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Abstract

In this work, we describe a new method for the calculation of the numerical
solution of the mixed singular integro-differential equation. The method
is mainly based on a finite element approximation. For this purpose, we
obtain the variational form of the problem under consideration. The result-
ing system has been approximated numerically by linear B-spline function.
The method of convergence and its order of convergence are established.
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Finally, to investigate the accuracy of the proposed method some test ex-
amples are presented. The numerically obtained results are compared with
another method for the validity of our results and shown by some tables
and figures.

AMS subject classifications (2020): 65L60,44A45, 45B05, 65R20.

Keywords: Singular integro-differential equation; finite element approxima-
tion; Convergence; Error analysis.

1 Introduction

The integro-differential equation is a sophisticated mathematical construct
that blends the principles of integral and differential calculus, serving as a
vital tool in various fields such as physics, engineering, and applied mathe-
matics. Need to write an introduction here singular integro-differential equa-
tions (SIDEs) appear in a lot of science, for example, in applied sciences,
electromagnetics, physics, many problems in acoustics, finance, biology, en-
gineering, viscoelasticity, hydrology, analysis of dynamic systems, where the
evolution of states is influenced by both local changes and historical interac-
tions, and so on [5, 11, 6, 12, 9].

One of the key challenges in solving integro-differential equations lies in
their inherent complexity, as traditional methods for solving ordinary differ-
ential equations may not be directly applicable. In the last decades, several
techniques have been presented to successfully used to approximate different
kinds of singular integral equations, such as Jacobi and B-spline colloca-
tion method, Crank–Nicolson finite difference method, Daubechies wavelet,
Hermite wavelet method, wavelet methods, trigonometric Hermit wavelet,
discrete collocation method, Legendre wavelet and Legendre multi-wavelet
methods and Petrov-Galerkin method with a wide range of applications,
Block boundary value methods, operational matrix-based schemes with re-
laxation processes [4, 10, 13, 7, 2, 8]. The significance of integro-differential
equations is further underscored by their ability to model phenomena that
cannot be adequately described by either differentials or integrals alone, thus
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459 Solving mixed singular integro-differential equation (IDE) using the finite ...

offering a more comprehensive framework for understanding complex systems
wherein time delays or memory effects play a critical role.

2 Mathematical formulation

The integral equations frequently appear in many fields of mathematics such
as game theory, control theory, and numerical analysis. Also, they appear in
real physical world problems in other fields of science like as fluid dynamics,
queuing theory, filtration theory, electromagnetic, chemical kinetics, laminar
boundary-layer theory, solid state physics, plasma physics, the diffusion of
neutrons in nuclear reactor dynamics, and so on [5, 11, 6, 12, 9, 1].

In this work, we use the finite element method (FEM) to solve mixed
singular integro-differential equation (MSIDE), as follows:

−u′′(x) + f1(x)u
′(x) + f2(x)u(x) =f3(x) +

∫ x

a

K1(x, t)u(t)

(x− t)α
dt

+

∫ b

a

K2(x, t)u(t)

(x− t)β
dt, (1)

with

u(a) = 0, u(b) = 0, Ω = [a, b] ⊂ R, (2)

where K1(x, t), K2(x, t), and fi(x), i = 1, 2, 3 are known continuous func-
tions belong to C1(Ω), u(x) is the unknown function to be determined, and
α = β = 1

2 .

The major goal of this research is to apply Lagrange polynomials com-
bined with FEM for solving MSIDE of (1)–(2) and obtain an approximate
solution. First, we obtain the weak and variational form of (1). In section
3, we analyze the application and prove the bilinear form is a V − ellipticity
and continuous. Also, we proved that (1) has a unique solution. By using
some theorem and lemma we calculated the order of convergence is O(h2) in
section 4. We present some numerical test examples in section 5. Finally,
the conclusions are highlighted in section 6.
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3 Finite element method

One of the best techniques for numerically resolving differential equations
in structural analysis, electromagnetic potential, fluid flow, ferroelectric,
and electromagnetics in engineering and boundary value problems, algebraic
equations, complex mathematical problems, and heat transfer, in mathemat-
ical modeling, began in the mid-1950s, used to compute such approximations
nominated as FEM [1].

First, we obtain the virtual work (or weak form) and variational form of
(1). For this purpose, we assume a Sobolev space of V = H1

0 (Ω), with the
following norm:

||u||2V = ||u||2L2(Ω) + ||u′||2L2(Ω).

Also, the bilinear form is B : V × V → R; linear functional has a L : V → R;
and

B(u, v) = L(v) =

∫
Ω

f3(x)v(x)dx, (3)

for all v(x) ∈ V is an arbitrary function. In addition,

B(u, v) =

∫
Ω

f2(x)u(x)v(x)dx+

∫
Ω

u′(x) (f1(x) v(x) + v′(x)) dx

−
∫
Ω

v(x)

(∫ x

a

K1(x, t)u(t)

(x− t)α
dt

)
dx

−
∫
Ω

v(x)

(∫ b

a

K2(x, t)u(t)

(x− t)β
dt

)
dx. (4)

Since we have

B(η1u+ η2w, v) =

∫
Ω

(
η1u

′(x) + η2w
′(x)

)
v′(x)dx

+

∫
Ω

f1(x) (η1u
′(x) + η2w

′(x)) v(x)dx

+

∫
Ω

f2(x) (η1u(x) + η2w(x)) v(x)dx

−
∫
Ω

v(x)

∫ x

a

K1(x, t) (η1u(x) + η2w(x))

(x− t)α
dtdx

−
∫
Ω

v(x)

∫ b

a

K2(x, t) (η1u(x) + η2w(x))

(x− t)α
dtdx
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=η1B(u, v) + η2B(w, v),

then, B is a bilinear form. In this work, we use the linear B-spline (LBS)
function as the basis functions of subspace Vh = span{ϕ1, ϕ2, . . . , ϕn}. If
a = x0 < x1 < · · · < xn = b is a grid with n+ 1 points in the interval [a, b],
where xi = ih for i = 1, . . . , n, and ∆x = h = 1

n , then, for i = 1, . . . , n, the
LBS is defined as

ϕi(x) =
1

h


(x− xi−1), x ∈ [xi−1, xi],

(xi+1 − x), x ∈ [xi, xi+1],

0, otherwise.
(5)

Thus ϕi(xi) = 1, ϕi(xj) = δij , for i, j = 1, 2, . . . , n, and the value of ϕ in the
other nodes is equal to zero. Therefore, we approximate uh(x) and vh(x) as

uh(x) =

n∑
i=1

aiϕi(x), vh(x) = ϕj(x). (6)

By the combination of (6) and variational formulation of the problem, we
have ∫

Ω

f(x)ϕj(x)dx =

n∑
i=1

ai

{∫
Ω

f2(x)ϕi(x)ϕj(x)dx

+

∫
Ω

ϕ′
i(x)

(
ϕ′
j(x) + f1(x)ϕj(x)

)
dx

−
∫
Ω

ϕj(x)

(∫ x

a

K1(x, t)

(x− t)α
ϕi(t) dt

)
dx

−
∫
Ω

ϕj(x)

(∫ b

a

K2(x, t)

(x− t)β
ϕi(t) dt

)
dx

}
. (7)

Now, we define

Ci,j =

∫
Ω

ϕ′
i(x)

(
ϕ′
j(x) + f1(x)ϕj(x)

)
dx+

∫
Ω

f2(x)ϕi(x)ϕj(x)dx

−
∫
Ω

ϕj(x)

(∫ x

a

K1(x, t)

(x− t)α
ϕi(t) dt

)
dx

−
∫
Ω

ϕj(x)

(∫ b

a

K2(x, t)

(x− t)β
ϕi(t) dt

)
dx, (8)

and
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Erfanian, Zeidabadi and Hussein 462

Fj =

∫
Ω

f(x)ϕj(x)dx. (9)

Thus the above system can be expressed as a system of an algebraic equation
of the form

n∑
i=1

Cijai = Fj , j = 1, 2, . . . , n. (10)

4 Error analysis

In this section, we aim to establish a lower and upper bound for approxima-
tion error. To prove that we need to define the following definition.

Definition 1. The inner product energy can be described as

(·, ·)B : V × V → R,

such that for the Hilbert space V and the V − elliptic bilinear form B, we
have (u, v)B = B(u, v). Also, we can define the energy norm as

||u||2E = (u, u)B .

Lemma 1. If f1(x) ∈ [M1,M2], f2(x) ∈ [P1, P2], and B is a bilinear form
defined by (4), then B is continuous.

Proof. First, by (4), we have

|B(u, v)| =
∣∣∣∣ ∫

Ω

f2(x)u(x)v(x)dx+

∫
Ω

u′(x) (v′(x) + f1(x)v(x)) dx

−
∫
Ω

v(x)

(∫ x

a

K1(x, t)u(t)

(x− t)α
dt

)
dx

−
∫
Ω

v(x)

(∫ b

a

K2(x, t)u(t)

(x− t)β
dt

)
dx

∣∣∣∣. (11)

In (11) by applying the Sobolev norm and the Cauchy–Schwarz inequality,
we have

|B(u, v)| ≤ ||u||H1 ||v||H1 + P2 ||u||H1 ||v||H1 +M2 ||u||H1 ||v||H1

+K1

∣∣∣∣ ∫ b

a

v(x)

∫ x

a

u(t)

(x− t)α
dtdx

∣∣∣∣
Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 457–474
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+K2

∣∣∣∣ ∫ b

a

v(x)

∫ b

a

u(t)

(x− t)β
dtdx

∣∣∣∣
=
(
1 + P2 +M2

)
||u||H1 ||v||H1

+K1

∣∣∣∣ ∫ b

a

v(x)u(ηx)

∫ x

a

1

(x− t)α
dtdx

∣∣∣∣
+K2

∣∣∣∣ ∫ b

a

v(x)u(ζx)

∫ b

a

1

(x− t)β
dtdx

∣∣∣∣
≤
(
1 + P2 +M2

)
||u||H1 ||v||H1

+K1

∣∣∣∣ ∫ b

a

v(x)u(ηx)
1

1− α
(x− t)1−α |t=x

t=a dx

∣∣∣∣
+K2

∣∣∣∣ ∫ b

a

v(x)u(ζx)
1

1− β
(x− t)1−β |t=b

t=a dx

∣∣∣∣
≤ (1 + P2 +M2) ||u||H1 ||v||H1

+
K1(b− a)1−α

1− α

∣∣∣∣ ∫ b

a

v(x)u(ηx)dx

∣∣∣∣
+

K2(b− a)1−β

1− β

∣∣∣∣ ∫ b

a

v(x)u(ηx)dx

∣∣∣∣
≤
(
1 + P2 +M2 +

K1(b− a)1−α

1− α
+

K2(b− a)1−β

1− β

)
||u||H1 ||v||H1 ,

where
K1 = max |K1(x, t)|, a ≤ x ≤ b, a ≤ t ≤ x

and
K2 = max |K2(x, t)|, a ≤ x ≤ b, a ≤ t ≤ x.

Thus B is continuous.

In addition to the hypothesis of Lemma 1, suppose T2 = maxa≤x≤b |f
′

1(x)|.
Now, we consider the V − ellipticity of B. By using (4) and Lemma 1, we
write ∫

Ω

f1(x)v
′(x)v(x)dx =

−1

2

∫ b

a

f ′
1(x)(v(x))

2dx

≥ −T2

2

∫ b

a

(v(x))2dx
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≥ −T2

2
||v||2H1 , (12)

and∫
Ω

v′(x)v′(x)dx+

∫
Ω

f2(x)v(x)v(x)dx ≥
∫
Ω

v′
2
(x)dx ≥ 1

1 + c
||v||2H1 . (13)

Thus

B(v, v) =

∫
Ω

v′(x)v′(x)dx+

∫
Ω

f1(x)v
′(x)v(x)dx+

∫
Ω

f2(x)v(x)v(x)dx

−
∫
Ω

v(x)

∫ x

a

K1(x, t)v(t)

(x− t)α
dtdx−

∫
Ω

v(x)

∫ b

a

K2(x, t)v(t)

(x− t)β
dtdx

≥
(

1

1 + c
− T2

2

)
||v||2H1 −K1

(
(b− a)1−α

1− α

)
||v||2H1

−K2

(
(b− a)1−β

1− β

)
||v||2H1

= η ||v||2H1(Ω),

(14)

so

B(v, v) ≥ η ||v||2L2(Ω), (15)

where

η =
1

1 + c
−K2

(
(b− a)1−β

1− β

)
− T2

2
−K1

(
(b− a)1−α

1− α

)
,

where c is Poincaré’s constant. Then, the following lemma can be expressed.

Lemma 2. If η > 0, then B is V − ellipticity.

By applying the Lax–Milgram theorem and Lemmas 1 and 2, the equation
(1) has a unique solution.
Since for each particular ṽh in Vh, inf ||u−vh||V ≤ ||u− ṽh||V , thus for seeking
of an upper bound u− uh, we can take ṽh equal to ũh. Then

||u− uh||V ≤ c||u− ũh||V .

By using Cea’s lemma [3] and
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465 Solving mixed singular integro-differential equation (IDE) using the finite ...

||u− uh||E = min
vh∈Vh

||u− vh||E

for each particular ṽh in Vh, we have

α||u− uh||2V ≤ B(u− uh, u− uh) = ||u− uh||2E . (16)

Thus ||u− uh||V ≤ 1√
α
||u− uh||E . Also,

||u− vh||2E = B(u− vh, u− vh) ≤ C||u− vh||V ||u− vh||V . (17)

Therefore ||u− vh||E ≤
√
C||u− vh||V . By (16) and (17),

||u− uh||V ≤
√

C

α
min
vh∈Vh

||u− vh||V . (18)

If we define interpolation error E(x) = u(x)− ũh(x), such that error on Ωe,
then

E(x
(e)
1 ) = E(x

(e)
2 ) = E(x

(e)
3 ) = 0.

Also, by using Rolle’s theorem, we have

E′(ξ1) = 0 ξ1 ∈
(
x
(e)
1 , x

(e)
2

)
,

E′(ξ2) = 0 ξ2 ∈
(
x
(e)
2 , x

(e)
3

)
,

E′′(η) = 0 η ∈
(
x
(e)
1 , x

(e)
3

)
.

We know the polynomial interpolation that we used in our equation, is a
piecewise quadratic polynomial. Thus

|E′′(x)| = u′′(x)− u′′
h(x) =

∫ x

η

E′′′(t)dt =

∣∣∣∣∫ x

η

u′′′(t)dt

∣∣∣∣
≤
∫ x

η

|u′′′(t)|dt ≤
∫ x

(e)
3

x
(e)
1

|u′′′(t)|dt ≤ ||1||L2 ||u′′′||L2 ,

or
|E′′(x)| ≤ h

1
2 |u|H3(Ωe).

Then ∫
Ωe

|E′′(x)|2dx ≤ h|u|2H3(Ωe)

∫
Ωe

dx.
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Erfanian, Zeidabadi and Hussein 466

Thus

||E′′||2L2(Ωe)
= |E|2H2(Ωe)

≤ h2|u|2H3(Ωe)
.

Therefore,

||E′′||2L2(Ω) = |E|2H2(Ω) =

∫
Ω

|E′′(x)|2dx =

M∑
e=1

∫
Ωe

|E′′(x)|2dx =

M∑
e=1

|E|2H2(Ωe)

≤ h2
M∑
e=1

|u|2H3(Ωe)
= h2

M∑
e=1

∫
Ωe

(u′′′(x))2dx

= h2

∫
Ω

|u′′′(x)|2dx = h2|u|2H3(Ω),

that is,

|E(x)|H2(Ω) ≤ h|u|H3(Ω). (19)

Similarly, we have

|E|2H1(Ω) ≤ h2|E|2H2(Ω), (20)

that is,

||E||L2(Ω) ≤ h |E|H1(Ω). (21)

By (19), (20) and (21), we have

||E||2L2(Ω) ≤ h2h2h2|u|2H3(Ω) = h6|u|2H3(Ω). (22)

By using the Sobolev norm, we have

||E||2H1(Ω) = ||E||2L2(Ω) + ||E′||2L2(Ω) ≤ h6|u|2H3(Ω) + |E|2H1(Ω)

≤ h6|u|2H3(Ω) + h4|u|2H3(Ω) ≤ 2h4|u|2H3(Ω). (23)

Thus the upper bound for the interpolation error as

||E||H1(Ω) ≤
√
2h2|u|H3(Ω).

The unique solution to the variational form is known. Therefore |u|H2(Ω) is
a constant number. Also, according to (18), if α is the V -ellipticity constant
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467 Solving mixed singular integro-differential equation (IDE) using the finite ...

and C is the continuity constant, then

||u− uh||V ≤ C

α
||u− ũh||V .

Thus
||u− uh||H1(Ω) ≤

C

α

√
2h2|u|H3(Ω).

Since |u|H3(Ω) is constant, and h → 0, thus the method is convergence, and
the rate of method is O(h2).

5 Numerical examples

In this section, we present two examples: one of MSIDE and another singular
Volterra integro-differential equation (SVIDE). We compare numerical and
accurate solutions of our method with FEM and radial basis function (RBF)
methods in tables and figures. Also, we compute the error of examples shown
in the Figures, and the accuracy of the method is shown for all examples.
Also, we define the root mean square (RMS) or total error, as

RMS =

√√√√ 1

M

M∑
i=1

(
p(ti)exact − p(ti)numerical

)2
,

where the total error is RMS and the total number of estimated values is
M = 5.

In addition, to define the sequence of approximating functions {ui}i∈N,
the initial function u0 ∈ C([0, 1]) can be chosen arbitrarily. The following
algorithm, based on the method presented in section 3, has been used to solve
Examples 1 and 2.

Algorithm 4.1 Step 1. Make the boundary conditions homogeneous
Step 2. Input n, [a, b]
Step 3. Set h = b−a

n

Step 4. Obtain the virtual work (or weak form) and variational form of (1).
Step 5. For i = 1 to n, xi = a+ ih, and ϕi(x) is computed form (5).
Step 6. Compute uh(x), vh(x) from (6) for the assumed point.
Step 7. Compute Ci,j from (8).
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Step 8. Product matrices Fj from (9).
Step 9. Solving (10), obtain an approximate solution of (1).

All results are computed by using Maple and a Lenovo Laptop (Legion Y545)
to run the programs. Finally, the RMS of Examples 1 and 2 is given in the
last line of the tables.

Example 1. Consider the MSIDE and 0 ≤ x ≤ 1 as follows:

− u′′(x) + exu′(x) + xu(x)−
∫ x

0

1√
x− t

u(t)dt

−
∫ 1

0

1√
x− t

u(t)dt− f(x) = 0,

where the exact solution u(x) = 3x4 − x, and

f(x) =− 37x2 + 12 exx3 − ex + 3x5 − 512x
9
2

105
+

8

3
x

3
2 − 4

7

√
x− 1 (x)

+
32

√
x− 1x2

35
+

128
√
x− 1x3

105
+

256
√
x− 1x4

105
.

The inhomogeneous conditions must be transformed into homogeneous
boundary conditions via transformation formulas. Comparison of numerical
and accurate solutions by our method with FEM and RBF methods are
shown in Table 1 and Figure 1. Also, we compute the error of Example 1 in
Figure 2.

Figure 1: Graph of exact and numerical solutions for Example 1.
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469 Solving mixed singular integro-differential equation (IDE) using the finite ...

Table 1: The result obtain for Example 1.

x Exact FEMMethod RBFMethod Cheb− FEMMethod

0.1 −0.0997000 −0.0998079 −0.0982779 −0.1003080

0.2 −0.1952000 −0.1952376 −0.1936725 −.19516122

0.3 −0.2757000 −0.2759063 −0.2740468 −.27504775

0.4 −0.3232000 −0.3232568 −0.3214751 −0.3224741

0.5 −0.3125000 −0.3128260 −0.310652 −0.31219453

0.6 −0.2112000 −0.2112657 −0.2093563 −0.2114496

0.7 0.02030000 0.0198278 0.0222087 0.01978290

0.8 0.42880000 0.4287426 0.4306302 0.42852739

0.9 1.06830000 1.0676660 1.0701542 1.0685356

RMS 2.82× 10−4 1.66× 10−3 4.56× 10−4

Figure 2: Diagrams of error for Example 1.

Example 2. We assume the SVIDE and 0 ≤ x ≤ 1 as follows:

− u′′(x) +
√
xu′(x) + ex u(x)−

∫ x

0

1√
x− t

u(t)dt

−
∫ 1

0

1√
x− t

u(t)dt− f(x) = 0,

where the exact solution is a u(x) = x3 + 2 ex, and

f(x) =2 erf
(√

x− 1
)√

πex +
1

35

(
32x3 + 16x2 + 12x+ 10

)√
x− 1 + 3x5/2
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− 64x7/2

35
− 4erf

(√
x
)√

πex + 2e2x + 2
√
xex +

1

35

(
35x3 − 70

)
ex − 6x.

First, we convert the boundary conditions at x = 0 and x = 1 until
the example is homogeneous. A comparison between exact and numerical
solutions by our method with FEM and RBF methods is shown in Table 2
and Figure 3. Also, we compute the error of Example 2 in Figure 4.

Table 2: The result obtain for Example 2.

x Exact FEMMethod RBFMethod Cheb− FEMMethod

0.1 2.2113418 2.2113258 2.2111969 2.2115616

0.2 2.4508055 2.4507929 2.4507205 2.4507892

0.3 2.7267176 2.7266735 2.7266832 2.7264834

0.4 3.0476493 3.0476138 3.0476679 3.0473934

0.5 3.4224425 3.4223740 3.4225271 3.4223379

0.6 3.8602376 3.8601901 3.8603829 3.8603269

0.7 4.3705054 4.3704358 4.3707312 4.3706852

0.8 4.9630818 4.9630550 4.9633822 4.9631763

0.9 5.6482062 5.6481528 5.6486308 5.6481290

RMS 4.32× 10−5 2.06× 10−4 1.61× 10−4

Figure 3: Graph of exact and FEM method for Example 2.

Example 3. We assume the SVIDE and 0 ≤ x ≤ 1 as follows:
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Figure 4: Diagrams of error for Example 2.

−u′′(x) + x2u′(x) + 2xu(x)−
∫ x

0

2xt2

(x− t)
1
3

u(t)dt

−
∫ 1

0

3x2 + t+ 2

(x− t)
2
5

u(t)dt− f(x) = 0,

where the exact solution is u(x) = x3 − x+ 1, and

f(x) =− 4x+ 5x4 − 3x2 − 2187

2618
x

20
3 +

243x
14
3

220
− 27x

11
3

20
− 625

312
x

28
5

− 3125

5382
x

23
5 +

1675

936
x

18
5 − 655

156
x

13
5 +

25x
8
5

24
− 10

3
x

3
5

+
10135 (x− 1)

3
5 x2

2392
− 10325 (x− 1)

3
5 x3

21528

+
38375 (x− 1)

3
5 x4

21528
+

625 (x− 1)
3
5 x5

312
+

66665 (x− 1)
3
5

21528

− 13775 (x− 1)
3
5 (x)

21528
.

First, we convert the boundary conditions at x = 0 and x = 1 until the
example is homogeneous. Comparison between exact and numerical solutions
by our method with FEM and RBF method is shown in Table 3 and Figure
5. Also, we compute the error of Example 3 in Figure 6.
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Table 3: The result obtain for Example 3.

x Exact FEMMethod RBFMethod Cheb− FEMMethod

0.1 0.9010000 0.9009946 0.8847265 0.9010000

0.2 0.8080000 0.8079910 0.7780601 0.8080000

0.3 0.7270000 0.7269861 0.6861300 0.7270000

0.4 0.6640000 0.6639860 0.6150528 0.6640000

0.5 0.6250000 0.6249798 0.5711002 0.6250000

0.6 0.6160000 0.6159850 0.5607239 0.6160000

0.7 0.6430000 0.6429763 0.5907674 0.6430000

0.8 0.7120000 0.7119892 0.6685135 0.7120000

0.9 0.8290000 0.8289770 0.8020527 0.8290000

RMS 1.52× 10−5 3.96× 10−2 5.29× 10−11

Figure 5: Graph of exact and FEM method for Example 3.

6 Conclusions

In this work, we used the FEM and Lagrange polynomials to solve one of
the most important kinds of singular integral equations. The main purpose
of this work is to apply Lagrange polynomials and FEM for solving MSIDE
(1) and obtain an approximate solution. First, we obtain the weak and
variational form of (1), and with the use of the system (10), we can obtain the
approximate solution. Then, we proved the convergence of the method. Also,
the order of the method is computed. Finally, For efficiency, we presented
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Figure 6: Diagrams of error for Example 3.

some numerical examples and used polynomials of degree 2. Also, the results
of comparing between exact FEM method with other methods such as RBF
are shown in tables and figures. We conclude the comparison of the results
shows that this method has superior accuracy. Also, we computed the error
of examples.
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