding the minimum of a quadratic function as follows:
/ (pu'® + ru?)dx + ap(a)zﬁ(a) + ;p(b)uz(b) = J(u) — min.

Calculating the integral by the quadrature formula, we reduce the problem
of the minimum of the quadratic functional to the problem of the minimum

of the quadratic form:

J(U) — J(Ub7U1,UQ, e 7un7ua)7

aJ(ulnuly Uz, - - - 7un7ua)

8ul

=0, 1=b1,2,...,n,a.

Calculation results. The calculations use @ = 0, No = 1026. Then the
calculations give \yg = —0.878; k =1, Ay = 1.000002; k = 72, Azy =
5184.001.
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Table 1: p =1, ¢ = 20 cos 2y + 100sin? 2y, u’(0) = 0, u/(7) =0

i N i i Ai

N2 | 34 64 134 [6]

1 2.0%x1075 52% 1078 5.1%x1078 0.0000000
2 37.7733909214894 | 37.8059004212607 | 37.8059002738378 | 37.7596285
3 41.3283618161036 | 45.6727315410478 | 46.6101985290947 | 37.8059002
4 69.8880664248824 | 69.8212185270856 | 69.8010881122681 | 37.8525995
5 70.7581077855011 | 70.6037307664520 | 70.5599120331492 | 70.5475097
6 71.5270508988527 | 71.4361363622447 | 71.4119790617174 | 92.6538177
7 96.2500910443853 | 96.2105986913062 | 96.2068706709564 | 96.2058159
8 110.785329891999 | 110.714479891137 | 110.695004912174 | 102.254347

Table 2: p=1,q = exp(y),v/(0) =0, v/(7) =0

ey i Ai Ai

N2 | 34 66 1026 [6]

1| 4.9013 | 4.8978 | 4.8966739510209 | 4.89571
2 | 5.1951 | 5.2204 | 5.22886153287197 | -

3 | 10.053 | 10.047 | 10.0451980276767 | 9.99955
4 | 16.033 | 16.022 | 16.0192812195823 | 15.4685
5 | 23.202 | 23.292 | 23.2662960864049 | 21.0371
6 | 32.306 | 32.274 | 32.2637489027225 | 28.1893
7 | 43.284 | 43.236 | 43.2200825906882 | 37.7907
8 | 56.271 | 56.204 | 56.1816819519642 | 49.6137
9 | 71.272 | 71.182 | 71.1531142297211 | 63.5205
10 | 88.285 | 88.170 | 88.1322684247181 | 79.4646
11 | 107.30 | 107.16 | 107.116861697407 | 97.4279
12 | 128.33 | 128.16 | 128.105246952299 | 117.402
13 | 151.37 | 151.16 | 151.096313344083 | 139.384
14 | 176.41 | 176.17 | 176.089314130927 | 163.370
15 | 203.46 | 203.17 | 203.083739890564 | 189.359
16 | 232,51 | 232.18 | 232.079236175438 | 217.351
17 | 263.65 | 263.19 | 263.075551299445 | 247.344
18 | 296.87 | 296.21 | 296.072503036626 | 279.338
19 | 334.82 | 331.22 | 331.069957054295 | 313.334
20 | 373.85 | 368.24 | 368.067812678323 | 349.330
21 | 437.56 | 407.26 | 407.065993320228 | 387.326
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Table 3: p = 1,9 = 7re2Cr0 w/(0) = 0,0/ =0

N2 34 64 1]
e=0.1 | 9.83337323117731 | 9.81926933696682 | Aj = 9.81382
e =0.2 | 9.76485503817489 | 9.75081106707683 | Aj = 9.74579

5 Discussion of the results

Methodical calculations at ¢ = 0 demonstrate the correctness of the method-
ology. Comparison with the results of [1] (see Table 3) confirms its correct-
ness. However a comparison with the results of [6] demonstrates a discrep-
ancy. In Table 2, in the cited work, the second eigenvalue is omitted. The
remaining eigenvalues match satisfactorily only for small numbers of eigen-

values. In Table 1, only individual eigenvalues match satisfactorily.
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