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Sequential approximate optimality conditions for a constrained convex ...
Abstract

The aim of this paper is to establish sequential necessary and sufficient
approximate optimality conditions for a constrained convex vector mini-
mization problem without any constraint qualifications, characterizing the
approximate proper and weak efficient solutions. The constraints are de-
scribed by mappings taking values in different preorder vector spaces. Our
approach is based essentially on the sequential approximate subdifferential
calculus rule for the sums of a finite family of cone convex mappings. To
illustrate our main result, an application to multiobjective fractional pro-
gramming problem is given. Finally, we present an important subclass of

such problems showing the applicability of the obtained conditions.

AMS subject classifications (2020): Primary 45D05; Secondary 42C10, 65G99.

Keywords: Vector optimization; Approximate Pareto subdifferential of con-

vex mappings; Sequential approximate optimality conditions.

1 Introduction

Many multiobjective fractional programming problems arose in different fields
of modern research because their algorithmic aspects and abundance of appli-
cations, for example, economics, management, medicine, information theory,
engineering, and optimal control (see [17, 2, 15, 16, 20] and the references
therein).

Generally, for establishing the approximate optimality conditions for con-
vex optimization problems, certain types of constraint qualifications must be
imposed. However, we know that the constraint qualifications do not always
hold even for finite-dimensional optimization problems and frequently fail
for infinite-dimensional optimization problems. In order to eliminate these
drawbacks, many authors have paid their attention to characterize optimality
conditions for convex optimization problems without any constraint qualifi-
cations (see [19, 3, 8, 9, 1]). Thibault [19] derived sequential optimality con-
ditions via the subdifferential calculus for convex functions with cone convex

constraints. Bot, Csetnek, and Wanka [3] obtained sequential characteri-
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zations of an optimal solution for composed convex optimization problems.
Recently, works have been done in this direction for multiobjective fractional
programming problems (see [14, 13, 10, 11, 18]). Moustaid et al. [14, 13]
established sequential optimality conditions for a constrained fractional pro-
gramming problem without any constraint qualifications, characterizing the
approximate weak efficient and efficient solution. Kim, Kim, and Lee [10] and
Kohli [11] developed sequential optimality conditions for multiobjective frac-
tional programming problems via scalarization and by using the concept of
the epigraphs of conjugate functions in terms of approximate subdifferentials

at an approximate weak efficient solution.

In this paper, we consider the following constrained vector minimization
problem with inequality constraints, which are described by mappings taking

values in different preorder vector spaces

min f(x)
x e C,
(Pl) h’l(m) € _Zi‘rv
hp(x) € _Z;a
where (X, || - ||lx) and (Z;, ]| - ||z,) (¢ = 1,...,p) are real reflexive Banach

spaces and Y is a real Hausdorff topological vector space, C, Yy C Y, and
ZF c Z; (i = 1,...,p) are convex cones and f : X — Y U {+ocoy} is a
proper and Y, -convex and h; : X — Z; U{+o00z,} (i =1,...,p) are proper

+ .
and Z; -convex mappings.

The goal of our paper is to establish, in the absence of constraint qualifica-
tions, sequential approximate optimality conditions characterizing properly
and weakly approximate efficient solutions for the problem (P;) in terms of

the approximate subdifferentials of the associated functions.

This paper is organized as follows. In Section 2, we present the main
notions and give some preliminary results used in what follows. In Section
3, we establish a sequential formula for the approximate subdifferential for
the sums of two vector mapping with a sum of p (p > 1) vector composites.

In Section 4, by the results in Section 3, we study sequential necessary and
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679 Sequential approximate optimality conditions for a constrained convex ...

sufficient approximate optimality conditions for (P;). Section 5 is devoted to
calculus sequential approximate optimality conditions for multiobjective frac-
tional programming problems without any constraint qualification. Finally,

we present an example illustrating the main result of this work.

2 Notations, definitions, and preliminaries

In this section, we give some basic definitions and results. Let X, Y, and Z
be real Hausdorff topological vector spaces with continuous dual spaces X*,
Y™, and Z* and duality pairing also denoted by (-,-). Let Y be a convex
cone of Y with intY, # 0. The subset [(Y,) := Y, N =Y, is the linearity of
Y., when it is null; thus the cone Y} is said to be pointed. Throughout the
paper, we denote by L(X,Y") the set of all continuous linear operators from
X into Y. In what follows, the convex cone Y7 is not supposed to be a linear
subspace so it cannot coincide with its linearity. For any v,vs € Y, the cone

Y, induces the following ordering relations:

V1 §Y+ Vg <= V2 — V1 € Y+,
V1 <y, V2 &= V2 — U1 € intYy,
v1 Sy, v2 = vy — vy € Y\ (Y]).
To space Y, we attach an abstract maximal element with respect to “<y, 7,
denoted by 400y such that v <y, +ooy, for all v € Y and v + (+o0y) :=
(+o0y) + v := 4+ooy for all v € Y U {+o0oy }.
The polar cone Y} and the strict polar cone (Y})° of Y are defined,

respectively, as
Yii= {yt €Y'yt (Va) SRy,

and
(YO :={y" e Y™ : y"(Y\I(Y})) CRy\{O}}.

Now, let us recall the following definitions.
Definition 1. A mapping F : X — Y U {400y} is said to be

e Y, -convex if for any 8 € [0,1] and any uj,us € X
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F (Bur + (1 = Blug) <y, BF (ur) + (1 = B)F (uz).

e proper if its effective domain satisfies

domF:={ze€X: :F(z)eY}#0.

e Y, -epi-closed if its epigraph

epiF := {(z,y) € X xY : F(x) <y, y} is closed.

e star Y, -lower semicontinuous if y* o F' is lower semicontinuous for any

y*eY;.

Let “<z, 7 be a partial order on Z induced by a nonempty convex
cone Z; C Z. We say that a mapping g : Z — Y U {400y } is (Z4,Y,)-

nondecreasing if for any wi,ws € Z we have
wy <z, w2 = g(w1) <y, g(wz).

If h: X — ZU{+oc0z}, then the composed mapping goh : X — Y U
{+o0y } is defined by

g(h(z)) if z € dom h,

(goh)(z) :=

+o0y otherwise.
It is easy to see that if ¢ is (Z4, Y, )-nondecreasing and Y -convex and h is
Z,-convex, then go h is Y, -convex.

Given F : X D S — Y U {400} and € € Y., we consider the following
vector minimization problem:
(P) minF(z).

zeS

We recall some e-efficiency solutions of (P).
Definition 2. A point Z € S Ndom[ is said to be

e a weakly e-efficient solution if there does not exist z € S such that
F(.%‘) <y, F(:i‘) — €,
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681 Sequential approximate optimality conditions for a constrained convex ...
e a properly e-efficient solution if there exists a convex cone Y, C Y that satisfies

Y\l (Y,) C int Yy, there does not exist 2 € X, F(x) <y, F(z)—e.

The sets of weakly and properly e-efficient points will be denoted by
EY(F,S,Y,)and EP(F,S,Y,), respectively. Let us note that if EZ (F, S, Y, ) #

(), then we can see easily € € D7, where

Y\ — intYy if o0 =w,
D =
VA=Y (VL)) i o = p.

The e-subdifferential of F' at £ € domF, may be defined regarding the dif-
ferent concepts of Pareto e-solutions efficient in the above with respect to

o € {w,p} as follows:
F(z):={Ae L(X,Y): 2 € EZ(F - A,S,Y})},
that is,

e 0V F(z) ={A € L(X,Y) : there does not exist z € X,
€

F(z) - F(z) <y, A(z — ) — ¢},
ePF (%)= {A e L(X,Y): there exists Yy C Y a convex cone that satisfies

Y—‘r\l (Y+) C int YA:H
there does not exist x € X, F(z) — F(2) <y, A(x — ) — ¢}

The conjugate function of any function F : X — R U {400} is denoted
by F* : X* — R and is defined as

F*(x*) := sup{{z*,z) — F(x)}.
reX
For n > 0, the n-subdifferential of F' at a point T € domF is defined by
OpF(z) ={2" € X" : F(z) — F(z) > (", — Z) —n, for all z € X}.
It is easy to check that

X" € 0,F(z) <= F*(2")+ F(Z) — (z",Z) <n.

By the definition of F*, the so-called Young—Fenchel inequality is
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F*(x*)+ F(x) > (¥, z), forall (z,2") € X x X™.

If € = Oy, then the set 9 F(z) := 0° F(Z) is the Pareto subdifferential (see

[7]), for any o € {s,w,p}. For simplicity, we consider the following notation:

Yi\{Oy}if o = w,
YV =
(V3 ifo=p,

For any subset C' C X, the vector indicator mapping ¢ : X — Y U {400y}

of C' is defined by
. 0, ifxeC,
o¢(x) = { .
+ooy, otherwise.

When Y = R, the scalar indicator function is denoted by dc. The vector
indicator mapping J¢ appears to possess properties like the scalar indicator

function dc. Moreover, we point out the relation between ¢, and d¢
y* 0 d0¢ = 0c, for all y* € Y \{0y}.

For any n > 0, the np-normal set to C at T € C is defined as the 7-

subdifferential of the indicator function do at T € C, that is,

N,(z,C) = 0,0c(T) ={z" € X" : (", 2 — %) <, forall z € C}.

In what follows, we will need the following theorems. The first one char-
acterizes scalarly the approximate o-subdifferential for o € {w,p} and the
second one gives a general formula on the sequential approximate subdiffer-
ential of the sum of p (p > 2) proper lower semicontinuous convex functions

defined in a reflexive Banach space.

Theorem 1 ([5]). Let K : X - Y U{+ocoy} and let Z € domK. Then, for
o € {p,w},

7K@ 2 | {A€LX,Y) 1y 0 A€ dy oy o K)(@)}, forallee D,

y*eyYy

with equality if K is Y -convex and Y, pointed as o = p.
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683 Sequential approximate optimality conditions for a constrained convex ...

Let (X, - |lx) be a reflexive Banach space and let (X*,| - |x+) be its

topological dual space. Let (¢ )nen be a sequence in X* (resp., (¢p)nen be a
sequence in X) and ¢* € X* (resp., c € X). We write ¢, e o (resp.,
n———+oo

c Hig c) if ||c® —c*||x+ — 0 when n — 400 (resp., ||c, —¢||x — 0 when
n n X P, n X
n——+00

n — +00).

Theorem 2 ([14]). Let X be a reflexive Banach space, let n > 0, and let
ki,...,kp: X — RU{+0o0} be p proper, convex, and lower semicontinuous
functions. For any e € (}_,domk;, we have z* € 9, (3_V_, k;) (€) if and only
if there exist 7; > 0 and (e; ,,€;,,) € domk; x X* satisfying

Ilx  ~
m,  €in ? €
n———+oo
1=1

p
el € Onki(ein),
p

R
Il Hx*
g el z*,
’ n»—>+c>o

z(ez,n) < znae 7,Mn _é> — ki(é).

3 Sequential formula for approximate Pareto

subdifferential of the convex vector mapping

fi+tFfo+>"% jgioh;, (p>1)

In the following, (X, [|-[|x) and (Z1, [|||z,), - -, (Zp, || || z,) are real reflexive
Banach spaces, Y is a real Hausdorff topological vector space with continuous
dual spaces (X7, ||| x-), (Z7, |12 )seer (25, -
also denoted by (-,-). We suppose two spaces Y and Z; are partially ordered

z;) and Y, duality pairing is

by nonempty convex cones Y, and Z , respectively. Moreover, we use the

following norm on X x [[7_, Zj:

I, 21, 2p) xxzaxexz, = /Il + 0y il

Similarly, we define the norm on X* x [[}_; Z;. Our aim in this section, is to
develop the sequential calculus rules for the approximate (weak and proper)
Pareto subdifferential of the convex vector mapping fi + fo + > o1 gi o h; :
X — Y U {+ooy}, where
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e fi,fo: X — Y U {+ooy} are proper, Y -convex and star Y, -lower

semicontinuous mappings,

e hj : X — Z;U{+c0z}, i = 1,...,p, are proper, Z; -convex and

Zj -epi-closed mappings,

e g;: Z; — Y U{+ooy},i=1,...,p, are proper, Y, -convex, (Z;",Y,)-

nondecreasing and star Y, -lower semicontinuous mappings,

e (N2, h;'(domg;) N domh;) N domf; Ndomfs # § and g;(+00z,) =

i=1""

4ooy,t=1,...,p.

The approach that will be used is to reduce the (weak and proper) Pareto
e-subdifferential of fi + fo+ Y %_, gioh; to that of the sums of a finite family
of proper convex star Y -lower semicontinuous mappings. For this, let us

consider the following auxiliary mappings:

Fi: X x Hi:l Z —> YU{+OOy}

(,21,...,2p) — Fi(z,21,...,2p) = fi(z),

F2 X x HZI;:I Zk —>YU{+OOy}

(@, 21,y 2p) — Fo(x,21,...,2p) = fo(z),

Gi: X x[[_1 Zr — Y U{+ooy} (t=1,...,p)
(21, .-y 2p) — Gim, 21, .., 2p) 1= gi(2i),

H;: X x[[{_, Zr — Y U {+ooy } (i=1,...,p)
(T, 21,5 2p) —> Hi(z, 21, 2p) = 6, (2, 2i).

The following lemmas will be very helpful in what follows.

Lemma 1. Let 7 € (N!_, h; '(domg;) N domh;) N domfi N domfs, let o €
{p,w}, and let e € D’ with Y, be pointed as 0 = p. Let A € L(X,Y) and
let T € L(X x [[}—; Zk,Y) be defined by T(z,z,...,2,) := A(z), for all
(z,21,...,2p) € X x [[%_; Z. Then

p
A€dI(fr+ 2t > gi0hi)(T)

i=1

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 676-703



685 Sequential approximate optimality conditions for a constrained convex ...

if and only if

p
TedZ(Fi+ Fa+t Y Gi+ H)(@h(Z),... hy(T))
i=1

Proof. Let us prove the direct implication for the first case 0 = w. Let
A€ 0¥ (fi+fa+d r_, gioh;)(x). We proceed by contradiction, if T' & 0 (Fy+
Fo+3"  Gi+H;)(Z,hi(Z),..., hy(Z)), then there exists (zo, 21,0, - - -, 2p,0) €
X x [T~y Zk such that

p
(Fy + Fa+ Z Gi+ H;)(x0,21,0,---52p,0)
i=1

—(Fi+FB+ Y0 G+ H) (&, hi(Z),...,hy(T)) — A(zg — ) + £ € —int Y,

which implies that

Xo € domf1 N domfg,zi,o S domgi, (.130,2,‘70) € epih;, i=1,...,p, (1)

and
P P
(f1(@o) + f2(0) + Y 9i2i0)) = (fi+ f2+ Y _ giohi)(z) — A(zo— ) +¢ € — int Y. (2)
i=1 i=1

From relations (1), (2) and by using the monotonicity of g;, we obtain

p P
(frt+fotd_ giohi)(wo)—(fr+fot)_ gioh:)(#)—A(zo—F)+e € — int Y, —Y,

=1 =1

and by using the fact that — int Yy — Y, C — int Y, , we would obtain

P P
(frtfat Y giohi)(x0)— (fi+fot D giohi) (&) — A(zo—T)+¢ € — int Yy,
i=1 i=1
which would contradict A € 8 (f1 + fo + Y.+, gi o h;)(Z). To show the
case ¢ = p, let us consider A € OP(f1 + fo + >.7_;gi 0 hi)(Z) and T ¢
OP(Fi+Fo+Y " | Gi+H;)(Z,h1(Z),...,hy(Z)). Hence, there exists a convex
cone Y, C Y such that Y, \ {0y} Cint Y, and (zq, 2;0) € ((dom fiNdom fy)x
domg;) Nepih; (i =1,...,p) satisfying

P
(Fy + F» + ZGi + H;)(x0,21,0,---52p0)

=1
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p A A

— (Fi+ Fa+ Y Gi+ H)(@,h(2),..., hp()) — Alwo — 7) + £ € =Y \I(V7),

1=1

Reasoning in the same way as above for ¢ = w, we obtain

p P
(fr+fot > giohi)(wo)—(frtfot Y giohi)(®)—A(zo—7)+e € =V \I(Vy) =Yy
i=1 i=1
Observe that —Y, \I(Y,) — Y, € =Y, \I(Y,). Indeed, let v := vy + vy with
vy € =Y, \I(Yy) and vy € =Y. If vy := Oy, then v € =Y, \I(Vy). Otherwise,
vy € =Y, \{0y} and since —Y;\{0y} C — int ¥, C =Y, \I(V}), we get
ve —Y \I(Yy) = Yo\I(Yy) C€ =Y, \I(Yy), and hence we have

(frfot Y giohi)(@o) = (fi+ fa+ ) giohi)(®)— A(wo—2)+¢ € =V, \I(YV3),

i=1 i=1
obtaining again a contradiction with A € 2(f1 + fo+ Y 4, gi o h;)(Z).

Conversely, it is obvious by contradiction, too. O

Lemma 2. Let (Z,%4,...,4,) € domF; N domF> N domG; N domH; and
ar,a2,,0i >0 (i =1,...,p). Then for all y* € Y, we have

1)

(x*,27,...,25) € 0p,(y* o Hy)(Z, 21, .., Zp)

there existB;1 > 0, 8;2 > 0 with 3,1 + 8,2 = s,

LS aﬁi,l(_’z; o hl)(j)7

<
_Z; € (Zz—i_)*a <Z:’h1<j:) - 2’71> < /Bi,Qv
T € Do,y (¥ © [1)(2),

2) (lL’*, Zika ceey Z;) € a041 (y*oFl)(i'v Zlyees Z_P) <~

z;=0,j€{l,...,p}.
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2% € Oay (y* 0 f2)(2),
3) (x*,27,..., z;) € O, (Y oF2)(Z, 21, ..., %) <

2 =0, j€{l,...,p}

2 € Op,(y" 0 9:)(Z),

4) (z*,2],...,2;) € Op, (Y oGi) (T, 21, .., ) &
" =0, z; =0,

jef{l,...,pP\{i}.
Proof. 1) Let (x,21,...,%2p) € domH,;, let §; > 0, i = 1,...,p, and let
(:c*,z’l",..., p) € X* x [[h_, Z;. We can see that

Hi(a",25,.. ., 25) = 05+ (27) + (=2 o hy) +Za{0} %)-
k;éz
Thus,
(:U*,zf,...,z;) € 0g,Hi(x,21,...,2p)

if and only if
P
H (2%, 2f,...,25) + Hi(z,, 21, .., 2p) Z (25, 21) — (25, 2i) < B,
=4
that is,
zp =0, kEe{l,....,pH\{d},
and
(=2 0 ha)" (%) + 0,1 (2]) + depin, (7, 21) — (2%, %) — (2, 2) < fi,  (3)
by taking w; := z; — hi(Z) € Z;", we may rewrite (3) as follows:
(=2 0hi)™(2%) + (=27 0 hi) (z) = {&", T)] 4 [074 (27) +0 7 (wi) = (27", wi)] < B
By using the Young—Fenchel inequality, it follows that
(=2 0 he)" (") + (=2 0 hi)(T) — (27, 7) > 0,

52; (27) + 0+ (wi) = (2 wi) = 0,
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and hence, there exist some ;1 > 0 and §; 2 > 0 satisfying 8; = £;1 + Bi2

and
(=27 o hy)* (") + (=2 o hy)(Z) — (2", Z) < By,
5*Z+(Zz*) + 5zj (wi) = (2], wi) < Big,
that is,
RS aﬂiJ(_Z';k o hl)(j)v
Z;k € aﬁi,zézf (wl) = Nﬁi,2 (732- - hl(j)vzj_)
Since Zfr sy Z; are all convex cones, we get easily
—z} € (Z])",
Zz* € Nﬂi,z(gi - hl(j)vz:r) Aand
(27, hi(®) — Z) < Bia-
The proof of (2), (3), and (4) is similar to (1). O

Now, we present our main result in this section.

Theorem 3. Let fi,f2 : X — Y U {+ooy} be two proper, Y, -convex
and star Y -lower semicontinuous mappings, let h; : X — Z; U {+00z,},
1 = 1,...,p, be p proper, Zj—convex and Zj—epi—closed mappings, and
let g; : Z; — Y U {400y}, ¢ = 1,...,p, be p proper, Y, -convex,
(Z;", Y} )-nondecreasing and star Y,-lower semicontinuous mappings. Let
z € (N, h; *(domg;) N domh;) Ndomf; Ndomfs, e € D7 and o € {p,w}.
Suppose that Y, is pointed as o = p. Then, A € 97 (fi+fo+Y +_; gioh;)(Z) if
and only if there exist y* € Y7, x, € domfi, r, € domfs, (i n, 2in) € epihy,
Vi € domg;, zy,ry, 2, € X7, 20,08, € ZF, and a0, A, vi,mi > 0

satisfying

p
041+042+Z)\¢+%‘+m‘ = (y*,e),

=1
(R Ix - I-lx -
n — T, Tn — T, Tin — z,
n———+oo n———+oo n———+oo
Iz, Iz,
Zimn — hl(f Vin — hl(j)
£l ? B} )
n—+4o00 n—+4o0o

x5, € Oay (Y™ 0 f1)(@n), 17, € Doy (¥ © f2)(2n), 07 1, € Oy (¥ © gi) (vi,n),

@}, €0, (=27, 0 hi)(@in), =25, € (Z)*, (27 o hi@in) = 2im) < i
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689 Sequential approximate optimality conditions for a constrained convex ...

and
- *+Zp f Mo A and e 1
x r X — oA and z; v; —
n n - LN, +ooy ,Mn (XL oo
= — —

(y" o fi)(@n) = (25,00 = 7)  —> (Y™ o f1)(2),

n——+00

(" o fo)(rn) = (rasrn —7)  —> (y" 0 f2)(2),

n—-+oo

<.’E* Tip — LE> + <Z;n7 Zim — hz(:f» — 0,

i,n?
) n—+o00

(U 0 9i)(Vin) = (Vi s Vin — hi(Z))  — (y" 0g:)(hi(T)).

n+—-+o0o

Proof. Let A € 02 (fi+ fa+ > +_; giohi)(Z). By applying Lemma 1, we have

p
Acd(fr+ f +Zgi o h;)(Z)

=1
P
=T edl(Fi+F+) G+ H) (@ hi(z),. .. hy(7)).

i=1

By virtue of scalarization Theorem 1, there exists y* € Y7 such that

P
y ol €Oy ey (y" o Fr+y" o Fy+ Zy* oG+ y* o Hy) (&, hi(Z), ..., hy(T)),

i=1

which is equivalent to

P

(y"0A,0,0,...,0) € Ipye oy (y" o F1+y 0Fa+ >y oGity oH;)(z,hi (), ..., hy(T)).
i=1

The functions y* o Gy, y* o H; (i =1,...,p,) y* o F} and y* o Fy are all lower

semicontinuous, convex, and proper on X x [[7_, Z.

The condition z € (N_, h; ' (domg;) Ndomh;) Ndom f; Ndom fo is equiv-
alent to (Z, hy(Z),...,hy(z)) € (NF_, domG; NdomH;) N domF; N domF, =
(NP_, dom(y* o G;) N dom(y* o H;)) N dom(y* o F1) N dom(y* o F»). Hence,

y* oG;, y*oH;,i=1,...,p, y* o F} and y* o F5 satisfy all the hypotheses

of Theorem 2, and therefore there exist (Zn, w1 n,..., Wy ) € dom(y* o F1),
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(Pnytims - s tpn) € dom(y* o Fo) , (Zipn, Wiins---,Wpin) € dom(y* o Hy),
(Cin7u1ina"'7up,i,n) edom(y*oGi), ("L':wwfn’ w; n) (7" tl n?""t;, )

* * * * . .
(SIJ 7,m) lzn7""wp,i,n)7 (Ci,n7u1,i,n7"‘7 p,zn)e X XH Zk andahanﬂl,nl >

0,7=1,...,p, satisfying

p
artaz+) Bi+mi=(ye), (4)
i=1

(x'ruwl,nv <o, Wpon

(Tn7t17n7"'7t1777’b) n»ji—oo (jahl(j)a' 7h’;ﬂ(j))7 (5)
I lxxzyx-xzp ,_ _ _
(ci,n,ul,i,n,~--7up,i,n) :i}+oo ! xvhl(z)a ~ahp(x))a
I lxxzy % xzp , _ _ _
(xi,mwl,i’m"wwp,i,n) ;'_%X:_O: ! (m7h1($)7"'7h17($))7

(T, WY s+ w;n) € Do, (Y* 0 F1)(@n, Win, -+, Wpn),
(st sty ) € Oy (U* 0 Fo)(Trstin, - oo s tpn),

(cz‘)n, UT 4oy s Upy s n) €O, (Y 0 Gi)(Ciny Ul ims -3 Upin),
(

n’ wi‘,i,rw t p % n) € 861 (y o H; )(xifﬂ? w17i,7’b’ Tty wp,ifﬂ)v

(y* © Fl)(xna Wimny--- awpﬂl) - <(x:uwin> sy w;,n)a (xnawl,ru v 7w107n)
_(j:’ hl('i)’ R hp(j)» n:j_oo (y* o Fl)(j7 hl(j:% R hp(j»’

(Y o F2)(Tnstins - s tpn) = (Tt s+ 5ty )y (Prstins -5 tpn)
—(Z,h(Z), ..., hp(T))) — ("o F2) (&, hi(Z),...,hy(T)),

n—-+oo
(y*o Gi)(ci,m Ulims - 7up7i,7l) - <(Cz,n7 uii,n? s ’u;,i,n)v (Ci,’m Ulyin, - - - ’U':Dﬂ'm)
@@ @) (7 0 G (@) ),
(" 0 Hi) (@i, Wiy Wpiin) = ((TF s Wi i3 W i)y (i Wiy -+ Whiin)

7(ja hl(j)a R hp("f)» n:>roo (y* o Hl)(‘f7 hl(j)7 R hp(i'))a
(7)
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P P
* * * * * * * *
(In + Tn + E xi,n + Ci,n7 wl,n + tl,n + E wl,i,n + ul,i,ru

* *
e Wy oy
=1 =1 8
L o Wllersapxsy ®)
+ pr,i,n + up,i,n n—+00 (y o A7 07 sy 0)'
=1
Note that (5) becomes equivalent to
Ix - Ix - Ilx - Ilx  _
n — & T™m — & Tin — T, Cin z,
n+————+oo n+———+o0o n+———+oo n+———+oo
-1l z; b . -l z; b (3 -
"y (7 ) (7
J,m n_}’+oo J ), J,n m_):_oo J( ) (4 ) ,P),
s -z, B (2), s Il x
Grism m_eroo )y Ujin >

oo hij@)  (G=1,...,p).

According to Lemma 2, (6) becomes equivalent to

(mszin7 s ’w;,n) € Oa; (y* 0 F1)(zn, w1,n,

-, Wp,n)
@, € Doy (y™ © f1)(@n),
<~
w;fyn =0, je{1,...,p}.
(r;kzr tinv ) t;,n) € 8042 (y* o FQ)(rnvt1,n7 .. 7tpvn)
T3 € Oaz (y* 0 f2)(rn),
<~
t;-‘,n =0, je{1,...,p}.
(CF s U i 5 Uy i) € Oy (¥ 0 Gi)(Cin, Utyimy - - - 5 Up,isn)

ur,i,n € 8”11‘ (y* Ogi)(ui,i,n)y

*

C'L,n = 07 uj7i1n = 01 J S {1) R 7p}\{7‘}

* * *
(T WY pr e W

3 p,i,n) S 8,6’L (y* o Hi)(xi,ny Wiims .- wp,i,n)

there existf; 1 > 0,8;,2 > 0 with 8; 1 + B2 = Bs,

x}, € 0p, \ (—wy, 0 hi)(Tin),

—wl, € (Z) (Wi o hi(@in) — wiin) < Bia,
w*

Fam =0, G € {1, pI\{i}.
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By putting A\; := 81, v = Bi2, ¢ = 1,...,p, and using (4), we get a; +

P
o + Z Xi+vi+n =y, €). As (Tin,Wiin) € epih; and (T, h;(Z)) € epih,,

i=1
then obviously the relation (7) is equivalent to

(Y™ o fi)(wn) = (h, a0 = T)  —> (Y™ o f1)(T),

n—-+o0o

(y" o fo)(@n) = (23,20 —2)  —> (Y™ 0 f2)(),

n+—-+o0o

g
<

*
O
2
s
3

(Y © 9i)(Wiin) — (U ; s Wision — hi(

(@ s Tin = T) + (W] Wi — hi(Z))  —> 0.

,n

W can write (8) equivalently as

L [Nl z»
* * * H”T* * * * Z3
xr +r +§ ) — oAand 2z, +v,
n n — Lo Yoo Yy 1,5,m Lino 4o
i—

Since Wy, tjn, J=1,...,D, Cin, Wjin, J €{L,...,p}\{i},i=1,...,p, and

Wi, 7 €{1,...,p}\{i}, i =1,...,p, are superfluous, we put z; ., = w; ; n,

*
i,4,m0

the proof. O

— .. * — * * o— A s
Vi = Wiyins 2y 1= Wi, , and v}, = u i =1,...,p, which completes

Remark 1. Let us note that if ¢ = 0y in the above theorem, then oy =

ar=XN=v=n=0((=1...,p).

4 Approximate optimality conditions for a constrained

vector minimization problem

In this section, our main objective is to establish sequential approximate
efficiency optimality conditions for the convex problem (P;). In fact, by
introducing the vector indicator mappings & and 6gzj’ i =1,...,p, the
problem (P;) becomes equivalent to the unconstrained vector minimization
problem

p
(Q1) min (f R DL hi) ().

=1
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Theorem 4. Let f : X — Y U {+ooy} be a proper, Y,-convex and

star Y, -lower semicontinuous mapping, and let h; : X — Z; U {+00z,},

i = 1,...,p, be p proper, Z;r—convex and Zf—epi—closed mappings. Let
e hi'(=Z})NC, e € D7 and let o € {w,p}. Suppose that Y
is pointed as ¢ = p and that C, Zf',...,Z;‘ are all closed convex cones.

Then, Z is a e-o-efficient solution of (P;) if and only if there exist y* € Y7,

xy € domf, vy, € C, (in, zin) € epihi, vin € —Zf,

x;kwr:ax;n € X", Z;n,’U;n € Zz* and o, 0, Ai,vi,m =2 0,0 =1,...,p,
satisfying
p
ap + ooz + E Aitvi+ni =" e),
i=1
[ — Ilx - Illx -
Ty — T, Tn — T, Tin — T,
n———+oo n———+o00 n———+4oo

Il z; _ Il z, _
Zin 3 hi(E), v — hi(T),

n——-+00 n——+00
m; € 60t1 (y* o f) (mn)7 T:L € Naz (Tm C)v x;‘k,n € a)\i(_z;n o hi)(xi,n)ﬂ

vf, € (Zj‘)* and (vf,,, —vin) < N,

R

_Z’Zk,n € (Zj)*7 <Z£k7n7 hi(xi,n) - Zi,n> S Yis

and
T+ E i |—>H|z* 0 and =, +vf H—>HZ;
n L n———4o0o L nn n———4o0o

(rk rn —T) nj_oo 0, (v, Vin — hi(T)) — 0.

Proof. Since the problem (P;) is equivalent to the unconstrained problem

(Q1), we have Z is a e-o-efficient solution of (P;) if and only if

0 € 2(f +368 + X018 4. 0 h)(@).
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The vector indicator mappings d¢ and 6” . (i=1,...,p) are Y, -convex
— 41

and star Y, -lower semicontinuous. Let us recall that 6" .

ZF,Y,)-nondecreasing (see [7]) and since the mappings fi = f, fo = 62,
i + C

(t=1,...,p) are

gi = 06" 7+ and h; satisfy together all the assumptions of Theorem 3, therefore

there exist y* €Y?, x, € domf, r,, € C, (Tjn,2in) € epihy, vy € —Z;r,

ko k0K *
Ty, Th, %, € X*, 2

n’’'n?

* *
7,m? vi,n

€ Z, and ay,a, A, vi,m = 0,7 =1,...,p,
satisfying

P
011+062+Z/\i+%‘+7h‘:<y*a6>,

=1
Ilx - Ilx = -1l x
n ? &€, Tn 7 z, Tin ?
n——+o0o n—+oo ’ n——+o0o
Iz, Iz,
; —  hi(z), v —  hi(z
G e z( )7 LR AR z( )7

zy, € Oay (Y* 0 f)(@n), ) € Nay (1, C), v}, € Nm(vi,na

i,m

7Z’+)? m;n € a)\i(iz;,n o hi)(xi,n) - Z;n € (Zj_)*v <Z* h’i(l‘i,n) - Zi,n> < Vs

i,n?

and

P 1l 2
xy + E T, nH—im 0 and Zin T Vin m—)—:»oo

=1

(W™ o f)len) = (@h, 20 —7)  — (y" o f)(2),

n+—-+o0o

= *

<x:,n’ Lin — T) + <Zi,n7 Zin — hi(z)) — 0,

(rhsrn —2) —  0,(vf,,vin—hi(Z)) — 0.

It is easy to see that the condition v}, € Ny, (vin, —Z) is equivalent to

v}, € (Z)* and (v}, —vin) < n;. Now the proof is complete. O
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5 Applications to a constrained multiobjective fractional

programming problems

In this section, by applying the previous results we present, without any
constraint qualification, sequential weak approximate efficiency optimality

conditions for the following multiobjective fractional programming problem

{fl(x) fs(x)}
n ey
g1() 9s()

z e,

(PQ) hl(x) € _Z1+7

hp(x) € 7Z;7
where f;,-g;: X — R (j =1,...,s) are convex and lower semicontinuous
functions and h; : X — Z; U {+00z,} (i =1,...,p) are proper, Z; -convex

and Z;"-epi-closed mappings. Also, C and Z;" (i = 1,...,p) are nonempty
closed convex. Moreover, we suppose that f;(z) > 0 and g;(z) > 0 (j =
1,...,s) for any € (\/_, h; '(=Z;") N C. The finite-dimensional space Y :=
R? is equipped with its natural order induced by the positive cone Y := RS =
{(y1,...,ys) €R®, y; >0, forall j =1,...,s}. The following notations will

be used in what follows:

€:=(e1,...,65) €RY,
€= (Elgl(f)7 M ,6Sgs(f)),
vj = f;jgg —¢gj>0and v = (v,...,vs) € R}

Now, we recall the definition of weakly e-efficient solution of (P;), which

can be found in [10].
Definition 3. A point 7 € (_, h; ' (=Z;")NC is said to be weakly e-efficient
solution of (P%) if there does not exist z € (_, h; '(=Z;") N C such that

f@)  f@)
;@) = 9;(@)

—¢j (forall j=1,...,s).

By using parametric approach of Dinkelbach [4], we can transform the

problem (P») into a vector convex nonfractional programming problem de-
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fined as follows:

min F(x)
zeC,

(PV) h1($) € _er
hp(x) € _Z;a

where F' : X — R? is defined for any z € X by
F((E) = (fl(‘r) - Vlgl(x)v e wfs(x) - ngs(x))'

Lemma 3. ([10]) A point 7 € (_, h; ' (=Z;") N C is a weakly e-efficient

solution of (P,) if and only if Z is a weakly &-efficient solution of (P,).

Theorem 5. Let 7 € (\/_, h; ' (=Z;" )N C, e = (¢1,...,65) € R} and v; =

K2

ﬂg —€;>0,7=1,...,s. Suppose that C, Zh Z;r are all closed convex

cones. Then 7 is a weakly e-efficient solution of (P,) if and only if there exist

v = (Y1, ys) ERIN{0}, 2 € X, 7 € C, (%0, 2in) € €Dihy, viy € A

Ty Thy @, € X*, 27 vl € ZF and ag, a0, Aiyyi,m > 0,0 = 1,0, p,

ny'n ,n’ Yi,n

satisfying

P s
o+ > Ni+vitni=Y v,
= =1

=1
I-lx - Ix - Il x
T ? €, Tn ? €T, Tin ?
n—+o00 n—~400 ’ n—~400
Il z; Il z;
; —  hi(Z), v —  hi(Z
LR z( )7 IR z( )7

2 € Oy (Zyj (f; + ”j<gj>)> (20),7% € Ny (1 ),
j=1

x;(,n € a)\i(_ZZn © hl)('rlﬂ) vi, € (Zz—i_)* and <’U;<.,n’ _’Ui,n> < i,

» Yin

—2i, € (Z;r)*» (2 o hi(Tin) — 2zin) < v,

i,n’

and
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P Il 2
xy +ry+ E 1 T, n—>+00 0 and Zin T Vin e
1=

(gyj(fj + Vj(—gj))> (20) — (@}, 20 — Z)

(rk,rn —T) n;)m 0, (vf,,vin — hi(Z)) — 0.

Proof. According to Lemma 3, T is a weakly e-efficient solution of (P) if and
only if T is a weakly Z-efficient solution of (P,). The mappings f := F and h;
satisfy together all the assumptions of Theorem 4, then it follows that there
exist y* = (y1,...,9s) € (R3)*\ {0} =R\ {0}, z, € domF = X, r, € C,
(Tin, 2in) € epihi, viy € —Z;,

* * * * * * .
Ty, Th, X, € X* 27 vl € ZF and g, a0, Aiyyi,m > 0,0 = 1,00, p,

i,n’ Yi,n

satisfying

P s
Oé1+042+z)\i+%+77i22y¢5i,
i—1

=1
I-lx - Ilx - Iix -
T, — I, T, — T, Tip —> I
n—s+o0o n——-+oo ’ n—s+o0o
Il z; _ -1l z, _
Zi,n ? hz('r)a Ui,n ? hz(x)7
n———+4o00 n——+oo

2%, € On, (Zyj (f; + w(—gj))) (£0),7 € Nag(ra C),

j=1

z}, € On, (=2F, 0o hi)(win), vf, € (Z;5)" and (v, —vin) < i,

i,n’

—Zi, € (Z:_)*7 <Z* hi(xi,n) - Zi,n) S i

,n T,m)

and
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P Il 2
xy +ry+ E 1 T, n—>+00 0 and Zin T Vin e
1=

(gyj(fj + Vj(—gj))> (20) — (@}, 20 — Z)

O

In what follows, we present an important sub-class of such problems show-
ing the applicability of the suggested conditions of Theorem 5. This is the
class of multiobjective linear fractional programming problems, which have
significant application in different real life areas such as production planning,
financial sector, health care and all engineering fields. This type of problems

is modeled as follows (see [12]):

min { Ky (x), ..., Ks(z)}
(P5) z € RY,
Az —be —RE,

filw) _ ajzb,
fi(x) = clzt+d;
R",b;,d; € R,j = 1,...,s), and t denotes the transpose operation. Note

that S = {z € R}, Az — b € —RE,b € RP} is the feasible set in decision
space. We assume that for each feasible solution z, f;(x) > 0 and g;(z) >0
(j=1,...,9).

By taking C' := R% and h(z) := Ax — b, we observe that all assumptions

where A is a matrix (p x n), b € RP, K;(z) = (aj,cj,x €

of Theorem 5 are satisfied. Then we deduce the following result.

alT+b
J J s
C§f+dj E] Z 07

j=1,...,s. Then Z is a weakly e-efficient solution of (Ps) if and only if there

Theorem 6. Let T € S, e = (e1,...,65) € RY and let v; =
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exist y* = (y1,. ..

v, € —RY,

,Ys) € RIN{O}, 2 € R™, 7y € RY, (w, 25) € epi(A()+b),

xy, e, wr € R, 2 vr € RP and oy, ag, A, v,n > 0 satisfying

nr'no

n

n

and

j=1

<T:<L’Tn - j”>

* * *
x, +r, +w,

a1+t A+ Y= vie,

=1

1R Il Iz
— x T —

? n

n———4oo n———4oo

“llrn _ “llrp _
Il E ll-lle AZ +b,

n——+oo n———+oo

xy, € Oa, (Zy] (fj T Vj(_gj))>(xn)a7': € Na2(rmRi)v

j=1

w;, € Ox(—2 o (A(.) + b)) (wy),v;, € RE and (v}, —v,) <,

—zh € RE (28, Aw, + b — z,) <,

ll-llzn ll-llzp
= Oand zf +vr =% 0
n+———+oo n+———+oo

<iyj(fj + Vj(—gj))) (vn) — (28,2, — )

n+—-+o0o

— (jilyj (fi+ Vj(gj))) (),

(wh,wy — &) + (2}, 2, —AZ+b) — 0,

n——400

— 0,(v, v, —AZ+b) — 0.
n—-+00 n——+00

Next, we close this section by presenting an example showing that the

Moreau—-Rockafellar and Attouch—Brézis constraint qualifications (see [6]) fail

and also the sequential e-optimality conditions of Theorem 5 hold.

Example 1. Let us consider the following multiobjective fractional program-

ming problem:
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min f(z,y),
(z,y) € C,

Va2 +y? -y <0,

(_x7 —l‘) SR,:; (0,0),

(@Q)

where f : R2 — R? is defined by

z+1 —x
= _— dC:={0 1,2].
fen) = (St 5oty ) and €= 0} x 1.2
Let fl (l’,y) = xT—Hv f2 (xuy) = _Txv g1 (l',y) =Y, g2 (%y) = y+ 17
hi(z,y) = /22 + y2 —y and ha(z,y) := (—2, —x). Let € := (e1,22) = (3,0),
(Z,7) := (0,1) be a feasible point, v; = giggg —e1=0, 1y, = gg% —e9=0

and € = (£191(%,7),€202(T, 7)) = (5,0). It is easy to check that (Z,7) is
a e-weakly efficient solution of (Q). Indeed, putt h := (hi,he). Then we
observe that h(C) N (—intR3) = @ and that R [R3 + »(C)] = R3, which
is not a subspace of Ri. Hence, Moreau—Rockafellar and Attouch—Brézis

qualification conditions are not satisfied.

5,0 =0, N =75 =mn=0(0=
1,2), z, = (0,1), z3n = (0,1) (i = 1,2), 7, = (0,1), z21n, = v1n = O,
2o = van = (0,0) . Let z;, = (0,0), =z}, = (0,0) (i = 1,2), r;; = (0,0),
zin =0¢€ —Ry, vin =0 € Ry, Z;m = (0,0) € —-RZ, v;m = (0,0) € R?i-v

and (y1,92) = (1,1) € RZ \ {(0,0)}. We have

For each n € N, we take a; =

2 2
1
artag+ Y Ni+vitn= 5= > wieigi(0, 1),
i=1
1),

=1
Tp —7 (Oa 1)’ Tn — (07 Tin — (07 1)7
n——+o0o n+——+oo n+——+oo
Z1,n — hl(O, ].) = 0, U1,n — hl(O, ].) = 0,
n—+o00 n+— 400
22.n n:too hQ(O7 ].) = (0, 0), V2.n n:)»oc hQ(O, 1) = (0,0)
2
It is immediate to see that =) € 04, (Zyz (fi + Vi(—gi))> (z,) = {(0,0)}.
=1

Moreover, 1), € No, (70, C), (v}, —vin) =0 < n; =0 (1 = 1,2), 77, €
O (=2f, 0 hi)(@in) ={(0,0)} (i =1,2), (2], hi(@im) — 2in) = 0<% =0
(1=1,2) and
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2
xk +ri 4+ fon — (0,0) and 2, i, — (0, 0),
i=1

n——+00 n——+00

2 1
(X 0+ i) ) o) = (= (0,00 = 5

i=1 = (éyl (fi + ui(_gi)))(o’ )= %’

(TF s i — (0,1)) + (2], zin — hi(0,1)) =0 — 0,

,m?

(rr,rn—(0,1)) — 0,(vf,,vin—hi(0,1))=0 — 0.

1,n?
n——+00 Rl n——+00

Then, by Theorem 5 the point (Z,7) is a weakly approximate solution for the
problem (Q).

6 Conclusion

It is well known that the constraint qualifications are required to obtain
approximate optimality conditions but sometimes these constraint qualifica-
tions become very difficult to compute. In this work, we focused to establish
sequential approximate optimality conditions without any constraint qualifi-
cation for a constrained convex vector minimization problem (P;) via scalar-
ization process in terms of the approximate subdifferentials of the associated
functions. As an application, we derive sequential weakly approximate op-
timality conditions to a constrained multiobjective fractional programming
problem (P).
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