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Abstract

The article discusses the general Sturm–Liouville problem. To solve it
numerically, a new algorithm is proposed, which is based on the varia-
tional principle and does not use saturation. The problem of constructing
numerical methods for solving eigenvalue problems can be divided into
two stages. First, we need to reduce the infinite-dimensional problem into
a finite-dimensional one, and then find a method for solving this finite-
dimensional algebraic eigenvalue problem. In this paper, we only consider
the first stage, and solve the resulting algebraic problem using the QR al-
gorithm. A comparison with the results of other authors is also carried
out. Methodical calculations confirm the correctness of the new approach.
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1 Introduction

There are a number of competing methods for the numerical solution of
the eigenvalue problem. These are, first of all, projection methods: the Ritz
method, the Bubnov–Galerkin method, and so on. We know quite a lot about
the accuracy provided by these methods. For example, the approximations
for the eigenvalues of self-adjoint problems given by the Ritz method lie on
top of the exact values. A number of convergence results are known, and
in some special cases, error estimates of projection methods are obtained
[10]. Along with projection methods, difference methods have also become
widespread [9]. However, when designing these numerical methods, a number
of important circumstances are not taken into account, which significantly
reduces their effectiveness. Usually, when solving an eigenvalue problem,
we have colossal a priori information. Most often, the solutions sought are
infinitely differentiable or even analytical. Therefore, they are elements of
functional compacts, quite simply arranged. As a rule, the asymptotics of
their diameters are well known for such compacts. On the other hand, any
projection method is based on the choice of a certain set of finite-dimensional
subspaces and thereby some way of approximating the desired solution (and
this method, as a rule, is not consistent with the optimal methods mentioned
above). This naturally leads to the fact that the numerical algorithm based
on such a projection method is far from optimal in its properties. At the same
time, by basing the numerical algorithm on a rational way of approximating
the desired element, we obtain an algorithm close to the optimal one. This
approach will be developed below, and it is based on the ideas of the work [4].
The different methods have significant disadvantages [4] and, in particular,
the fact that they are methods with saturation (quite a lot of works have been
devoted to the accuracy of these methods, and of them we will point only to
[9, 5]). Therefore, the difference method of solving the eigenvalue problem
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647 Numerical study of the Sturm–Liouville problem

again ignores a priori information about the smoothness of the solution, and
taking into account the loss of smoothness inherent in difference methods,
we obtain algorithms that are far from optimal. The problem of constructing
numerical methods for solving the eigenvalue problem is divided into two.
First of all, you need to reduce an infinite-dimensional problem to a finite-
dimensional problem, and then specify a method for solving the resulting
algebraic eigenvalue problem. In this paper, only the first stage is considered,
and the resulting algebraic problem is solved by the QR method.

Abstract theorems on error estimation in eigenvalue problems are pub-
lished in [2, 7]. Note that in [7] only compact operators are considered, and
in [2] arbitrary closed operators are considered.

A special case of the Sturm–Liouville problem was considered earlier in
[3].

2 Problem statement and variational principle

Consider the eigenvalue problem (Sturm–Liouville problems):

− d

dx

(
p(x)

du

dx

)
+ r(x)u(x)− λρ(x)u(x) = 0, a ≤ x ≤ b, (1)

αu′(a)− βu(a) = 0, γu′(b) + δu(b) = 0, (2)

with α > 0, γ > 0, β ≥ 0, δ ≥ 0, and at least one of the coefficients β and
δ is different from zero, p(x) ≥ 0, r(x) ≥ 0, A =

∫ b

a
dx
p(x) < ∞, ρ0 ≤ ρ(x) ≤

ρ1, ρ0, ρ1 > 0. Then the problem (1)–(2) has a discrete spectrum [8].
Variational principle. Denote Au = − d

dx

(
p(x)dudx

)
+ r(x)u(x).

Differential operator is defined on functions satisfying boundary condi-
tions (2). Then

|u|2 = (Au, u) =

∫ b

a

(pu′2 + ru2)dx+
β

α
p(a)u2(a) +

δ

γ
p(b)u2(b) ≡ J(u).

Let ū = u+ εη(x). Then

J(ū) =

∫ b

a

(p(u′ + εη′)2 + r(u+ εη)2)dx
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+
β

α
p(a)(u(a) + εη(a))2 +

δ

γ
p(b)(u(b) + εη(b))2

≡Φ(ε).

Moreover,

Φ′(0) =

∫ b

a

(p(x)u′(x)(u′ + η′) + ru(u+ η))dx+
β

α
p(a)u(a)(u(a) + η(a))

+
δ

γ
p(b)u(b)(u(b) + η(b))

=

∫ b

a

p(x)(u′(x))2dx+

∫ b

a

pu′η′dx+

∫ b

a

ru2dx

+

∫ b

a

ruηdx+
β

α
p(a)u(a)(u(a) + η(a)) +

δ

γ
p(b)u(b)(u(b) + η(b)).

Note that ∫ b

a

pu′η′dx =

∫ b

a

pu′dη = pu′η|ba −
∫ b

a

(pu′)′ηdx,∫ b

a

pu′2dx =

∫ b

a

pu′du = pu′u|ba −
∫ b

a

(pu′)′udx,∫ b

a

[−(pu′)′ + ru]udx = 0.

By virtue of the equation, it remains without η:

pu′u|ba +
β

α
p(a)u2(a) +

δ

γ
p(b)u2(b)

= p(u′(b) +
δ

γ
u(b))u(b) + p(−u′(a) +

β

α
u(a))u(a) = 0.

Due to the boundary conditions, it remains with η:∫ b

a

η[−(pu′)′ + ru]dx+ p(b)[u′(b) +
δ

γ
u(b)]η(b) + p(a)[−u′(a) +

β

α
u(a)]η(a) = 0.

Because the function η is arbitrary, then we get from the condition
J(u) → min, equations and boundary conditions (1)–(2).

3 Interpolation formula

Let u = u(y), y ∈ [a, b], and replacement y = b−2
2 x+ a+b

2 , x ∈ [−1,+1].
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649 Numerical study of the Sturm–Liouville problem

The interpolation formula by x reads as follows:

Pn+2(x;u) =

n+1∑
j=0

(x2 − 1)Tn(x)

[. . .]′x=xj
(x− xj)

uj , uj = u(yj),

ua =u(a), ub = u(b).

yj =
b− 2

2
xj +

a+ b

2
, xj = cos θj , θj =

2j − 1

2n
π,

x0 =− 1, xn+1 = +1, Tn(x) = cos(n arccosx).

From here we get that because
[. . .]

′

x=xj
= 2xTn(x) + (x2 − 1)T ′

n(x)
∣∣
x=xj

= (x2
j − 1)T ′

n(xj), then

Tn(x)

T ′
n(xj)(x− xj)

=

n−1∑
k=0

′
a
(n)
k Tk(x), a

(n)
k =

2

n
Tk(xj) =

2

n
cos kθj .

where symbol “′” of the sign of the sum indicates that the summand for k = 0

is taken with the coefficient 1
2 .

Quadrature formula. Let us define the coefficients of the quadrature
formula of the integral. They are the sum of the weights on the function
values in the nodes as follows:∫ b

a

f(y)dy (y =
b− a

2
x+

a+ b

2
, dy =

b− a

2
dx)

=
b− a

3

∫ +1

−1

f(x)dx

=
b− a

2
− ua

2Tn(−1)
Ian +− ub

2Tn(1)
Ibn +

∫ +1

−1

(. . .)dx,

Tn(1) =1, Tn(−1) = (−1)n.

Here Tn+1(x) = 2xTn(x)− Tn−1(x) which implies

∫ +1

−1

Tk(x)dx =
(−1) + (−1)k+1

k2 − 1
=

 0, k-odd,
−2

k2−1 , k -even,

Ian =

∫ +1

−1

(x− 1)Tn(x)dx =


2

n2−1 , k-even,
−2

n2−4 , k -odd,
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Ibn =

∫ +1

−1

(x+ 1)Tn(x)dx =


−2

n2−1 , k-even,
1

n2−4 , k -odd,

Ik =

∫ +1

−1

(x2 − 1)Tk(x)dx =


1

k2−1 − 1
2{

1
(k+1)(k+3) +

1
(k−1)(k−3)}, k-even,

0, k -odd,

ca =
b− a

2
{ (−1)n+1

2
Ian},

cb =
b− a

2
{1
2
Ibn},

cj =
b− a

2
{−2

n

n−1∑
k=0(2)

cos kθj
sin2 θj

Ik},

I0 = −4

3
,

∫ b

a

f(y)dy =
b− a

2

∫ +1

−1

f

(
b− a

2
x+

a+ b

2

)
dx

=cafa + cbfb +

n∑
j=1

cjfj , fj = cos θj , j = 1, 2, . . . , n.

Numerical differentiation. Let us differentiate the interpolation for-
mula by x as follows:

Pn+2(x, u) =
1

2
(x+ 1)Tn(x)ub −

(−1)n

2
(x− 1)Tn(x)ua

+
2

n

n∑
j=1

1− x2

sin2 θj
{
n−1∑
k=0

cos kθjTk(x)}uj ,

f(y) = f{b− a

2
x+

a+ b

2
}f ′

x = f ′
y

b− a

2
⇒ f ′

y =
2

b− a
f ′
x,

P
′

n+2(x, u) =
ub

2
{(x+ 1)Tn

′
(x) + Tn(x)} −

(−1)n

2
{(x− 1)Tn(x) + Tn(x)}ua

+
2

n

n∑
j=1

{ −1

sin2 θj
{
n−1∑
k=0

{2xTk(x) + (x2 − 1)T ′
k(x)} cos kθj}uj ,

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 645–654



651 Numerical study of the Sturm–Liouville problem

Let x = ±1, or let x = cos θi, i = 1, 2, . . . , n. Then

P ′
n+2(−1, u) =

ub

2
(−1)n − 1 + 2n2

2
ua

+
2

n

n∑
j=1

{ 1

sin2 θj
{
n−1∑
k=0

{2(−1)k} cos kθj}}huj ,

P ′
n+2(+1, u) =

1 + 2n2

2
ub −

(−1)n

2
ua

+
2

n

n∑
j=1

{ −1

sin2 θj
{
n−1∑
k=0

2 cos kθj}}uj ,

P ′
n+2(xi, u) =

ub

2
{n(xi + 1)

sinnθi
sin θi

} − (−1)n

2
{n(xi − 1)

sinnθi
sin θi

}ua

+
2

n

n∑
j=1

{ −1

sin2 θj
{
n−1∑
k=0

{2xi cos kθi − k sin θi sin kθi} cos kθj})}uj .

4 Discretization

The problem of discretizing a quadratic functional can be reduced to the
problem of finding the minimum of a quadratic function as follows:∫ b

a

(pu′2 + ru2)dx+
β

α
p(a)u2(a) +

δ

γ
p(b)u2(b) ≡ J(u) → min .

Calculating the integral by the quadrature formula, we reduce the problem
of the minimum of the quadratic functional to the problem of the minimum
of the quadratic form:

J(u) → J(ub, u1, u2, . . . , un, ua),

∂J(ub, u1, u2, . . . , un, ua)

∂ul
= 0, l = b, 1, 2, . . . , n, a.

Calculation results. The calculations use Q = 0, N2 = 1026. Then the
calculations give λ0 = −0.878; k = 1, λ1 = 1.000002; k = 72, λ72 =

5184.001.
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Table 1: p = 1, q = 20 cos 2y + 100 sin2 2y , u′(0) = 0, u′(π) = 0

i λi λi λi λi

N2 34 64 134 [6]
1 2.0 ∗ 10−5 5.2 ∗ 10−8 5.1 ∗ 10−8 0.0000000
2 37.7733909214894 37.8059004212607 37.8059002738378 37.7596285
3 41.3283618161036 45.6727315410478 46.6101985290947 37.8059002
4 69.8880664248824 69.8212185270856 69.8010881122681 37.8525995
5 70.7581077855011 70.6037307664520 70.5599120331492 70.5475097
6 71.5270508988527 71.4361363622447 71.4119790617174 92.6538177
7 96.2500910443853 96.2105986913062 96.2068706709564 96.2058159
8 110.785329891999 110.714479891137 110.695004912174 102.254347

Table 2: p = 1, q = exp(y), u′(0) = 0, u′(π) = 0

i λi λi λi λi

N2 34 66 1026 [6]
1 4.9013 4.8978 4.8966739510209 4.89571
2 5.1951 5.2204 5.22886153287197 -
3 10.053 10.047 10.0451980276767 9.99955
4 16.033 16.022 16.0192812195823 15.4685
5 23.292 23.292 23.2662960864049 21.0371
6 32.306 32.274 32.2637489027225 28.1893
7 43.284 43.236 43.2200825906882 37.7907
8 56.271 56.204 56.1816819519642 49.6137
9 71.272 71.182 71.1531142297211 63.5205
10 88.285 88.170 88.1322684247181 79.4646
11 107.30 107.16 107.116861697407 97.4279
12 128.33 128.16 128.105246952299 117.402
13 151.37 151.16 151.096313344083 139.384
14 176.41 176.17 176.089314130927 163.370
15 203.46 203.17 203.083739890564 189.359
16 232.51 232.18 232.079236175438 217.351
17 263.65 263.19 263.075551299445 247.344
18 296.87 296.21 296.072503036626 279.338
19 334.82 331.22 331.069957054295 313.334
20 373.85 368.24 368.067812678323 349.330
21 437.56 407.26 407.065993320228 387.326
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653 Numerical study of the Sturm–Liouville problem

Table 3: p = 1, q =
e cos(2πy)

1+e cos(2πy)
, u′(0) = 0, u′ = 0

N2 34 64 [1]
e = 0.1 9.83337323117731 9.81926933696682 λs

1 = 9.81382

e = 0.2 9.76485503817489 9.75081106707683 λs
1 = 9.74579

5 Discussion of the results

Methodical calculations at q = 0 demonstrate the correctness of the method-
ology. Comparison with the results of [1] (see Table 3) confirms its correct-
ness. However a comparison with the results of [6] demonstrates a discrep-
ancy. In Table 2, in the cited work, the second eigenvalue is omitted. The
remaining eigenvalues match satisfactorily only for small numbers of eigen-
values. In Table 1, only individual eigenvalues match satisfactorily.
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