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Abstract 

In this study, the air drying of cumin seeds was boosted by cold plasma pre-treatment (CPt) followed by 
high-power ultrasound waves (USp). To examine the impact of included effects, different CP exposure times (0, 
15, and 30 s), sonication powers (0, 60, 120, and 180 W), and drying air temperatures (30, 35, and 40 ºC) were 
selected as input variables. A series of well-designed experiments were conducted to evaluate drying time, 
effective moisture diffusivity, and energy consumption, as well as color change and rupture force of dried seeds 
for each drying program. Numerical investigations can effectively bypass the challenges associated with 
experimental analysis. Therefore, the wavelet-based neural network (WNN), the multilayer perceptron neural 
network (MLPNN), and the radial-basis function neural network (RBFNN), as three well-known artificial neural 
networks models, were used to map the inputs and output data and the results were compared with the Multiple 
Quadratic Regression (MQR) analysis. According to the results, the WNN model with an average correlation 
coefficient of R2 > 0.92 for the train data set, and R2 > 0.83 for the test data set provided the most beneficial tool 
for evaluating the drying process of cumin seeds. 
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Nomenclature 

MR Moisture ratio (-) 
Mt Time-dependent moisture content of the seeds (-) 
M0 Primary moisture content of the seeds (-) 
Me Equilibrium Moisture content (-) 
Deff Diffusion coefficient (m2s-1) 
t Drying time (min) 
M Moisture concentration (-w.b.) 
ΔE Total color change (-) 
L* Whiteness/darkness (-) 
a* Redness/greenness (-) 
b* Yellowness/blueness (-) 
L Half thickness of the drying body (m) 
y Dependent variable (-) 
x Independent variable (-) 

  Constant term (-) 
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Introduction 

Cumin seed (Cuminum Cyminum L.) is a 
seed from the Apiaceae family, formerly 
called Umbelliferae. Umbelliferous seeds are 
rich in essential oil content, offering valuable 
applications in the food, perfume, cosmetic, 
and pharmaceutical sectors of the industry 
(Guo, An, Jia, & Xu, 2018; Merah et al., 
2020). Thanks to the high levels of petroselinic 
acid and other bioactive molecules in cumin 
seed, it is valued for its medicinal and 
therapeutic properties. Moreover, cumin seeds 
are widely used as a spice in cooking due to 
their strong aroma and warm bitterish taste 
(Namjoo, Moradi, Niakousari, & 
Karparvarfard, 2022), dominated by the flavor 
compound cumin aldehyde. The drying 
process has a crucial role in the production of 
high-quality cumin seeds. This process also 
reduces the bulk volume and facilitates the 
transportation and disposal of end-products 
(Khalo ahmadi, Roustapour, & Borghaee, 
2022). In initial drying, the freshly harvested 
plants are exposed to sunlight for easier 
separation of cumin seeds. Then, the drying 
process should be continued, whether by sun 
or dryer, until the final level of moisture 
content of seeds reaches 10% on the wet basis 
(Namjoo, Dibagar, Golbakhshi, Figiel, & 
Masztalerz, 2024).  

The essential oil of cumin has outstanding 
chemical and biological characteristics which 
may be badly affected by heating (Guo et al., 
2018). Shortening the drying period is an 
effective approach to minimize the exposure 
time of samples to the harmful effects of 
dehydration. Therefore, to accelerate the 
drying process and preserve the natural 
characteristics of the samples, some physical-
based treatments, prior to the main single or 
hybrid drying procedures, have been 
investigated by researchers (Tabibian, Labbafi, 
Askari, Rezaeinezhad, & Ghomi, 2020).  

The cold plasma (CP) and the ultrasound 
waves (US) are two physical-field techniques 
which have widespread applications in the 
drying process. These non-thermal and non-
chemical technologies can improve the 

performance of drying systems, without 
leaving any adverse effects on chemical 
structure and physical properties of samples 
(Zhou et al., 2020). By exposing the food 
materials to CP, some surface reactions occur 
and alters the surface topography of the skin 
layer (Miraei Ashtiani et al., 2020; Osloob, 
Moradi, & Niakousari, 2023). The internal 
microstructure may also be changed by 
propagation of high-power ultrasound waves 
during the air-drying process. As a result, 
when the CP pretreated samples are dried in a 
US-assisted air drying system, the effective 
moisture diffusivity significantly increases, 
resulting in a higher rate of water evaporation 
compared to the performance of single dryers 
(Moghimi, Farzaneh, & Bakhshabadi, 2018; 
Shashikanthalu, Ramireddy, & Radhakrishnan, 
2020). 

Besides the effective moisture diffusivity 
and drying time, the amount of consumed 
energy, as well as the total color change, and 
rupture force of end-products may also be 
evaluated for assessing the performance of the 
upgraded system (Moradi, Ghasemi, & Azimi-
Nejadian, 2021; Namjoo, Moradi, Niakousari, 
et al., 2022). In this case, conducting a 
comprehensive experimental investigation 
appears to be daunting and could require 
significant time and resources. Forecasting the 
dehydration process of various crops by 
numerical modeling is a more practical 
approach for improving the performance of the 
drying systems (Sun, Zhang, & Mujumdar, 
2019).  

Based on the results of the limited number 
of experiments, some regression-based 
methods such as multiple linear regressions 
(MQR) can establish a proper relationship 
between inputs and outputs and predict the 
performance of a system for non-inspected 
drying conditions (Meerasri & Sothornvit, 
2022). The artificial neural network (ANN) is 
another category of data-driven methods that is 
developed based on the biological neural 
systems in the human body. This class of 
computing models is also coupled with 
artificial intelligence to improve the 
correlation between inputs and outputs. In the 
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nonlinear problems with more than one input 
parameter, ANN can readily forecast the 
values of desired output variables (Kaveh, 
Abbaspour Gilandeh, Amiri Chayjan, & 
Mohammadigol, 2019). Recently, ANN has 
been widely used to investigate the drying 
process of various crops, including pumpkin 
seeds (Dhurve, Tarafdar, & Arora, 2021), basil 
seeds(Amini, Salehi, & Rasouli, 2021), ginkgo 
biloba seeds (Bai, Xiao, Ma, & Zhou, 2018), 
potato slice (Rezaei, Behroozi-Khazaei, & 
Darvishi, 2021), pistachio nuts, squash, and 
cantaloupe seeds (Mohammad Kaveh, 
Chayjan, & Khezri, 2018), mushroom slices 
(Liu et al., 2019), and green tea leaves 
(Kalathingal, Basak, & Mitra, 2020).  

As mentioned earlier, in case of cumin seed 
drying, the quality of end-products, the energy 
costs, and production rate may significantly 
improve by CP pretreatment followed by 
ultrasound-assisted air drying. To the best 
knowledge of authors, there is no predicting 
model developed for estimating the positive 
influence of cold plasma and high-power 
ultrasound waves on the drying of cumin 
seeds. To fill this gap, the drying of cumin 
seeds is investigated in the current research 
and through several experiments, drying time, 
effective moisture diffusivity, energy 
consumption, total color change, and rupture 
force (as the output variables) were measured 
for different drying air temperature, CP 
exposure time (CPt), and ultrasound power 
(USp). Then, the wavelet-based neural 
network (WNN), the multilayer perceptron 
(MLP), and radial basis function (RBF) neural 
networks were employed for mapping the 
input and output data. For evaluating the 
accuracy of predictions, the results of multiple 
linear regressions (MQR) were also obtained 
and compared with the results of neural 
network-based models.  

 
Materials and Methods 

Sample Preparation and CP Pretreatment 

In this research, freshly harvested cumin 
seeds were provided from a local farm in 
Khatam County in Yazd province, central Iran 
to certify genetic purity. The samples were 

characterized by longitudinal ridges, are 
yellow-brown, and have 69.4% (d.b.) initial 
moisture content. For uniform distribution of 
moisture throughout the samples, the healthy 
seeds were wrapped in polythene plastic bags 
and kept refrigerated at 4±1 °C and relative 
humidity of 53±1%. The CP device (Nik 
Plasma Tech Co., Tehran, Iran) in the 
excitation mode of Dielectric Barrier 
Discharge (DBD) was used to pretreat the 
seeds. Before each drying run, 60 g of cumin 
seed sample was used for CP pretreatment at 
different exposure times of 15 or 30 s. After 
CP pretreatment, 10 g of the sample was 
separated to determine the moisture content as 
well as to evaluate the color characteristics of 
the pretreated seeds to ensure that no 
significant alteration occurred in the initial 
moisture level and color quality of the 
samples. The rest of the pretreated sample, 50 
g, was placed in the drying chamber and 
exposed to different drying programs for 
further analysis. Runs with no CP pretreatment 
(CPt: 0 s) were also conducted as control 
experiments. At the laboratory site, the 
temperature and relative humidity of the 

ambient air were 25 C and 50%, respectively.  
 

Ultrasound-Assisted Air-Drying Process 

To conduct the main drying experiment, a 
hybrid ultrasound-assisted convective dryer 
was constructed at the Faculty of Agriculture, 
Shiraz University, Shiraz, Iran, as 
demonstrated in Figure 1. The drying unit is 
equipped with a centrifugal fan (2200 RPM, 
550 m3 h-1, and BEF-14-7V2SP), controller 
unit of input variables, multifunction 
monitoring system (humidity, temperature, 
energy, and weight), electrical heater 
(including 3 kW electrical heating coils), 
drying chamber, sonication unit (20 kHz), and 
inverter. The sonication unit (Farasot Zagros 
Co., Iran) contained a 1200 W generator, 
power meter (Model Delta power, Ziegler Co., 
Germany), transducer, and horn. The 
piezoelectric transducer was made up of four 
piezoceramic rings with an outer diameter of 
50 mm, an inner diameter of 20 mm, and a 
thickness of 6 mm. Additionally, a thermal 

https://www.degruyter.com/document/doi/10.1515/ijfe-2017-0248/html
https://www.degruyter.com/document/doi/10.1515/ijfe-2017-0248/html
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velocity probe was used to measure the linear 
air flow rate. The forward one-phase 
centrifugal fan propelled the drying air toward 
the electric heater, warming it to achieve the 
desired temperature. For online moisture 
content control, the samples enclosed in the 
cylindrical mesh basket were weighed every 3 
minutes. A detailed description of the main 
hybrid drying unit can be found in Namjoo et 
al., (2022). Each drying trial lasted until the 
final moisture level of about 10±1% (d.b.) was 
attained. Table 1 renders a detailed description 
of the drying programs at the constant air 
velocity of 0.6 m s-1. The experimental results 
comparing the effects of single and combined 
applications of cold plasma and ultrasound 

waves on the air drying of cumin seeds were 
analyzed against a control group. 

 
Measured Parameters 

Drying Time (DT) 

This study utilizes a first-order kinetic 
model to describe the moisture transfer during 
the drying process of cumin seeds, providing 
essential experimental data on drying kinetics, 
as follows (X. Wang et al., 2023):  

𝑀𝑅 =
𝑀𝑡 − 𝑀𝑒

𝑀0 − 𝑀𝑒
 (1) 

 

 

 
Fig. 1. A schematic view of the developed ultrasound assisted air dryer: 1- Centrifugal fan, 2- Thermal element, 3- Air 

in, 4- Air out, 5- Temperature and relative humidity sensor, 6- Laser sighting infrared sensor, 7- Cylindrical vibrating 

element (ultrasonic horn), 8- Cylindrical drying chamber, 9- Mesh screen, 10- Digital balance, 11- Ultrasonic 

transducer, 12- Ultrasonic generator, 13- Power meter, 14- Drying samples, 15- PID controller, 16- Electrical panel, 17- 

Gearbox DC motor, and 18- Monitor (Namjoo, Moradi, Dibagar, & Niakousari, 2022) 

 

Table 1- A detailed description of the different seed drying programs designed for this research 

Cold plasma 

pretreatment time 

(CPt) 

Ultrasound power 

(USp) 

Drying air 

temperature (T) 

Drying 

program 
Program description 

0 0 30, 35, and 40 ˚C CV Convective drying (Control group) 

0 60, 120, and 180 W 30, 35, and 40 ˚C USCV 
Convective drying assisted by 

ultrasound waves 

15 and 30 s 0 30, 35, and 40 ˚C CPCV 
Convective drying with cold 

plasma pretreatment  

15 and 30 s 60, 120, and 180 W 30, 35, and 40 ˚C CPUSCV 

Convective drying assisted by 

ultrasound waves with cold plasma 

pretreatment 
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Where, MR is the moisture ratio (-), M is 

the moisture content (% d.b.), and subscripts t, 
e, and 0 describe the instantaneous, 
equilibrium, and initial values, respectively. 
The experiments were performed to acquire 
data for the seed’s moisture content as a 
function of time. Cumin seeds with an initial 
moisture content of 69.4±1% (d.b.) were dried 
to reach the final moisture level of 10±1% 
(d.b.). The required time was recorded in the 
drying program as the drying duration. 

 
Effective Moisture Diffusivity (Deff) 

Fick’s second law was used to determine 
effective moisture diffusivity as suggested in 
the papers on drying foods. Here, the effective 
moisture diffusivity of the drying body was 
calculated by establishing a graphical method 
and assuming one-dimensional moisture 
movement, uniform initial moisture 
distribution, negligible shrinkage, and constant 
diffusion coefficient. The actual geometry of 
the drying body was a cylindrical mesh basket 
with the thickness and height of 8 and 130 
mm, respectively, which was assumed similar 
to a rectangular slab with an airflow 
perpendicular to the samples. Therefore, the 
analytical solution for the drying body as a 
slab object is given in Eq. (2) (Chatzilia, 
Kaderides, & Goula, 2023; Lingayat, VP, & 
VRK, 2021): 
𝑀𝑅

=  
8

𝜋2
∑

1

(2n + 1)2

∞

𝑛=0

ex p (
−(2𝑛 + 1)2𝜋2Deff. 𝑡

4L2
) (2) 

where L represents half of the thickness of 
the drying body (m), and n is a positive integer 
that stands for drying terms. By substituting n= 
0 into Eq. (2), an excellent proximate solution 
is given in long drying times as follows (Gong 
et al., 2020): 

ln (𝑀𝑅) = ln (
8

𝜋2
) − (

𝜋2Deff. 𝑡

4𝐿2
) (3) 

The effective moisture diffusivity (Deff) is 
typically established by a graphical method. 
This way, the experimental result is presented 
in terms of the natural logarithm of the 
moisture ratio (MR) as a function of drying 

time, as displayed in Eq. (4). The outcome is a 
linear regression (A×k1+B), in which the slope 
of the line (k1) is used to compute the 
effective moisture diffusivity as follows 
(Dibagar, Kowalski, Chayjan, & Figiel, 2020): 

k1 = − 
π2Deff

4L2
                                  (4) 

 
Energy Consumption (EC) 

In this research, energy consumption refers 
to the energy, which was supplied for the 
electrical elements of the main drying system, 
including fan, heating unit, sonication unit, etc. 
This amount of energy is required to remove 
water from the cumin seeds and attain the final 
moisture content of 10% (d.b.) in each 
experimental run. In this regard, a Power 
Meter instrument (Model Delta power, Ziegler 
Co., Germany) was utilized, and the consumed 
energy was directly recorded in kilowatt-hours 
(kWh). 

 
Total Color Change (ΔE) 

A new colorimetric system was employed 
to characterize the color quality of the fresh 
and dried cumin seeds. The color was 
determined using image processing technique. 
To ensure an acceptable image quality, a good 
camera and proper illumination were applied. 
The device, developed for measuring total 
color change, consisted of four main elements 
of a rectangular chamber (35 ×25 ×25 cm), 
sample holder, camera (Canon EOS 4000D) 
with three detectors per pixel: Red, Green, and 
Blue, and LED lamps. After locating the fresh 
and dried samples on the holder in the 
chamber's center, digital images were captured 
by the camera from the top. The images were 
then stored on a PC and processed with 
algorithms written in the toolbox of MATLAB 
R2013a to translate the color space of RGB to 
the reference zone L* (whiteness/darkness), a* 
(redness/greenness), and b* 
(yellowness/blueness), followed by calculating 
the change in the color values of samples (ΔE) 
as follows (Izli & Polat, 2019; Özkan 
Karabacak, 2019): 
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ΔE

= √(𝐿∗ − 𝐿0
∗ )2 + (𝑎∗ − 𝑎0

∗)2 + (𝑏∗ − 𝑏0
∗)2 

(5) 

where, index 0 denotes the color 
specifications of the fresh cumin seeds. Higher 
values of ∆E stand for the significant 
difference between the color of fresh and dried 
seed samples. 
 

Rupture Force (RF) 

The spice industry relies on the size 
reduction of herbaceous plants, achieved 
through various forces to create particles with 
precise shapes and dimensions. Size reduction, 
one of the most energy-consuming processes 
in the food industry, is directly linked to 
microbiological and chemical stability and 
convenience (Saiedirad & Mirsalehi, 2010). 
Rupture force is defined as the amount of force 
needed to trigger the rupture of a product. It is 
related to the firmness and brittleness of the 
sample (Saiedirad et al., 2008). The rupture 
force of the dried cumin seeds was assessed by 
an Instron Universal Testing Machine (Model 
STM-20, SANTAM Co., Iran) equipped with a 
compression load cell (Model DBBP-20, 
BONGSHIN Co., Korea), with an accuracy of 
±0.01 N in force and ±0.001 mm in 
deformation. The mechanical test was repeated 
ten times for each drying point and reported in 
N. 

 
Artificial Neural Network Modeling  

The MLPNN training 

The well-known multilayer perceptron 
neural network (MLPNN) is schematically 
described in Fig. 2. As can be seen, different 
layers with several neurons are considered in 
this model. The adjacent neurons are 
connected by weights (𝑤𝑖𝑗). The weights are 

corrected in an iterative back-propagation 
algorithm and in each iteration (𝑞) are 
estimated as follows (Habibi & Nematollahi, 
2019; Moosavi, Nematollahi, & Rahimi, 2021; 
Nematollahi, Jamali, & Hosseini, 2020; 
Nematollahi & Mousavi Khaneghah, 2019; 

Sun et al., 2019; Zakeri, Naghavi, & Safavi, 
2009): 
𝑤𝑖𝑗(𝑞 + 1) = 𝑤𝑖𝑗(𝑞) + ∆𝑤𝑖𝑗(𝑞) (6) 

In order to minimize the error in prediction 
of output variables, the generalized delta-
learning rule is employed, and the following 
equation is proposed for computing the values 

of ( )
ji

w q : 

 
1

( ) (.) ( ) ( ) (.) ( ) ( 1)
K

ji j i m k p k k kj ji

k

w q f x P P f w q w q 
=

  = − +  −  
 

(7) 

where Pp is the value predicted by NN, Pm 
is the experimentally measured data, and   is 

the learning rate. The derivative of transfer 

function relative to its input variable ix
 

is 

denoted by (.)f  , and   is the momentum 

value and is a positive number between 0 and 
1.  

 
The RBFNN training 

In the radial basis function neural network 
(RBFNN), two feed-forward layers are used 
for fast training of NNs. RBFNN considers the 
Gaussian basis function   for weighted sum 

of input data vector X . Then, the components 
of output vector 𝑌𝑘 are computed as 
(Nematollahi & Mousavi Khaneghah, 2019): 

1

( )

n

k kj j j k

j

Y w U b
=

= − +X ( X )

 
(8) 

Where, U  is the vector of center of basis 

function  .   
 

The WNN training 

The WNN is developed based on wavelet 
basis functions for training data and estimating 
the outputs. The wavelet algorithm is not 
iterative and compared to the conventional 
MLPNN, the learning time and the accuracy of 
the results improve greatly. The employed 
basis functions also allow for inclusion of 
multiresolution frameworks in the structure of 
WNN (Safavi & Romagnoli, 1997). 
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Fig. 2. Schematic illustration of the multilayer perceptron neural networks (MLPNNs). 

 

In the WNN approach, the outputs of any 

function 2( ) L ( )RF X  are estimated as: 
0

0 0
( ) ( ) ( )

s s

s s r s r s

s r s

a d 

=+ =+

=− =− =−

= + , , , ,
F X X X

                                                                                     
(9) 

Where 0,sa  and ,r sd  are constant 

coefficients, and the scaling functions ,r s  and 

the wavelet functions  ,r s
 
are given by: 

2 2
( ) 2 (2 )

/ /

,
X X ,

r r

r s
s r s Z 

− −
= − 

 
(10) 

2 2
( ) 2 (2 )

/ /

,
X X ,

r r

r s
s r s Z 

− −
= − 

 
(11) 

in which r and s are, respectively, the 
dilation and translation factors.  

In order to evaluate the unknown 
coefficients “a” and “d”, Safavi and 
Romagnoli (1997) rearranged Eq. (9) into the 
following form: 

, ,
( ) ( ) ( X )

s

r r s r s

s

c 
=+

=−

− =F X F X

 
(12) 

Then the set of linear equations were 
derived for the problem from: 

( ) =F X AC  (13) 

Where, 



















=

















=



















=

k

kkn

k

n
c

c

c










2

1

1

111

2

1

,

)X()X(

)X()X(

,

)X(

)X(

)X(

CA

F

F

F

F





 

(14) 

The variable   in Eq. (14) includes both 
scaling and wavelet functions. As a result, the 
vector C is found as: 

FAF)AA)((AC
T1T +− ==  (15) 

Where A
+
 denotes the pseudo-inverse of 

matrix A . 
For more details about the WNN 

methodology and its training process, one 
could refer to. Figure 3 clearly shows the 
training process in WNN. 

 
Multiple Quadratic Regression (MQR) Analysis  

In addition to artificial neural networks, the 
Multiple Quadratic Regression (MQR) method 
is also used in this study to develop the 
predicting models. In this regard, the 
performance of the drying system, described 
by output variables y, is correlated by the 
following expression to the input parameters 
𝑥𝑖 (CPt, T and USp): 

2 2 2

11 1 22 2 33 3 12 1 2 13 1 3 23 2 3 1 1 2 2 3 3 0y x x x x x x x x x x x x         = + + + + + + + + +

            (16) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Input Layer Hidden Layer Output Layer 

Input 

Parameter 
Output 

Parameter 
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Fig. 3. The training process in WNN 

 

where β0 is a constant, and βi , βii , and βij 
are the linear, pure quadratic, and interaction 
coefficients, respectively (Namjoo, 
Golbakhshi, Kamandar, & Beigi, 2024). 

All aforementioned numerical modeling 
types were carried out using MATLAB 
software  (Matlab, 2016). In order to develop 
and validate the models, 80% of the 
experimentally measured data was used for 
training and the remaining 20% was used for 
the test phase. 

 
 

ANN and MQR Models Validation  

To show the goodness of fit and 
performance of the used models, indices of the 
correlation coefficient (R), root mean square 
error (RMSE), the mean absolute percentage 
error (MAPE), and the mean absolute error 
(MAE) were calculated using Eqs. (17)-(20), 
respectively (Wang, Tian, & An, 2022).  

𝑅 =
∑ (𝑌𝑝𝑟𝑒 𝑖−𝑌𝑝𝑟𝑒̅̅ ̅̅ ̅̅ )(𝑌𝑒𝑥𝑝 𝑖−𝑌𝑒𝑥𝑝̅̅ ̅̅ ̅̅ )𝓃

𝑖=1

√∑ (𝑌𝑝𝑟𝑒 𝑖−𝑌𝑝𝑟𝑒̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1 ∑ (𝑌𝑒𝑥𝑝 𝑖−𝑌𝑒𝑥𝑝̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1

, 

i=1,2,3,.., N 

(17) 

𝑅𝑀𝑆𝐸 = [
1

𝓃
∑ (𝑌𝑝𝑟𝑒 𝑖 − 𝑌𝑒𝑥𝑝 𝑖)

2𝓃
𝑖=1 ]

1

2
, 

i=1,2,3,.., N 
(18) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑌𝑝𝑟𝑒 𝑖−𝑌𝑒𝑥𝑝 𝑖

𝑌𝑒𝑥𝑝 𝑖
|𝑛

𝑖=1 ×100,  

i=1,2,3,.., N 
(19) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑝𝑟𝑒,𝑖 − 𝑌𝑒𝑥𝑝,𝑖|

𝓃

𝑖=1

,

𝑖 = 1,2,3, . . , 𝑁 

(20) 

where, 𝑌𝑒𝑥𝑝,𝑖 and 𝑌𝑝𝑟𝑒,𝑖 denote the ith 

experimental (measured) and predicted values, 
respectively. 𝑌𝑒𝑥𝑝

̅̅ ̅̅ ̅ and 𝑌𝑝𝑟𝑒
̅̅ ̅̅ ̅  are the 

corresponding mean values of 𝑌𝑒𝑥𝑝,𝑖 and 𝑌𝑝𝑟𝑒,𝑖, 

respectively. High values of R and lower 
RMSE, MAPE, and MAE outcomes confirm 
that the proposed model fits well to the 
experimental drying data, and it can be applied 
for prediction (Dotto, Souza, Simoes, 
Morejon, & Moreira, 2017; Nematollahi & 
Mousavi Khaneghah, 2019). 

 
Results and Discussion 

The experimental drying data underwent 
statistical analysis using IBM SPSS software 
(version 26). Statistical assessment of the 
results was performed using a factorial design 
to find the effect of drying air temperature (T) 
at three levels (30, 35, and 40 ºC), CPt at three 
levels (0, 15, and 30 s) and USp at four levels 
(0, 60, 120, and 180 W) on drying time, 
effective moisture diffusivity, energy 
consumption, total color change, and rupture 
force of dried cumin seeds during drying 
(Table 2). The experiment was conducted in a 
complete randomized design (CRD) with three 
replicates. The degree of freedom, sum 
squares, means squares, and F-values of the 
individual linear and interaction terms of CPt, 
T, and USp were generated through the 
analysis of variance (ANOVA) table. 
Additionally, the significance of each program 
evaluated was analyzed using ANOVA, with 
the results presented in Table 2. 
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Table 2- ANOVA results for the main and interaction effects of CPt, T, and USp on the studied parameters. 

S.O.V. D.F. DT Deff EC ΔE RF 

CPt 2 13758.176** 1.910E-7** 1.152** 114.093** 316.732** 

T 2 16289.065** 3.694E-7** 1.604** 11.901** 18.307** 

USp 3 16952.012** 1.524E-7** 1.386** 9.916** 464.006** 

USp×T 4 136.343* 1.197E-8** 0.017* 0.942* 4.286** 

CPt×USp 6 1698.744** 1.101E-8** 0.077** 0.491 ns 25.624** 

CPt×T 6 1489.262** 4.717E-9** 0.125** 0.468 ns 4.267** 

CPt×T×USp 12 71.577 ns 1.628E-9ns 0.018** 0.066 ns 0.250 ns 

Error 72 51.167 1.329E-9 0.005 0.318 0.990 

Total 107      

**: significant at 0.01, *: significant at 0.05, and ns: not significant 

 
Results of the WNN, MLPNN, RBFNN, and MQR 

models  

In this research, we aimed to develop some 
predicting models for correlating the inputs 
parameters (CP exposure time, drying air 
temperature, and ultrasound power) and 
outputs variables (drying time, effective 
moisture diffusivity, energy consumption, total 
color change, and rupture force). These models 
can readily reveal the optimal dehydration 
process for cumin seeds. In this regard, three 
well-known neural networks-based models, 
namely the MLPNN, RBFNN, and WNN were 
employed. 

In order to minimize the error of MLPNN 
predictions, sufficient number of hidden layers 
and neurons should be considered for the 
architecture of network. In this regard, two 
hidden layers were used, and the sigmoid 
function was adopted as the transfer function. 
In an iterative learning procedure, the number 
of included neurons was systematically 
increased for improving the accuracy of 
predictions. The training process for the 
network was conducted using the Levenberg–
Marquardt algorithm. Then it was found that 
by using 11 neurons within the hidden layers, 
acceptable accuracy may be achieved and 
adding more neurons did not provide any 
significant contribution.  

To calibrate the outputs of the model with 
the prepared experimental data, the WNN 
model should be trained by selecting 
appropriate wavelet and examining different 

layers of resolution. In the special case of 
cumin seed drying, the second resolution and 
the Gaussian type wavelet were found to be 
the optimal parameters for the WNN. 

The performances of WNN, MLPNN, and 
RBFNN, along with the regression-based 
MQR model, were evaluated, and their results 
are given in Table 3. As can be seen, MQR 
failed to provide accurate predictions, 
especially very poor results were obtained in 
this model for the total change in color of 
dried samples. MLP and RBF models provided 
sufficient estimations for drying time and 
energy consumption. However, the average 
accuracy of MLP was 2.28% better than that 
achieved in the RBF model. In this study, the 
most accurate predictions for the performance 
of drying system were evaluated by the WNN 
model. The average accuracy of results in 
WNN for all defined output variables was 
3.02% and 5.37% better than MLP and RBF 
models, respectively. Furthermore, WNN 
enjoys a non-iterative learning algorithm for 
training neural networks. This greatly reduces 
the computational time and provides an 
important advantage for WNN. Therefore, in 
the subsequent sections of this paper, we used 
a WNN model for evaluating the effects of 
various input parameters on drying time, 
effective moisture diffusivity, energy 
consumption, total color change, and rupture 
force of dried seeds.  
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Drying time 

The neural network developed on the basis 
of WNN is used in this section for predicting 
the impact of various drying programs on the 
time duration of cumin seeds. As can be seen 
in Fig. 4, the R2-values for the training and test 

data were found to be 0.9681 and 0.9432, 
respectively. This clearly indicates that the 
WNN model can properly predict the linear 
and complex correlations between drying time 
and the influential input variables. Our results 
are consistent with the outcomes reported in 
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earlier related studies. Specifically, the 
obtained R2-values are in good agreement with 
the findings of Potisate et al. (2014) which 

varied between 0.81 and 0.98 across different 
drying treatments of moringa leaves. 

 

  
Fig. 4. The regression of the measured and predicted drying time: a) Train data, and b) Test data 

 

 
Fig. 5. Response surface plots for the effect of independent variables on drying time of cumin seeds during the drying 

process 
 

The drying time of cumin seeds was 
assessed across various drying temperatures, 
USp, and CPt, with results presented in Fig. 5. 
In pure convective drying, drying times ranged 
from 219 to 293 minutes, with higher 
temperatures leading to faster drying. 
Introducing ultrasound waves accelerated 

drying, with total drying times ranging from 
124 to 303 minutes, depending on temperature 
and ultrasound power. CPt before drying 
reduced drying times by 11.65% to 15.29% at 
various temperatures. Combining CP and 
ultrasound technologies further reduced drying 
times, with a minimum of 124 minutes 

(a) 
(b) 
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observed. However, longer CPt increased 
drying times due to surface hardening and 
increased evaporative resistance. Excessive 
CPt may disrupt cell walls and hinder water 
removal. Overall, CPt for 15 seconds 
significantly reduced drying times in an 
ultrasound-assisted system. 

 

Effective moisture diffusivity 

The results of the WNN model for effective 
moisture diffusivity were evaluated in Fig 6. 
The correlation coefficient (R2) for train and 
test data was obtained as 0.9264 and 0.9421, 
respectively. Other introduced statistical 

measures were also used for further 
improvement of the model. To this end, the 
learning procedure continued until the values 
0.2274×10-9, 3.1278, and 0.1732×10-9 were 
attained, respectively, for the root mean square 
error (RMSE), mean absolute percentage error 
(MAPE), and mean absolute error (MAE). 
Then, RMSE, MAPE, and MAE were found to 
be 0.1895×10-9, 2.4963, and 0.1387×10-9 for 
the test data, respectively. Similar conclusions 
were also made by Onwude et al. (2018) and 
Khanlari et al. (2020) for sweet potato and 
celery drying, respectively. 

 

  
Fig. 6. The regression of the measured and predicted effective moisture diffusivity of cumin seeds: a) Train 

data, and b) Test data 
 

Figure 7 illustrates the influence of various 
independent variables on enhancing the 
effective moisture diffusivity of samples. In a 
traditional drying setup, elevating the 
temperature resulted in increased seed 
diffusivity, reaching a maximum value of 
9.29×10-10 m² s-1 at 40 °C, while the lowest 
diffusivity of 6.29×10-10 m² s-1 was observed at 
30 °C. 

In a combined drying system, varying 
ultrasound powers led to an increase in 
moisture diffusivity. The highest diffusivity 
(1.24×10-9 m² s-1) was achieved at 40 °C with 
an ultrasound power of 180 W, while the 
lowest (7.51×10-10 m² s-1) was observed at 30 
°C with 60 W. Exposure to CP for 30 seconds 

enhanced seed moisture diffusivity. However, 
ultrasound power contributed more 
significantly to diffusivity enhancement at the 
same air temperatures, with longer exposure 
times (30 s) providing less modification. This 
suggests that excessive exposure to CP can 
increase diffusion resistance at the seed's 
surface. 

 
Energy consumption 

The results of experimental analysis for 
energy consumption were categorized into two 
test and train datasets and depicted in Figure 8. 
Two well-suited linear regression functions 
were proposed based on WNN. The error 
indices were evaluated in Table 3 for verifying 

(a) (b) 
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the predictions. As can be seen, RMSE, 
MAPE, and MAE for the training data are 
slightly more than those obtained for the test 
results. However, the correlation coefficient of 
results (R2 = 0.9722 for train, and R2 = 0.9254 
for test data) demonstrated that the calculated 
values for energy consumption agree with the 
experimental results. The energetic 
investigations for drying of potato (Aghbashlo, 
Kianmehr, & Arabhosseini, 2008; Akpinar, 
Midilli, & Bicer, 2005), carrot slices 
(Nazghelichi, Kianmehr, & Aghbashlo, 2010), 
kodo millet grains, and fenugreek seeds 
(Yogendrasasidhar & Setty, 2018) also led to 
similar results. 

Under different drying conditions, the 
results for energy consumption are given in 
Fig. 9. Various drying conditions were tested, 
and energy consumption was analyzed. In 
conventional convective drying, energy 
consumption ranged from 2.27 to 2.93 kWh, 
with lower temperatures resulting in higher 
energy usage due to longer drying times. 
Ultrasound-assisted drying showed a range of 
1.95-2.93 kWh, with lower consumption at 
higher temperatures and ultrasound powers. 
Combining cold plasma pretreatment with 
ultrasound/convective drying significantly 

reduced energy usage to 1.42-2.85 kWh. CP 
pretreatment alone showed some energy 
savings, but the combination of CP and 
ultrasound provided the most efficient drying 
method, reducing energy consumption while 
maintaining product quality. 

 
Color change 

The results of experimental analysis and the 
WNN model for the change in color of dried 
seeds were illustrated in Fig. 10. The 
predictions of neural network for this variable 
had R2 = 0.9256 for testing data, and R2 = 
0.9076 for training set. So, WNN can provide 
reliable predictions for the case which have 
not been experimentally investigated. Guiné et 
al. (2015), showed that for different drying 
treatments, artificial neural network modeling 
can precisely evaluate the color change of the 
banana variety. Bai et al. (2018) developed an 
ANNs model for investigating the drying 
kinetics and color changes of Ginkgo biloba 
seeds during microwave drying. The ANN 
models showed strong correlation to the 
experimental data, with correlation 
coefficients ranging from 0.956 to 0.9834. The 
models also had low mean square errors, 
between 0.0014 and 2.2044. 

 

 
Fig. 7. Response surface plots for the effect of independent variables on moisture diffusivity of cumin seeds during the 

drying process 
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Fig. 8. The regression of the measured and predicted energy consumption: a) Train data, and b) Test data 

 

 
Fig. 9. Response surface plots for the effect of independent variables on the energy consumption of cumin seeds during 

the drying process 
 

In this section, the changes in the color of 
cumin seeds were investigated, and the results 
were given in Fig. 11. In conventional drying, 
higher temperatures lead to greater color 
change, indicating potential degradation of 
quality. Introducing ultrasound reduces color 
change, with lower temperatures and higher 
ultrasound power showing the least change in 
color. CPt results in significant color change 
reduction, but prolonged exposure may have 

adverse effects. Combining CP pretreatment 
and ultrasound shows the most effective 
preservation of color, with minimal change 
observed at lower temperatures and higher 
ultrasound power. This indicates that 
integrating both CP and ultrasound 
technologies, while meticulously managing the 
parameters, presents the most effective method 
for maintaining seed quality. 

 

(b) (a) 
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Fig. 10. The regression of the measured and predicted color change: a) Train data, and b) Test data 

 

 
Fig. 11. Response surface plots for the effect of independent variables on the color change of cumin seeds during the 

drying process 
 

Rupture force  

The experimental data for the rupture force 
of dried seeds were displayed in Figure 12. 
Using the developed WNN model, the 
regression analysis was performed for 
mapping the input parameters with the desired 
variable. For both train and test datasets, the 
values of R2 were found to be more than 0.90, 
and therefore best-fitting lines were proposed 
for the rupture force. The obtained values for 

RMSE, MAPE, and MAE (see Table 3) also 
reaffirmed that the WNN model suitably 
predicted the impact of drying conditions on 
the quality of end-products. The overall results 
are also found to be in very good agreement 
with the results of available investigations in 
the literature (Barreiro, Steinmetz, & Ruiz-
Altisent, 1997; Saeidirad, Rohani, & 
Zarifneshat, 2013).  

 

(b) (a) 
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Fig. 12. The regression of the measured and predicted rupture force: a) Train data, and b) Test data 

 
The effect of drying temperature, as well as 

exposing the seeds to US and CP, were 
evaluated and the results for the rupture force 
were given in Fig. 13. Convective drying 
temperatures showed minimal impact on seed 
crispiness. Introducing ultrasound led to cell 
collapse and increased ease of seed crushing. 
Higher ultrasound power resulted in 
significantly reduced rupture force. CPt had a 

lesser impact on reducing rupture force 
compared to ultrasound. Combining CPt with 
hybrid ultrasound/convective drying resulted 
in varying rupture forces depending on CP 
exposure time and ultrasound power. The 
scheme with CP pretreatment time of 15 
seconds and ultrasound power of 180 W 
proved most effective in reducing rupture 
force. 

 

 
Fig. 13. Response surface plots for the effect of independent variables on the rupture force of cumin seeds during the 

drying process 

(b) (a) 
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Sensitivity analysis 

Sensitivity analysis is a technique for 
evaluating the weight of each input parameter 
on output variables defined in the model. In 
this analysis, the inputs are systematically 
varying and the change in outputs are studied. 
This reveals which inputs inflict prominent 
impacts on the variation in outputs. Sensitivity 
analysis quantifies input uncertainty 
propagation and identifies influential 

parameters (Bhaskaran, Chennippan, & 
Subramaniam, 2020). In this section, the 
influence of input variables on DT, EC, ΔE, 
RF, and Deff were studied, and the results were 
graphically shown in Fig. 14. It is evident that 
the drying temperature conveniently 
stimulated the moisture diffusivity Deff but had 
no significant effects on the color change and 
rupture force.  

 

 
Fig. 14. Results of sensitivity analysis for hybrid drying of cumin seed  

 
This raises the need for extra drying sources 

for improving the dehydration process. 
According to the results of sensitivity analysis, 
the average contribution of CP, temperature, 
and ultrasound to the output variables is 
3.4176, 2.1227, and 3.2752, respectively. This 
clearly demonstrates the superiority of hybrid 
drying programs to the pure hot-air convective 
drying, and the CP was recognized as the most 
prominent factor. The maximum improvement 
in energy consumption EC and color change 
ΔE were created by exposing the seeds to CP. 
However, Fig. 9 shows that the ultrasound 
provided 21.73 and 50.73% more increase in 
Deff and RF compared with those achieved CP. 
But contrary to CP, the ultrasonic power also 
had a negligible effect on the color change of 
cumin seed during the drying process. 

 

Conclusion 

In this study, some numerical predicting 
models were developed for investigating the 

contribution of cold plasma and high-power 
ultrasound waves for improving the convective 
air drying of cumin seeds. Three neural 
network models, namely MLPNN, RBFNN, 
and WNN, were used for predicting the 
performance of drying systems. The drying air 
temperature, CP exposing time, and the 
sonication power were selected as the input 
variables. The dehydration process was 
described by drying time, effective moisture 
diffusivity, energy consumption, color change, 
and the rupture force of dried seeds. The 
available experimental data was used for 
training and testing the models. The results of 
the regression-based MQR model were also 
evaluated and compared with the results of 
neural network models. Among all developed 
models, MLPNN and WNN showed the best 
fitting with the experimental data. The average 
values of R2 = 0.9523 and RMSE = 1.93055 
were found for the results of MLPNN, while 
the error indices obtained for the predictions of 
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WNN were estimated as R2 = 0.8972 and 
RMSE = 1.808552. However, the WNN model 
used a non-iterative learning algorithm with a 
significantly shorter computational time. 
Therefore, this model was recognized as the 
most appropriate predicting tool for 
investigating the hybrid convective drying of 
cumin seeds.  
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های زیره سبز در یک  سازی اثر توام پلاسمای سرد و توان فراصوت بر خشک شدن دانهمدل

 کن هوای گرم با استفاده از شبکه عصبی مصنوعیخشک

 
 3، حسین گلبخشی2محمدامین نعمت اللهی ، *2، مهدی مرادی 1مسلم نامجو 

 15/09/1402تاریخ دریافت: 
 1403/ 22/02تاریخ پذیرش: 

 چکیده

 یکن هووواخشک کیسبز در  رهیبر خشک شدن دانه ز (USp)امواج فراصوت توان و  (CPt)سرد  یپلاسمازمان  اثر    یمنظور بررسمطالعه به  نیا
و  داستفاده شوو  یشگاهیآزما اسیفراصوت در مق -گرم یهوا یدیبریکن هخشک کیسرد و  یپلاسما دیدستگاه تول کیراستا، از  نیانجام شد. در ا گرم

دخالووت داشووته باشووند.  یبوو یترک ایوو صورت منفرد ها بهدر خشک کردن دانه  USpو  CPt شد که اثرات یزیربرنامه یاخشک کردن به گونه یهاروش
 40و  35، 30خشک شدن ) یهوا یوات( و دما 180و  120،  60امواج فراصوت )  یها(، توانهیثان  30و    15سرد )  یپلاسما  ماریتشیمختلف پ  یهازمان

 رهیوو بذر ز  یختگیگس  یرو یرنگ کل، ن  رییتغ  ،یمؤثر رطوبت، مصرف انرژ  یرینفوذپذ  بیزمان خشک کردن، ضر  راتییمطالعه تغ  ی( براگرادیدرجه سانت
 هیوو تووابپ پا ، (MLPNNs)هیپرسپترون چندلا، (WNN)شبکه عصبی مبتنی بر موجک معروف شامل  یمصنوع یشبکه عصب سهسبز انجام گرفت. از 

استفاده شوود. بوور  کردنخشک یمذکور و پارامترها یهایورود یسازمدل یبرا  (MQR)چندگانه درجه دوم ونیرگرس لیو تحل  (RBFNNs)یشعاع
 2R ،29/0با حووداک ر  WNN یشبکه عصب یسازتوسط مدل شدهینیبشیپ ریمقاد و  یتجرب یهاداده  نیب  یبرازش خط  نیبهتر  ،یسازمدل  جیاساس نتا

 دست آمد. آموزش و تست به یهاداده یبرا بیترتبه 83/0و 
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