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Abstract

Herein, we propose an accurate algorithm to approximate the solution of
the nonlinear fractional-order Duffing equation (NFDE). The algorithm is
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based on using shifted Chebyshev polynomials of the third-kind as basis
functions and the spectral collocation method as a solver. We study the
error analysis of the method in-depth, and we exhibit some numerical test
problems to check the applicability of the method. Also, we compare it
with other existing techniques to show the superiority of our proposed
numerical scheme. Our results show that the method employed provides
a useful tool to simulate the solution of the NFDE. The main advantages
of the proposed method are that it does not require a huge number of
retained modes, simply a few terms, and does not exhaust the machine
used to render the codes.

AMS subject classifications (2020): 80M22, 33D50, 40A05, 34A08.

Keywords: Chebyshev polynomials; Spectral methods; Nonlinear fractional-
order Duffing equation; Convergence analysis.

1 Introduction

Within the fields of mathematics, physics, and engineering, joint efforts have
produced a new instrument for characterizing difficult problems: the area of
fractional calculus. This field of study allows scientists to accurately han-
dle real-world issues in a variety of domains. Fractional-order differential
equations can characterize application issues in physics, biology, mechanics,
medicine, astronomy, engineering, and chemistry. Due to the importance of
finding solutions to these equations, a number of numerical techniques have
been used, including the Laplace transform approach, Chebyshev colloca-
tion, domain decomposition technique, differential transformation technique,
spectral Legendre method, Tau procedure, variational iteration method, and
the wavelet method, which are all numerical techniques used in solving dif-
ferential equations and related problems. When it comes to breaking down
fractional-order problems into systems of algebraic equations, the spectral
Tau technique and the operational matrix (OM) method stand out for their
simplicity, speed of convergence, and computational ease. Selecting appropri-
ate basis functions is essential in order to use spectral approaches to achieve
approximate solutions. Because of their useful features and trigonometric
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657 Explicit collocation algorithm for the nonlinear fractional Duffing equation ...

representation, the Chebyshev polynomials of the first kind are one class of
functions that have shown to be efficient in this respect. Those who are inter-
ested in learning more about Chebyshev polynomials might consult [12]. It
is known that Chebyshev polynomials have been used more often in spectral
techniques to solve different kinds of differential problems; recent works like
[2, 5, 23, 14, 20] attest to this.

A specific class of problems in nonlinear dynamics is the one-dimensional
Duffing equation, capturing the behavior of a simple oscillator with cubic
nonlinearity. In the context of fractional calculus, the nonlinear fractional-
order Duffing equation (NFDE) takes the form:

Dµ
t χ(t) + aDβ

t χ(t) + b χ(t) + c χ2(t) + dχ5(t) + e χ7(t) = f(t), (1)

subject to the simple initial conditions χ(0) = χ0, χ′(0) = χ1, where µ is
in the range (1, 2] and β in the range (0, 1].

Spectral techniques have expanded to solve fractional-order differential
equations in recent years [9, 10, 13, 27, 30, 31, 4, 3, 1], providing a nuanced
description of physical phenomena through non-integer derivatives. The in-
herent characteristics of Chebyshev polynomials provide spectral approaches
for such equations, improving numerical efficiency and enabling the reliable
approximation of fractional derivatives. Spectral collocation is one of these
techniques that stands out for its excellent accuracy and convergence. A
very accurate and convergent computational approach for solving nonlinear
Volterra integrodifferential equations of high order was presented by the au-
thors in [24]. The spectral collocation approach was used by Thirumalai et
al. [21] to solve nonlinear high-order pantograph equations.

As a fundamental spectral approach for solving partial differential equa-
tions (PDEs), the Galerkin method is emphasized in [26, 28, 32]. With this
approach, the unknown function is expressed as a PDE using a series expan-
sion, and the derivatives of the PDE are then approximated by using the
collocation technique [29]. When working with linear or nonlinear PDEs,
particularly those that have beginning or boundary conditions, this kind of
method is quite helpful.

The NFDE, a well-established nonlinear equation, serves as a potent tool
for addressing significant practical phenomena in applied science [19]. This
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equation gained prominence in the mid-twentieth century, particularly in the
study of electronics [18]. Functioning as the simplest oscillator, it exhibits
catastrophic increases in amplitude and phase when the frequency of the
forcing term varies gradually. The Duffing equation finds wide application
in diverse areas, including brain modeling [33], passive islanding detection
in inverter-based distributed generation units using Duffing oscillators [22],
propagation of electromagnetic pulses in nonlinear media, radar systems,
digital communication [7], nonlinear electrical circuits [17], and other fields.
Numerous attempts have been made to numerically solve the Duffing equation
[15, 11].

The suggested approach presents a novel use of shifted Chebyshev poly-
nomials of the third-kind (SCP3K) in collocation methods, providing an ac-
curate, efficient and fast numerical scheme for spectrally solving the NFDE.
It addresses important difficulties in computational complexity and stability,
employing few computer resources and greatly improving solution accuracy
when compared to existing approaches. To the best of our knowledge, the
main contribution and novelty of this paper can be listed in the following
points:

• A new theoretical background to the SCP3K is presented.

• Establishing a new OM of fractional derivatives for SCP3K. This matrix
is considered an important tool for treating NFDE.

• The study of the error bound is new.

The advantages of the presented approach are as follows:

• By choosing SCP3K as basis functions, a few terms of the retained
modes make it possible to produce approximations with excellent pre-
cision.

• Less calculation is required to obtain the desired approximate solution.

The following is how this job is organized: In Section 2, the definitions
and mathematical equations of SCP3K are presented; OM of fractional or-
der is constructed using SCP3K along with a brief introduction to the tools
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of fractional calculus. The problem formulation and the proposed numeri-
cal solution utilizing derived OM are given in Section 3. For the proposed
Chebyshev expansion, Section 4 provides error estimation in L∞ space. Test
cases in Section 5 illustrate the precision and effectiveness of the suggested
approach. In conclusion, Section 6 provides some final thoughts.

2 Preliminaries and essential relations

2.1 The fractional derivative in the Caputo sense

Definition 1. [16] The Caputo fractional derivative of order s is defined as

Dsu(t) =
1

Γ(m− s)

d

dt

∫ t

0

(t− y)m−s−1u(m)(y) dy, s > 0, t > 0, (2)

where m− 1 ⩽ s < m, m ∈ N.

The following properties are satisfied by the operator Ds for
m− 1 ⩽ s < m, m ∈ N,

Dsc = 0, (cis a constant) (3)

Ds tr =

 0, if r ∈ N0 and r < ⌈s⌉,
r!

Γ(r−s+1) t
r−s, if r ∈ N0 and r ≥ ⌈s⌉,

(4)

where N = {1, 2, 3, . . .}, N0 = {0} ∪ N, and the notation ⌈s⌉ denotes the
ceiling function.

2.2 A account on the SCP3K

The SCP3K VS,ℓ(t) are special ones of the Jacobi polynomials that can be
defined as [25]

VS,ℓ(t) =
22 ℓ(
2 ℓ
ℓ

) P (− 1
2 ,

1
2 )

ℓ (2 t− 1). (5)

The orthogonality relation of VS,ℓ(t) is given by
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0

VS,ℓ(t)VS,j(t)ω(t)dt =
π

2
δℓ,j , (6)

where ω(t) =
(

t
1−t

) 1
2 and δℓ,j is the Kronecker delta.

The analytic representation of VS,ℓ(t) can be represented as

VS,m(t) =

m∑
ℓ=0

(−1)ℓ (2m+ 1) 22m−2 ℓ(−ℓ+ 2m)!

ℓ! (−2 ℓ+ 2m+ 1)!
tm−ℓ, (7)

or
VS,m(t) =

m∑
ℓ=0

22 ℓ (2m+ 1) (−1)m−ℓ (ℓ+m)!

(2 ℓ+ 1)! (−ℓ+m)!
tℓ. (8)

Moreover, the inversion formula of VS,ℓ(t) is

tr =
Γ(2 r + 2)

22 r

r∑
ℓ=0

1

(−ℓ+ r)! (ℓ+ r + 1)!
VS,ℓ(t). (9)

Theorem 1. For 0 < β < 1, we have

DβVS,ℓ(t) = AV , (10)

where
V = [VS,0(t),VS,1(t), . . . ,VS,M (t)]T . Also, A = (Aℓ,k) is an OM of ordinary
derivatives of dimension (M + 1) × (M + 1), and the entries of this matrix
can be written in the form

Aℓ,k =

k∑
n=1

4n (2 ℓ+ 1) (2 k + 1)(−1)−n+ℓ+k (n+ k)! Γ(n+ 1)Γ
(
n− β + 3

2

)
Γ(2n+ 2)Γ(1− n+ k) Γ (n− β + 1)

× 3F̃2

(
−ℓ, ℓ+ 1,−β + n+ 3

2
3
2 ,−β + n+ 2

∣∣∣∣∣ 1
)
.

(11)

Proof. Using Definition 1 jointly with the analytic power form of VS,n(t), we
have

DβVS,κ(t) =

κ∑
n=1

4n (2κ+ 1) (−1)κ−n (κ+ n)! Γ(n+ 1))

(2n+ 1)! (−n+ κ)! Γ (n− β + 1)
tn−β . (12)

Now, tn−β can be approximated as
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tn−β =

M∑
ℓ=0

cℓ VS,ℓ(t), (13)

where
cℓ =

2

π

∫ 1

0

tn−β VS,ℓ(t)ω(t) dt. (14)

Integrating the RHS of the last equation, we have

cℓ =

ℓ∑
s=0

2 (2 ℓ+ 1) 22 s (−1)ℓ−s (ℓ+ s)! Γ
(
n+ s− β + 3

2

)
√
π (2 s+ 1)! (ℓ− s)! (i+ s− β + 1)!

. (15)

Equation (15) can be written as

cℓ = (−1)ℓ (2 ℓ+ 1)Γ

(
n− β +

3

2

)
3F̃2

(
−ℓ, ℓ+ 1,−β + n+ 3

2
3
2 ,−β + n+ 2

∣∣∣∣∣ 1
)
. (16)

Inserting (16) into (13) yields

tn−β =

M∑
ℓ=0

(
(−1)ℓ (2 ℓ+ 1)Γ

(
n− β +

3

2

)

× 3F̃2

(
−ℓ, ℓ+ 1,−β + n+ 3

2
3
2 ,−β + n+ 2

∣∣∣∣∣ 1
))

VS,ℓ(t). (17)

Plugging (17) into (12), we obtain

DβVS,κ(t) =

M∑
ℓ=0

Aℓ,κ VS,ℓ(t) = AV ,

where

Aℓ,κ =

κ∑
n=1

4n (2 ℓ+ 1) (2κ+ 1)(−1)−n+ℓ+κ (n+ κ)! Γ(n+ 1)Γ
(
n− β + 3

2

)
Γ(2n+ 2)Γ(1− n+ κ) Γ (n− β + 1)

× 3F̃2

(
−ℓ, ℓ+ 1,−β + n+ 3

2
3
2 ,−β + n+ 2

∣∣∣∣∣ 1
)
.

(18)

Therefore, we conclude that

DβVS,κ(t) = AV ,

where A = (Aℓ,κ) is an OM of derivatives of order (M + 1)× (M + 1).
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Theorem 2. For 1 < µ < 2, we have

DµVS,ℓ(t) = BV , (19)

where V = [VS,0(t),VS,1(t), . . . ,VS,M (t)]T . Also, B = (Bℓ,k) is the OM of
derivatives with dimension (M +1)× (M +1), and the entries of this matrix
can be written in the form

Bℓ,k =

k∑
n=2

4n (2 ℓ+ 1) (2 k + 1)(−1)−n+ℓ+k (n+ k)! Γ(n+ 1)Γ
(
n− µ+ 3

2

)
Γ(2n+ 2)Γ(1− n+ k) Γ (n− µ+ 1)

× 3F̃2

(
−ℓ, ℓ+ 1,−µ+ n+ 3

2
3
2 ,−µ+ n+ 2

∣∣∣∣∣ 1
)
.

(20)

Proof. The proof of this theorem is similar to the proof of Theorem 1.

3 Collocation algorithm for the NFDE

In this section, we consider the following NFDE [8]:

Dµ
t χ(t) + aDβ

t χ(t) + b χ(t) + c χ2(t) + dχ5(t) + e χ7(t) = f(t), (21)

µ ∈]1, 2], β ∈]0, 1], t ∈ [0, 1],

subject to the conditions

χ(0) = g1, χ′(0) = g2. (22)

The following set {VS,i(t), i : 0, 1, 2, . . .} forms an orthogonal basis of
L2
ω(t)(0, 1). This means that for any given function χ(t) ∈ L2

ω(t)(0, 1), one
has

χ(t) =

∞∑
i=0

λi VS,i(t), (23)

and approximated as

χ(t) ≈ χM (t) =

M∑
i=0

λi VS,i(t) = λV , (24)

where
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λ = [λ0, λ1, . . . , λM ], (25)

and
V = [VS,0(t),VS,1(t), . . . ,VS,M (t)]T . (26)

By virtue of Theorems 1 and 2, the residual Res(t) of (21) is given by

Res(t) =Dµ
t χ

M (t) + aDβ
t χ

M (t) + b χM (t) + c
(
χM (t)

)2
+ d

(
χM (t)

)5
+ e

(
χM (t)

)7 − f(t)

=λBV + aλAV + bλV + c (λV)
2
+ d (λV)

5
+ e (λV)

7 − f(t).

(27)

Now, the application of the standard collocation method yields to the fol-
lowing (M + 1) algebraic system of equations in the unknown expansion
coefficients bi

Res(ti) = 0, i = 1, 2, ...,M − 1,

λ V̄ = g1, λ V̂ = g2,
(28)

where

V̄ = [VS,0(0),VS,1(0), ....,VS,M (0)]T ,

V̂ = [V ′
S,0(0),V ′

S,1(0), ....,V ′
S,M (0)]T ,

(29)

and {ti : i = 1, 2, . . . ,M} are the first M distinct roots of VS,M (t). Therefore,
the system in (28) can be solved to get λi with the aid of the well-known
Newton’s iterative method.

4 Error analysis

In this section, we study the error analysis of the numerical solution χM (t)

to the exact solution χ(t) of (21) by imitating similar steps as in [29, 6] in
L∞- norm

L∞[0, 1] = {χ : ∥χ∥∞ = max
t∈[0,1]

|χ| < ∞}.

Consider the following space function:

LM [0, 1] = span{VS,i(t) : i = 0, 1, . . . ,M}. (30)
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Assume that χM (t) ∈ LM [0, 1] is the best approximation of χ(t); then, by
the definition of the best approximation, we have

||χ(t)− χM (t)||∞ ≤ ||χ(t)− uM (t)||∞, for all uM (t) ∈ LM [0, 1]. (31)

It turns out that the previous inequality is also true if uM (t) denotes the
interpolating polynomial for χ(t) at points ti, where ti are the roots of VS,i(t).
Now,

χ(t)− uM (t) =
dM+1 χ(s)

d tM+1 (M + 1)!

M∏
i=0

(t− ti), (32)

where s ∈ [0, 1], and hence, one has

||χ(t)− uM (t)||∞ ≤ max
t∈[0,1]

∣∣∣∣dM+1 χ(s)

d tM+1

∣∣∣∣ ||∏M
i=0(t− ti)||∞
(M + 1)!

. (33)

Since χ(t) is a smooth function on [0, 1], then there exist a constant n such
that

max
t∈[0,1]

∣∣∣∣dM+1 χ(s)

d tM+1

∣∣∣∣ ≤ n. (34)

Now, our main aim is to minimize the factor ||
∏M

i=0(t− ιi)||∞.

Assuming the one-to-one mapping t = 1
2 (t + 1) between the intervals

[−1, 1] and [0, 1] to deduce that

min
ti∈[0,1]

max
t∈[0,1]

∣∣∣∣∣
M∏
i=0

(t− ti)

∣∣∣∣∣ = min
ti∈[−1,1]

max
t∈[−1,1]

∣∣∣∣∣
M∏
i=0

1

2
(t− ti)

∣∣∣∣∣
=

(
1

2

)M+1

min
ti∈[−1,1]

max
t∈[−1,1]

∣∣∣∣∣
M∏
i=0

(t− ti)

∣∣∣∣∣
=

(
1

2

)M+1

min
ti∈[−1,1]

max
t∈[−1,1]

∣∣∣∣VM+1(t)

ηM

∣∣∣∣ ,
(35)

where ηM = 2M+1 is the leading coefficient of Chebyshev polynomials of the
third kind VM+1(t) and ti are the roots of VM+1(t).

It is known that

max
t∈[−1,1]

|VM+1(t)| = VM+1(1) = 1. (36)

In virtue of inequality (34), equations (35), and (36), we get
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||χ(t)− χM (t)||∞ ≤ n

22 (M+1) (M + 1)!
. (37)

The previous inequality gives us an upper bound estimation of the absolute
error (AE). This completes the deducing of our error estimation.

5 Illustrative examples

To demonstrate the effectiveness and validity of the proposed algorithm, the
procedure will be illustrated using several numerical examples. Let us define
the following L∞-error:

L∞ = max
t∈[0,1]

∣∣χ(t)− χM (t)
∣∣ .

Test Problem 1. [8] Consider the following NFDE:

Dµ
t χ(t)+ aDβ

t χ(t)+ b χ(t)+ c χ2(t)+ dχ5(t)+ e χ7(t) =
1

8
e−3 t

(
3− 20 e2 t

)
,

(38)
subject to the conditions

χ(0) =
1

2
, χ′(0) =

−1

2
, (39)

where the exact solution is χ(t) = e−t

2 at µ = 2, β = 1, a = 4, b = −2, c =

3, d = 0, e = 0.

Table 1 presents a comparison between our method at M = 13 and the
method in [8] at M = 12, demonstrating the accuracy of our method. Also,
Table 2 shows the L∞-error at µ = 2, β = 1. Figure 1 shows the AE when µ =

2, β = 1 at different values of M . Figure 2 illustrates that the approximate
solutions have smaller variations for values of µ and β near µ = 2, β = 1 when
M = 12. Figure 3 confirms that the method remains stable at µ = 2, β = 1 for
higher values of M , with any indication of numerical instability or divergence
in error.
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Table 1: Comparison of AE of Example 1 at µ = 2, β = 1.

t Method in [8] at M = 12 Our method at M = 13 Our CPU time
0.1 5.5511×10−17 0
0.2 0 0
0.3 5.5511×10−17 0
0.4 1.1102×10−16 5.55112×10−17

0.5 0 0 0.952
0.6 5.5511×10−17 5.55112×−17

0.7 2.7756×10−17 0
0.8 8.3267×−17 0
0.9 2.7756×10−17 0

Table 2: The L∞-error of Example 1 at µ = 2, β = 1.

M 3 6 9 12
Error 2.54449×10−4 3.85844×10−8 1.06212×10−12 5.55112×10−17
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Figure 1: The AE of Example 1 at µ = 2, β = 1.
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Figure 2: Different solutions of Example 1 at M = 12 and different values of µ, β.
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Figure 3: Stability |χM+1(t)− χM (t)| at µ = 2, β = 1 for Example 1.

Test Problem 2. [8] Consider the following NFDE:

Dµ
t χ(t)+aDβ

t χ(t)+b χ(t)+c χ2(t)+dχ5(t)+e χ7(t) = −2 sin(t)+cos5(t)+8 cos3(t),
(40)

subject to the conditions

χ(0) = 1, χ′(0) = 0, (41)

where the exact solution is χ(t) = cos(t), at µ = 2, β = 1, a = 2, b = 1, c =

8, d = 1, e = 0.
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Table 3 presents a comparison between our method at M = 13 and the
method in [8] at M = 11, showing the accuracy of our method. Figure 4
shows AE when µ = 2, β = 1 at different values of M . Figure 5 illustrates
that the approximate solutions have smaller variations for values of µ and β

near µ = 2, β = 1 when M = 12. Figure 6 confirms that the method remains
stable at µ = 2, β = 1 for higher values of M , with no indication of numerical
instability or divergence in error.

Table 3: Comparison of AE of Example 2 at µ = 2, β = 1.

t Method in [8] at M = 11 Our method at M = 13 Our CPU time
0.1 5.9730×10−14 2.22045×10−16

0.2 1.0669×10−13 0
0.3 1.1813×10−13 1.11022×10−16

0.4 9.9032×10−14 1.11022×10−16

0.5 6.1506×10−14 0 0.891
0.6 1.8208×10−14 0
0.7 2.0650×10−14 0
0.8 4.9738×−14 1.11022×10−16

0.9 6.7835×10−14 1.11022×10−16

Test Problem 3. Consider the following NFDE:

Dµ
t χ(t) + aDβ

t χ(t) + b χ(t) + c χ2(t) + dχ5(t) + e χ7(t) = f(t), (42)

subject to the conditions
χ(0) = χ′(0) = 0, (43)

where f(t) is chosen such that the exact solution is χ(t) = tβ+µ at a = 1, b =

1, c = 1, d = 1, e = 1.

Table 4 presents the AE at different values of µ, β when M = 16. Figure
7 shows AE when µ = 1.8, β = 0.7 at different values of M .
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Figure 4: The AE of Example 2 at µ = 2, β = 1.
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Figure 5: Different solutions of Example 2 at M = 12 and different values of µ, β.

6 Concluding Remarks

In this study, we used SCP3K and the spectral collocation method to solve
the NFDE. We evaluated the approach with numerical test examples and
carried out a thorough error analysis, contrasting it with other approaches
that were already in use. Our findings demonstrated that the suggested
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Figure 6: Stability |χM+1(t)− χM (t)| at µ = 2, β = 1 for Example 2.

Table 4: The AE of Example 3 at M = 16.

t µ = 1.3, β = 0.3 CPU time µ = 1.6, β = 0.6 CPU time µ = 1.8, β = 0.7 CPU time
0.1 1.37101×10−4 9.05091×10−6 5.27826×10−6

0.2 1.41098×10−4 1.152×10−5 8.17987×10−6

0.3 7.39605×10−5 1.26987×10−5 1.04948×10−5

0.4 1.48116×10−4 1.50502×10−5 1.2503×10−5

0.5 5.9031×10−5 2 1.42085×10−5 1.969 1.35739×10−5 1.609
0.6 1.25943×10−4 1.5650×10−5 1.47554×10−5

0.7 4.4265×10−5 1.39166×10−5 1.50037×10−5

0.8 5.48668×10−5 1.40047×10−5 1.53348×10−5

0.9 1.11037×10−4 1.2731×10−5 1.47999×10−5

approach, which only needs a small number of terms and little computer
power, can successfully simulate the answer.
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Figure 7: The AE of Example 3 at µ = 1.8, β = 0.7.

Data availibility

No data is associated with this research.

Author Contributions Statement

YHY conducted the mathematical analysis, developed the methodology, ver-
ified the results, wrote the initial draft, and reviewed the final version. AGA
contributed to the original manuscript, software development, and method-
ology. MM and ZYA reviewed and edited the final version of the manuscript.

References

[1] Abd‐Elhameed, W.M., Youssri, Y.H., and Atta, A.G. Tau algorithm for
fractional delay differential equations utilizing seventh-kind Chebyshev
polynomials, J. Math. Model., (2024), 277–299.

[2] Amodio, P., Brugnano, L., and Iavernaro, F. (Spectral) Chebyshev col-

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 655–675



Youssri, Atta, Moustafa and Abu Waar 672

location methods for solving differential equations, Numer. Algorithms,
(2023), 1–26.

[3] Atta, A.G., Abd‐Elhameed, W.M., Moatimid, G.M., and Youssri, Y.H.
Modal shifted fifth-kind Chebyshev tau integral approach for solving heat
conduction equation, Fract. Fract., 6(11) (2022), 619.

[4] Atta, A.G., Abd‐Elhameed, W.M., Moatimid, G.M., and Youssri, Y.H.
Novel spectral schemes to fractional problems with nonsmooth solutions,
Math. Meth. Appl. Sci., 46(13) (2023), 14745–14764.

[5] Atta, A.G. and Youssri, Y.H. Advanced shifted first-kind Chebyshev collo-
cation approach for solving the nonlinear time-fractional partial integro-
differential equation with a weakly singular kernel, Comput. Appl. Math.,
41(8) (2022), 381.

[6] Bhrawy, A.H. and Zaky, M.A. A method based on the Jacobi tau approx-
imation for solving multi-term time-space fractional partial differential
equations, J. Comput. Phys., 281 (2015), 876–895.

[7] Deng, X.Y., Liu, B., and Long, T. A new complex Duffing oscillator used
in complex signal detection, Chin. Sci. Bull., 57 (2012), 2185–2191.

[8] El-Sayed, A.A.E. Pell-Lucas polynomials for numerical treatment of
the nonlinear fractional-order Duffing equation, Demonstr. Math., 56(1)
(2023), 2022.

[9] Habibirad, A., Hesameddini, E., Azin, H., and Heydari, M.H. The di-
rect meshless local Petrov-Galerkin technique with its error estimate
for distributed-order time fractional cable equation, Eng. Anal. Bound.
Elem., 150 (2023), 342–352.

[10] Hafez, R.M., Youssri, Y.H., and Atta, A.G. Jacobi rational operational
approach for time-fractional sub-diffusion equation on a semi-infinite
domain, Contemp. Math., (2023), 853–876.

[11] Maldon, B.J., Lamichhane, B.P., and Thamwattana, N. Numerical solu-
tions for nonlinear partial differential equations arising from modelling
dye-sensitized solar cells, ANZIAM J., 60 (2018), C231–C246.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 655–675



673 Explicit collocation algorithm for the nonlinear fractional Duffing equation ...

[12] Mason, J.C. and Handscomb, D.C. Chebyshev polynomials, Chapman &
Hall/CRC, 2002.

[13] Mortensen, M. A generic and strictly banded spectral Petrov–Galerkin
method for differential equations with polynomial coefficients, SIAM J.
Sci. Comput., 45(1) (2023), A123–A146.

[14] Moustafa, M., Youssri, Y.H., and Atta, A.G. Explicit Chebyshev
Petrov–Galerkin scheme for time-fractional fourth-order uniform Euler–
Bernoulli pinned–pinned beam equation, Nonlinear Eng., 12(1) (2023),
20220308.

[15] Novin, R. and Dastjerd, Z.S. Solving Duffing equation using an improved
semi-analytical method, Commun. Adv. Comput. Sci. Appl., 2 (2015),
54–58.

[16] Podlubny, I. Fractional differential equations: an introduction to frac-
tional derivatives, fractional differential equations, to methods of their
solution and some of their applications, Elsevier, 1998.

[17] Salas, A.H. and Castillo, J.E. Exact solutions to cubic Duffing equation
for a nonlinear electrical circuit, Visión Electrónica, 8(1) (2014), 1–8.

[18] Stokes, J. Nonlinear vibrations, Interscience, New York, 1950.

[19] Tabatabaei, K. and Gunerhan, E. Numerical solution of Duffing equation
by the differential transform method, Appl. Math. Inf. Sci. Lett., 2(1)
(2014), 1–6.

[20] Taema, M.A. and Youssri, Y.H. Third-kind Chebyshev spectral collo-
cation method for solving models of two interacting biological species,
Contemp. Math., (2024) 6189–6207.

[21] Thirumalai, S., Seshadri, R., and Yuzbasi, S. Spectral collocation method
based on special functions for solving nonlinear high-order pantograph
equations, Comput. Meth. Differ. Equ., 11(3) (2023), 589–604.

[22] Vahedi, H., Gharehpetian, G.B., and Karrari, M. Application of Duffing
oscillators for passive islanding detection of inverter-based distributed
generation units, IEEE Trans. Power Deliv., 27(4) (2012), 1973–1983.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 655–675



Youssri, Atta, Moustafa and Abu Waar 674

[23] Wang, H. Analysis of error localization of Chebyshev spectral approxi-
mations, SIAM J. Numer. Anal., 61(2) (2023), 952–972.

[24] Yang, Y., Tohidi, E., and Deng, G. A high accurate and convergent
numerical framework for solving high-order nonlinear Volterra integro-
differential equations, J. Comput. Appl. Math., 421 (2023), 114852.

[25] Youssri, Y.H., Abd-Elhameed, W.M., and Ahmed, H.M. New fractional
derivative expression of the shifted third-kind Chebyshev polynomials:
Application to a type of nonlinear fractional pantograph differential equa-
tions, J. Funct. Spaces, 2022 (2022) 3966135.

[26] Youssri, Y.H., Abd-Elhameed, W.M., and Atta, A.G. Spectral Galerkin
treatment of linear one-dimensional telegraph type problem via the gen-
eralized Lucas polynomials, Arab. J. Math., 11(3) (2022), 601–615.

[27] Youssri, Y.H. and Atta, A.G. Modal spectral Tchebyshev Petrov-Galerkin
stratagem for the time-fractional nonlinear Burgers’ equation, Iran. J.
Numer. Anal. Optim., 14(1) (2023) 172–199.

[28] Youssri, Y.H. and Atta, A.G. Petrov-Galerkin Lucas polynomials proce-
dure for the time-fractional diffusion equation, Contemp. Math. (2023)
230–248.

[29] Youssri, Y.H. and Atta, A.G. Spectral collocation approach via normal-
ized shifted Jacobi polynomials for the nonlinear Lane–Emden equation
with fractal-fractional derivative, Fract. Fract., 7(2) (2023), 133.

[30] Youssri, Y.H. and Atta, A.G. Radical Petrov–Galerkin approach for the
time-fractional KdV–Burgers’ equation, Math. Comput. Appl., 29(6)
(2024), 107.

[31] Youssri, Y.H., Atta, A.G., Abu Waar, Z.Y., and Moustafa, M.O. Petrov–
Galerkin method for small deflections in fourth-order beam equations in
civil engineering, Nonlinear Eng., 13(1) (2024), 20240022.

[32] Youssri, Y.H., Hafez, R.M., and Atta, A.G. An innovative pseudo-
spectral Galerkin algorithm for the time-fractional Tricomi-type equation,
Phys. Scr., 99(10) (2024), 105238.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 655–675



675 Explicit collocation algorithm for the nonlinear fractional Duffing equation ...

[33] Zeeman, E.C. Duffing’s equation in brain modelling, Bull. Inst. Math.
Appl., 12 (1975), 207–214.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 655–675


	Explicit collocation algorithm for the nonlinear fractional Duffing equation via third-kind Chebyshev polynomials
	Y.H. Youssri, A.G. Atta, M.O. Moustafa and Z.Y. Abu Waar

