- Aguirre, L., Hebert, E.M., Garro, M.S., & de Giori, G.S. (2014). Proteolytic activity of Lactobacillus strains on soybean proteins. LWT-Food Science and Technology, 59(2), 780-785. https://doi.org/10.1016/j.lwt.2014.06.061
- Atashgahi, S., Moayedi, A., Sadeghi Mahoonak, A., Shahiri Tabarestani, H., & Sadeghi, A. (2024). Enhancement of antioxidant activity and bioactive compounds in soy whey fermented with Lactiplantibacillus plantarum and Weissella confusa. Iranian Food Science and Technology Research Journal, 20(3), 65-79. https://doi.org/10.22067/ifstrj.2024.87477.1325
- Beal, C., Skokanova, J., Latrille, E., Martin, N., & Corrieu, G. (1999). Combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt. Journal of Dairy Science, 82(4), 673-681. https://doi.org/10.3168/jds.S0022-0302(99)75283-5
- Böni, L., Rühs, P.A., Windhab, E.J., Fischer, P., & Kuster, S. (2016). Gelation of soy milk with hagfish exudate creates a flocculated and fibrous emulsion-and particle gel. PLoS One, 11(1), e0147022. https://doi.org/10.1371/journal.pone.0147022
- Cavallieri, A.L.F., & Da Cunha, R.L. (2008). The effects of acidification rate, pH and ageing time on the acidic cold set gelation of whey proteins. Food Hydrocolloids, 22(3), 439-448.
- Ciron, C., Gee, V., Kelly, A., & Auty, M. (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, 20(5), 314-320. https://doi.org/10.1016/j.idairyj.2009.11.018
- De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23(2), 153-177. https://doi.org/10.1111/j.1574-6976.1999.tb00395.x
- Folkenberg, D.M., Dejmek, P., Skriver, A., Guldager, H.S., & Ipsen, R. (2006). Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. International Dairy Journal, 16(2), 111-118. https://doi.org/10.1016/j.idairyj.2004.10.013
- Gänzle, M.G. (2015). Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106-117. https://doi.org/10.1016/j.cofs.2015.03.001
- Gänzle, M.G., Loponen, J., & Gobbetti, M. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science & Technology, 19(10), 513-521. https://doi.org/10.1016/j.tifs.2008.04.002
- García-Cano, I., Rocha-Mendoza, D., Ortega-Anaya, J., Wang, K., Kosmerl, E., & Jiménez-Flores, R. (2019). Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Applied Microbiology and Biotechnology, 103, 5243-5257. https://doi.org/10.1007/s00253-019-09844-6
- Genet, B.M., Xiao, H., Christensen, L.F., Laforce, I.N., Mohammadifar, M.A., Bang-Berthelsen, C.H., & Hansen, E.B. (2023). Selection of proteolytic LAB starter cultures for acidification of soy based dairy alternatives. LWT, 184, 115082.
- Holzhauser, T., Wackermann, O., Ballmer-Weber, B.K., Bindslev-Jensen, C., Scibilia, J., Perono-Garoffo, L., Utsumi, S., Poulsen, L.K., & Vieths, S. (2009). Soybean (Glycine max) allergy in Europe: Gly m 5 (β-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. Journal of Allergy and Clinical Immunology, 123(2), 452-458. e454. https://doi.org/10.1016/j.jaci.2008.09.034
- Joshi, R., Sharma, V., & Kuila, A. (2018). Fermentation technology: current status and future prospects. Principles and Applications of Fermentation Technology, 1-13. https://doi.org/10.1002/9781119460381
- Kamarinou, C.S., Papadopoulou, O.S., Doulgeraki, A.I., Tassou, C.C., Galanis, A., Chorianopoulos, N.G., & Argyri, A.A. (2022). Mapping the key technological and functional characteristics of indigenous lactic acid bacteria isolated from Greek traditional dairy products. Microorganisms, 10(2), 246. https://doi.org/10.3390/microorganisms10020246
- Karimian, E., Moayedi, A., Khomeiri, M., Aalami, M., & Mahoonak, A.S. (2020). Application of high-GABA producing Lactobacillus plantarum isolated from traditional cabbage pickle in the production of functional fermented whey-based formulate. Journal of Food Measurement and Characterization, 14, 3408-3416. https://doi.org/10.1007/s11694-020-00587-x
- Khanlari, Z., Moayedi, A., Ebrahimi, P., Khomeiri, M., & Sadeghi, A. (2021). Enhancement of γ‐aminobutyric acid (GABA) content in fermented milk by using Enterococcus faecium and Weissella confusa isolated from sourdough. Journal of Food Processing and Preservation, 45(10), e15869. https://doi.org/10.1111/jfpp.15869
- Klost, M., Brzeski, C., & Drusch, S. (2020). Effect of protein aggregation on rheological properties of pea protein gels. Food Hydrocolloids, 108, 106036. https://doi.org/10.1016/j.foodhyd.2020.106036
- Kong, X., Xiao, Z., Du, M., Wang, K., Yu, W., Chen, Y., Liu, Z., Cheng, Y., & Gan, J. (2022). Physicochemical, textural, and sensorial properties of soy yogurt as affected by addition of low acyl gellan gum. Gels, 8(7), 453.
- Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375-384. https://doi.org/10.1016/j.tifs.2021.02.014
- Kuipers, B.J., van Koningsveld, G.A., Alting, A.C., Driehuis, F., Gruppen, H., & Voragen, A.G. (2005). Enzymatic hydrolysis as a means of expanding the cold gelation conditions of soy proteins. Journal of Agricultural and Food Chemistry, 53(4), 1031-1038. https://doi.org/10.1021/jf048622h
- Leksono, B.Y., Cahyanto, M.N., Rahayu, E.S., Yanti, R., & Utami, T. (2022). Enhancement of antioxidant activities in black soy milk through isoflavone aglycone production during indigenous lactic acid bacteria fermentation. Fermentation, 8(7), 326.
- Li, Q., Xia, Y., Zhou, L., & Xie, J. (2013). Evaluation of the rheological, textural, microstructural and sensory properties of soy cheese spreads. Food and Bioproducts Processing, 91(4), 429-439. https://doi.org/10.1016/j.fbp.2013.03.001
- Liu, L., Huang, Y., Zhang, X., Zeng, J., Zou, J., Zhang, L., & Gong, P. (2023). Texture analysis and physicochemical characteristics of fermented soymilk gel by different lactic acid bacteria. Food Hydrocolloids, 136, 108252. https://doi.org/10.1016/j.foodhyd.2022.108252
- Lorusso, A., Coda, R., Montemurro, M., & Rizzello, C.G. (2018). Use of selected lactic acid bacteria and quinoa flour for manufacturing novel yogurt-like beverages. Foods, 7(4), 51. https://doi.org/10.3390/foods7040051
- Masiá, C., Jensen, P.E., Petersen, I.L., & Buldo, P. (2022). Design of a functional pea protein matrix for fermented plant-based cheese. Foods, 11(2), 178. https://doi.org/10.3390/foods11020178
- McCarthy, K., Parker, M., Ameerally, A., Drake, S., & Drake, M. (2017). Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk? Journal of Dairy Science, 100(8), 6125-6138.
- Meinlschmidt, P., Ueberham, E., Lehmann, J., Schweiggert-Weisz, U., & Eisner, P. (2016). Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chemistry, 205, 229-238.
- Mende, S., Peter, M., Bartels, K., Dong, T., Rohm, H., & Jaros, D. (2013). Concentration dependent effects of dextran on the physical properties of acid milk gels. Carbohydrate Polymers, 98(2), 1389-1396. https://doi.org/10.1016/j.carbpol.2013.07.072
- Mishra, S., & Mishra, H.N. (2018). Comparative study of the synbiotic effect of inulin and fructooligosaccharide with probiotics with regard to the various properties of fermented soy milk. Food Science and Technology International, 24(7), 564-575. https://doi.org/10.1177/1082013218776529
- Moslemi, M., Moayedi, A., Khomeiri, M., & Maghsoudlou, Y. (2023). Development of a whey-based beverage with enhanced levels of conjugated linoleic acid (CLA) as facilitated by endogenous walnut lipase. Food Chemistry: X, 17, 100547. https://doi.org/10.1016/j.fochx.2022.100547
- Nasaruddin, F., Chin, N., & Yusof, Y. (2012). Effect of processing on instrumental textural properties of traditional dodol using back extrusion. International Journal of Food Properties, 15(3), 495-506. https://doi.org/10.1080/10942912.2010.491932
- Ningtyas, D.W., Tam, B., Bhandari, B., & Prakash, S. (2021). Effect of different types and concentrations of fat on the physico-chemical properties of soy protein isolate gel. Food Hydrocolloids, 111, 106226. https://doi.org/10.1016/j.foodhyd.2020.106226
- Purohit, D., Hassan, A., Bhatia, E., Zhang, X., & Dwivedi, C. (2009). Rheological, sensorial, and chemopreventive properties of milk fermented with exopolysaccharide-producing lactic cultures. Journal of Dairy Science, 92(3), 847-856. https://doi.org/10.3168/jds.2008-1256
- Rahmani, F., Gandomi, H., Noori, N., Faraki, A., & Farzaneh, M. (2021). Microbial, physiochemical and functional properties of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium bifidum enriched by green tea aqueous extract. Food Science & Nutrition, 9(10), 5536-5545. https://doi.org/10.1002/fsn3.2512
- Rastogi, Y.R., Thakur, R., Thakur, P., Mittal, A., Chakrabarti, S., Siwal, S.S., Thakur, V.K., Saini, R.V., & Saini, A.K. (2022). Food fermentation–significance to public health and sustainability challenges of modern diet and food systems. International Journal of Food Microbiology, 371, 109666.
- Rojas-Nery, E., Garcia-Martinez, I., & Totosaus, A. (2015). Effect of emulsified soy oil with different carrageenans in rennet-coagulated milk gels. International Food Research Journal, 22(2), 606.
- Saraniya, A., & Jeevaratnam, K. (2015). In vitro probiotic evaluation of phytase producing Lactobacillus species isolated from Uttapam batter and their application in soy milk fermentation. Journal of Food Science and Technology, 52, 5631-5640.
- Shahbandari, J., Golkar, A., Taghavi, S.M., & Amiri, A. (2016). Effect of storage period on physicochemical, textural, microbial and sensory characteristics of stirred soy yogurt. International Journal of Farming and Allied Sciences, 5(6), 476-484.
- Shakerian, M., Razavi, S.H., Ziai, S.A., Khodaiyan, F., Yarmand, M.S., & Moayedi, A. (2015). Proteolytic and ACE-inhibitory activities of probiotic yogurt containing non-viable bacteria as affected by different levels of fat, inulin and starter culture. Journal of Food Science and Technology, 52, 2428-2433. https://doi.org/10.1007/s13197-013-1202-9
- Shams-Abadi, S.T., & Razavi, S.M.A. (2021). Cress seed gum improves rheological, textural and physicochemical properties of native wheat starch-sucrose mixture. International Journal of Biological Macromolecules, 181, 945-955. https://doi.org/10.1016/j.ijbiomac.2021.04.093
- Shewry, P.R., Napier, J.A., & Tatham, A.S. (1995). Seed storage proteins: structures and biosynthesis. The Plant Cell, 7(7), 945. https://doi.org/10.1105/tpc.7.7.945
- Shirotani, N., Hougaard, A.B., Lametsch, R., Petersen, M.A., Rattray, F.P., & Ipsen, R. (2021). Proteolytic activity of selected commercial Lactobacillus helveticus strains on soy protein isolates. Food Chemistry, 340, 128152. https://doi.org/10.1016/j.foodchem.2020.128152
- Somjid, P., Panpipat, W., Cheong, L.-Z., & Chaijan, M. (2022). Comparative effect of cricket protein powder and soy protein isolate on gel properties of Indian mackerel surimi. Foods, 11(21), 3445. https://doi.org/10.3390/foods11213445
- Taheri, S., Khomeiri, M., Aalami, M., & Moayedi, A. (2019). Non-fermented synbiotic drink based on lactic cheese whey which incorporates Lactobacillus rhamnosus GG and Lactobacillus paracasei. International Journal of Food Studies, 8(2). https://doi.org/10.7455/ijfs/8.2.2019.a9
- Tang, J., Luan, F., & Chen, X. (2006). Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FTIR, and molecular modeling. Bioorganic & Medicinal Chemistry, 14(9), 3210-3217. https://doi.org/10.1016/j.bmc.2005.12.034
- Tavano, O.L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1-11. https://doi.org/10.1016/j.molcatb.2013.01.011
- Wang, R., & Guo, S. (2016). Effects of endogenous small molecular compounds on the rheological properties, texture and microstructure of soymilk coagulum: Removal of phytate using ultrafiltration. Food Chemistry, 211, 521-529. https://doi.org/10.1016/j.foodchem.2016.05.086
- Wang, T., Chen, X., Wang, N., Wu, N., Jiang, L., Wu, F., Yu, D., Cheng, J., & Wang, L. (2022). Effect of electrochemical treatment on the formation and characteristics of induced soybean milk gel. Journal of Food Engineering, 323, 111007. https://doi.org/10.1016/j.jfoodeng.2022.111007
- Wang, Y.-C., Yu, R.-C., Yang, H.-Y., & Chou, C.-C. (2003). Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiology, 20(3), 333-338. https://doi.org/10.1016/S0740-0020(02)00125-9
- Worsztynowicz, P., Schmidt, A.O., Białas, W., & Grajek, W. (2019). Identification and partial characterization of proteolytic activity of Enterococcus faecalis relevant to their application in dairy industry. Acta Biochimica Polonica, 66(1), 61-69. https://doi.org/10.18388/abp.2018_2714
- Xing, G., Giosafatto, C.V.L., Rui, X., Dong, M., & Mariniello, L. (2019). Microbial transglutaminase-mediated polymerization in the presence of lactic acid bacteria affects antigenicity of soy protein component present in bio-tofu. Journal of Functional Foods, 53, 292-298. https://doi.org/10.1016/j.jff.2018.12.035
- Yang, H., Qu, Y., Li, J., Liu, X., Wu, R., & Wu, J. (2020). Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis. LWT, 128, 109442. https://doi.org/10.1016/j.lwt.2020.109442
- Yang, X., Su, Y., & Li, L. (2020). Study of soybean gel induced by Lactobacillus plantarum: Protein structure and intermolecular interaction. LWT, 119, 108794. https://doi.org/10.1016/j.lwt.2019.108794
- Zannini, E., Jeske, S., Lynch, K.M., & Arendt, E.K. (2018). Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. International Journal of Food Microbiology, 268, 19-26. https://doi.org/10.1016/j.ijfoodmicro.2018.01.001
|