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Abstract

In this study, the air drying of cumin seeds was boosted by cold plasma pre-treatment (CPt) followed by
high-power ultrasound waves (USp). To examine the impact of included effects, different CP exposure times (0,
15, and 30 s), sonication powers (0, 60, 120, and 180 W), and drying air temperatures (30, 35, and 40 °C) were
selected as input variables. A series of well-designed experiments were conducted to evaluate drying time,
effective moisture diffusivity, and energy consumption, as well as color change and rupture force of dried seeds
for each drying program. Numerical investigations can effectively bypass the challenges associated with
experimental analysis. Therefore, the wavelet-based neural network (WNN), the multilayer perceptron neural
network (MLPNN), and the radial-basis function neural network (RBFNN), as three well-known artificial neural
networks models, were used to map the inputs and output data and the results were compared with the Multiple
Quadratic Regression (MQR) analysis. According to the results, the WNN model with an average correlation
coefficient of R > 0.92 for the train data set, and R% > 0.83 for the test data set provided the most beneficial tool
for evaluating the drying process of cumin seeds.

Keywords: Artificial neural network, Cold plasma, Cumin seeds, Drying, Ultrasound

Nomenclature

MR Moisture ratio (-)

Mt Time-dependent moisture content of the seeds (-)
Mo Primary moisture content of the seeds (-)
Me Equilibrium Moisture content (-)

Deft Diffusion coefficient (m?s)

t Drying time (min)

M Moisture concentration (-w.b.)

AE Total color change (-)

L* Whiteness/darkness (-)

a* Redness/greenness (-)

b* Yellowness/blueness (-)

L Half thickness of the drying body (m)
y Dependent variable (-)

X Independent variable (-)

yij Constant term (-)
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Introduction

Cumin seed (Cuminum Cyminum L.) is a
seed from the Apiaceae family, formerly
called Umbelliferae. Umbelliferous seeds are
rich in essential oil content, offering valuable
applications in the food, perfume, cosmetic,
and pharmaceutical sectors of the industry
(Guo, An, Jia, & Xu, 2018; Merah et al.,
2020). Thanks to the high levels of petroselinic
acid and other bioactive molecules in cumin
seed, it is valued for its medicinal and
therapeutic properties. Moreover, cumin seeds
are widely used as a spice in cooking due to
their strong aroma and warm bitterish taste
(Namjoo, Moradi, Niakousari, &
Karparvarfard, 2022), dominated by the flavor
compound cumin aldehyde. The drying
process has a crucial role in the production of
high-quality cumin seeds. This process also
reduces the bulk volume and facilitates the
transportation and disposal of end-products
(Khalo ahmadi, Roustapour, & Borghaee,
2022). In initial drying, the freshly harvested
plants are exposed to sunlight for easier
separation of cumin seeds. Then, the drying
process should be continued, whether by sun
or dryer, until the final level of moisture
content of seeds reaches 10% on the wet basis
(Namjoo, Dibagar, Golbakhshi, Figiel, &
Masztalerz, 2024).

The essential oil of cumin has outstanding
chemical and biological characteristics which
may be badly affected by heating (Guo et al.,
2018). Shortening the drying period is an
effective approach to minimize the exposure
time of samples to the harmful effects of
dehydration. Therefore, to accelerate the
drying process and preserve the natural
characteristics of the samples, some physical-
based treatments, prior to the main single or
hybrid drying procedures, have been
investigated by researchers (Tabibian, Labbafi,
Askari, Rezaeinezhad, & Ghomi, 2020).

The cold plasma (CP) and the ultrasound
waves (US) are two physical-field techniques
which have widespread applications in the
drying process. These non-thermal and non-
chemical technologies can improve the

performance of drying systems, without
leaving any adverse effects on chemical
structure and physical properties of samples
(Zhou et al., 2020). By exposing the food
materials to CP, some surface reactions occur
and alters the surface topography of the skin
layer (Miraei Ashtiani et al., 2020; Osloab,
Moradi, & Niakousari, 2023). The internal
microstructure may also be changed by
propagation of high-power ultrasound waves
during the air-drying process. As a result,
when the CP pretreated samples are dried in a
US-assisted air drying system, the effective
moisture diffusivity significantly increases,
resulting in a higher rate of water evaporation
compared to the performance of single dryers
(Moghimi, Farzaneh, & Bakhshabadi, 2018;
Shashikanthalu, Ramireddy, & Radhakrishnan,
2020).

Besides the effective moisture diffusivity
and drying time, the amount of consumed
energy, as well as the total color change, and
rupture force of end-products may also be
evaluated for assessing the performance of the
upgraded system (Moradi, Ghasemi, & Azimi-
Nejadian, 2021; Namjoo, Moradi, Niakousari,
et al.,, 2022). In this case, conducting a
comprehensive  experimental investigation
appears to be daunting and could require
significant time and resources. Forecasting the
dehydration process of various crops by
numerical modeling is a more practical
approach for improving the performance of the
drying systems (Sun, Zhang, & Mujumdar,
2019).

Based on the results of the limited number
of experiments, some regression-based
methods such as multiple linear regressions
(MQR) can establish a proper relationship
between inputs and outputs and predict the
performance of a system for non-inspected
drying conditions (Meerasri & Sothornvit,
2022). The artificial neural network (ANN) is
another category of data-driven methods that is
developed based on the biological neural
systems in the human body. This class of
computing models is also coupled with
artificial ~ intelligence to  improve the
correlation between inputs and outputs. In the
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nonlinear problems with more than one input
parameter, ANN can readily forecast the
values of desired output variables (Kaveh,
Abbaspour Gilandeh, Amiri Chayjan, &
Mohammadigol, 2019). Recently, ANN has
been widely used to investigate the drying
process of various crops, including pumpkin
seeds (Dhurve, Tarafdar, & Arora, 2021), basil
seeds(Amini, Salehi, & Rasouli, 2021), ginkgo
biloba seeds (Bai, Xiao, Ma, & Zhou, 2018),
potato slice (Rezaei, Behroozi-Khazaei, &
Darvishi, 2021), pistachio nuts, squash, and
cantaloupe seeds (Mohammad  Kaveh,
Chayjan, & Khezri, 2018), mushroom slices
(Liu et al., 2019), and green tea leaves
(Kalathingal, Basak, & Mitra, 2020).

As mentioned earlier, in case of cumin seed
drying, the quality of end-products, the energy
costs, and production rate may significantly
improve by CP pretreatment followed by
ultrasound-assisted air drying. To the best
knowledge of authors, there is no predicting
model developed for estimating the positive
influence of cold plasma and high-power
ultrasound waves on the drying of cumin
seeds. To fill this gap, the drying of cumin
seeds is investigated in the current research
and through several experiments, drying time,
effective  moisture  diffusivity,  energy
consumption, total color change, and rupture
force (as the output variables) were measured
for different drying air temperature, CP
exposure time (CPt), and ultrasound power
(USp). Then, the wavelet-based neural
network (WNN), the multilayer perceptron
(MLP), and radial basis function (RBF) neural
networks were employed for mapping the
input and output data. For evaluating the
accuracy of predictions, the results of multiple
linear regressions (MQR) were also obtained
and compared with the results of neural
network-based models.

Materials and Methods

Sample Preparation and CP Pretreatment

In this research, freshly harvested cumin
seeds were provided from a local farm in
Khatam County in Yazd province, central Iran
to certify genetic purity. The samples were

characterized by longitudinal ridges, are
yellow-brown, and have 69.4% (d.b.) initial
moisture content. For uniform distribution of
moisture throughout the samples, the healthy
seeds were wrapped in polythene plastic bags
and kept refrigerated at 41 °C and relative
humidity of 53+£1%. The CP device (Nik
Plasma Tech Co., Tehran, Iran) in the
excitation mode of Dielectric Barrier
Discharge (DBD) was used to pretreat the
seeds. Before each drying run, 60 g of cumin
seed sample was used for CP pretreatment at
different exposure times of 15 or 30 s. After
CP pretreatment, 10 g of the sample was
separated to determine the moisture content as
well as to evaluate the color characteristics of
the pretreated seeds to ensure that no
significant alteration occurred in the initial
moisture level and color quality of the
samples. The rest of the pretreated sample, 50
g, was placed in the drying chamber and
exposed to different drying programs for
further analysis. Runs with no CP pretreatment
(CPt: 0 s) were also conducted as control
experiments. At the laboratory site, the
temperature and relative humidity of the
ambient air were 25 °C and 50%, respectively.

Ultrasound-Assisted Air-Drying Process

To conduct the main drying experiment, a
hybrid ultrasound-assisted convective dryer
was constructed at the Faculty of Agriculture,
Shiraz  University,  Shiraz, Iran, as
demonstrated in Figure 1. The drying unit is
equipped with a centrifugal fan (2200 RPM,
550 m® h, and BEF-14-7V2SP), controller
unit of input variables, multifunction
monitoring system (humidity, temperature,
energy, and weight), electrical heater
(including 3 kW electrical heating coils),
drying chamber, sonication unit (20 kHz), and
inverter. The sonication unit (Farasot Zagros
Co., Iran) contained a 1200 W generator,
power meter (Model Delta power, Ziegler Co.,
Germany), transducer, and horn. The
piezoelectric transducer was made up of four
piezoceramic rings with an outer diameter of
50 mm, an inner diameter of 20 mm, and a
thickness of 6 mm. Additionally, a thermal
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velocity probe was used to measure the linear
air flow rate. The forward one-phase
centrifugal fan propelled the drying air toward
the electric heater, warming it to achieve the
desired temperature. For online moisture
content control, the samples enclosed in the
cylindrical mesh basket were weighed every 3
minutes. A detailed description of the main
hybrid drying unit can be found in Namjoo et
al., (2022). Each drying trial lasted until the
final moisture level of about 10+1% (d.b.) was
attained. Table 1 renders a detailed description
of the drying programs at the constant air
velocity of 0.6 m s. The experimental results
comparing the effects of single and combined
applications of cold plasma and ultrasound

waves on the air drying of cumin seeds were
analyzed against a control group.

Measured Parameters
Drying Time (DT)

This study utilizes a first-order Kinetic
model to describe the moisture transfer during
the drying process of cumin seeds, providing
essential experimental data on drying Kinetics,
as follows (X. Wang et al., 2023):

Mt — M,
MR =

M, — M, 1)

PID Controller

17 |+
i Inverter I f%
/’//—_h‘. T
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Fig. 1. A schematic view of the developed ultrasound assisted air dryer: 1- Centrifugal fan, 2- Thermal element, 3- Air
in, 4- Air out, 5- Temperature and relative humidity sensor, 6- Laser sighting infrared sensor, 7- Cylindrical vibrating
element (ultrasonic horn), 8- Cylindrical drying chamber, 9- Mesh screen, 10- Digital balance, 11- Ultrasonic
transducer, 12- Ultrasonic generator, 13- Power meter, 14- Drying samples, 15- PID controller, 16- Electrical panel, 17-
Gearbox DC motor, and 18- Monitor (Namjoo, Moradi, Dibagar, & Niakousari, 2022)

Table 1- A detailed description of the different seed drying programs designed for this research

Dryin Drying air Ultrasound power Cold plasma
Program description ying ying P pretreatment time
program temperature (T) (USp) (CPY)

Convective drying (Control group) cv 30, 35, and 40 °C 0 0

Convective drying assisted by USCV  30,35,and40°C 60, 120, and 180 W 0

ultrasound waves
Convective drying with cold CPCV  30,35,and 40 °C 0 15and 30 s
plasma pretreatment

Convective drying assisted by

ultrasound waves with cold plasma  CPUSCV 30, 35, and 40 °C 60, 120, and 180 W 15and 30 s

pretreatment




Namjoo et al., Artificial Neural Network (ANN) Modeling of Plasma ... 5

Where, MR is the moisture ratio (-), M is
the moisture content (% d.b.), and subscripts t,
e, and 0 describe the instantaneous,
equilibrium, and initial values, respectively.
The experiments were performed to acquire
data for the seed’s moisture content as a
function of time. Cumin seeds with an initial
moisture content of 69.4+1% (d.b.) were dried
to reach the final moisture level of 10+1%
(d.b.). The required time was recorded in the
drying program as the drying duration.

Effective Moisture Diffusivity (Defr)

Fick’s second law was used to determine
effective moisture diffusivity as suggested in
the papers on drying foods. Here, the effective
moisture diffusivity of the drying body was
calculated by establishing a graphical method
and assuming one-dimensional moisture
movement, uniform initial moisture
distribution, negligible shrinkage, and constant
diffusion coefficient. The actual geometry of
the drying body was a cylindrical mesh basket
with the thickness and height of 8 and 130
mm, respectively, which was assumed similar
to a rectangular slab with an airflow
perpendicular to the samples. Therefore, the
analytical solution for the drying body as a
slab object is given in Eq. (2) (Chatzilia,
Kaderides, & Goula, 2023; Lingayat, VP, &
VRK, 2021):

MR

8w 1 —(@2n+ 1?1 Dert\  (2)
= — exp
2 ZO (2n + 1)2 412
n=

where L represents half of the thickness of
the drying body (m), and n is a positive integer
that stands for drying terms. By substituting n=
0 into Eqg. (2), an excellent proximate solution
is given in long drying times as follows (Gong
et al., 2020):

8 TEZDeff. t

In (MR) =In <7r2) e ) 3)

The effective moisture diffusivity (Des) is
typically established by a graphical method.
This way, the experimental result is presented
in terms of the natural logarithm of the
moisture ratio (MR) as a function of drying

time, as displayed in Eq. (4). The outcome is a
linear regression (Axk:+B), in which the slope
of the line (k;) is used to compute the
effective moisture diffusivity as follows
(Dibagar, Kowalski, Chayjan, & Figiel, 2020):

T[ZDeff (4)

k, = —
1 412

Energy Consumption (EC)

In this research, energy consumption refers
to the energy, which was supplied for the
electrical elements of the main drying system,
including fan, heating unit, sonication unit, etc.
This amount of energy is required to remove
water from the cumin seeds and attain the final
moisture content of 10% (d.b.) in each
experimental run. In this regard, a Power
Meter instrument (Model Delta power, Ziegler
Co., Germany) was utilized, and the consumed
energy was directly recorded in kilowatt-hours
(kWh).

Total Color Change (AE)

A new colorimetric system was employed
to characterize the color quality of the fresh
and dried cumin seeds. The color was
determined using image processing technique.
To ensure an acceptable image quality, a good
camera and proper illumination were applied.
The device, developed for measuring total
color change, consisted of four main elements
of a rectangular chamber (35 %25 x25 cm),
sample holder, camera (Canon EOS 4000D)
with three detectors per pixel: Red, Green, and
Blue, and LED lamps. After locating the fresh
and dried samples on the holder in the
chamber's center, digital images were captured
by the camera from the top. The images were
then stored on a PC and processed with
algorithms written in the toolbox of MATLAB
R2013a to translate the color space of RGB to
the reference zone L* (whiteness/darkness), a”
(redness/greenness), and b”
(yellowness/blueness), followed by calculating
the change in the color values of samples (AE)
as follows (lzli & Polat, 2019; Ozkan
Karabacak, 2019):
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where, index O denotes the color
specifications of the fresh cumin seeds. Higher
values of AE stand for the significant
difference between the color of fresh and dried
seed samples.

Rupture Force (RF)

The spice industry relies on the size
reduction of herbaceous plants, achieved
through various forces to create particles with
precise shapes and dimensions. Size reduction,
one of the most energy-consuming processes
in the food industry, is directly linked to
microbiological and chemical stability and
convenience (Saiedirad & Mirsalehi, 2010).
Rupture force is defined as the amount of force
needed to trigger the rupture of a product. It is
related to the firmness and brittleness of the
sample (Saiedirad et al., 2008). The rupture
force of the dried cumin seeds was assessed by
an Instron Universal Testing Machine (Model
STM-20, SANTAM Co., Iran) equipped with a
compression load cell (Model DBBP-20,
BONGSHIN Co., Korea), with an accuracy of
+0.01 N in force and #0.001 mm in
deformation. The mechanical test was repeated
ten times for each drying point and reported in
N.

Avrtificial Neural Network Modeling

The MLPNN training

The well-known multilayer perceptron
neural network (MLPNN) is schematically
described in Fig. 2. As can be seen, different
layers with several neurons are considered in
this model. The adjacent neurons are
connected by weights (w;;). The weights are
corrected in an iterative back-propagation
algorithm and in each iteration (q) are
estimated as follows (Habibi & Nematollahi,
2019; Moosavi, Nematollahi, & Rahimi, 2021,
Nematollahi, Jamali, & Hosseini, 2020;
Nematollahi & Mousavi Khaneghah, 2019;

Sun et al., 2019; Zakeri, Naghavi, & Safavi,
2009):
w;i(q +1) = wi;(q) + Aw;(q) (6)
In order to minimize the error in prediction
of output variables, the generalized delta-
learning rule is employed, and the following
equation is proposed for computing the values
of Aw; (@):

aw, @ =7 Ox 2[R~ ILOW, @f +adw, @-)  (7)

k=1

where Py is the value predicted by NN, Pn
is the experimentally measured data, and  is

the learning rate. The derivative of transfer
function relative to its input variable X; is
denoted by f'(), and « is the momentum

value and is a positive number between 0 and
1.

The RBFNN training

In the radial basis function neural network
(RBFNN), two feed-forward layers are used
for fast training of NNs. RBFNN considers the
Gaussian basis function ¢ for weighted sum

of input data vector X . Then, the components
of output vector Y, are computed as
(Nematollahi & Mousavi Khaneghah, 2019):

Y.(X) =2 w0 (XU [h+b, (8)

Where, U is the vector of center of basis
function ¢

The WNN training

The WNN is developed based on wavelet
basis functions for training data and estimating
the outputs. The wavelet algorithm is not
iterative and compared to the conventional
MLPNN, the learning time and the accuracy of
the results improve greatly. The employed
basis functions also allow for inclusion of
multiresolution frameworks in the structure of
WNN (Safavi & Romagnoli, 1997).
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Fig. 2. Schematic illustration of the multilayer perceptron neural networks (MLPNNS).
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Where 8,5 and d;s are constant

coefficients, and the scaling functions ¢ s and
the wavelet functions v, s are given by:

v, (X)=2"y (2" X-5) r,;sez  (10)

4 (X)=2""2p(2""? X-5) 1,seZ (11)

in which r and s are, respectively, the
dilation and translation factors.

In order to evaluate the unknown
coefficients “a” and “d”, Safavi and
Romagnoli (1997) rearranged Eq. (9) into the

following form:
F(X)-F (X)=>.¢,.0,.(X) (12)

Then the set of linear equations were
derived for the problem from:
F(X)=AC (13)
Where,

The variable ¢ in Eq. (14) includes both
scaling and wavelet functions. As a result, the
vector C is found as:

C=(A"A'ANF=A'F (15)

Where A" denotes the pseudo-inverse of
matrix A .

For more details about the WNN
methodology and its training process, one
could refer to. Figure 3 clearly shows the
training process in WNN.

Multiple Quadratic Regression (MQR) Analysis

In addition to artificial neural networks, the
Multiple Quadratic Regression (MQR) method
is also used in this study to develop the
predicting models. In this regard, the
performance of the drying system, described
by output variables vy, is correlated by the
following expression to the input parameters
x; (CPt, T and USp):

y= ﬂuxf +ﬁzzxg +ﬁ33X32 +ﬂlle X +ﬂ13X1 X +ﬂzaxzxs +ﬂlxl +ﬁzxz +ﬁ3X3 +ﬂ0
(16)
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Fig. 3. The training process in WNN

where fo is a constant, and gi, Bii, and pij
are the linear, pure quadratic, and interaction
coefficients, respectively (Namjoo,
Golbakhshi, Kamandar, & Beigi, 2024).

All aforementioned numerical modeling
types were carried out using MATLAB
software (Matlab, 2016). In order to develop
and validate the models, 80% of the
experimentally measured data was used for
training and the remaining 20% was used for
the test phase.

ANN and MQR Models Validation

To show the goodness of fit and
performance of the used models, indices of the
correlation coefficient (R), root mean square
error (RMSE), the mean absolute percentage
error (MAPE), and the mean absolute error
(MAE) were calculated using Egs. (17)-(20),
respectively (Wang, Tian, & An, 2022).

R =

Z{;ﬂypre i_Ypre) (Yexp i_Yexp)
)
\/Z{L 1(Ypre i_Ypre)z Z?: 1(Yexp i_Yexp)z

i=1,2,3,.., N

(17)

1
) 1

RMSE = [ZZ?:1(Yprei - Yexp i)z]z’ (18)
i=1,2,3,.., N

_1lgn Yprei—Yexpi
MAPE = L3I, [reent ac0, (o
i=1,2,3,.., N
1 n
MAE = ;Zlhlpre'l - Yexp,ll ) (20)
1=

i=123,..,N

where, Y,.,; and Y,..;denote the it

experimental (measured) and predicted values,
respectively. Y., and Y,. are the
corresponding mean values of Ye,,,; and Yy, ;,
respectively. High values of R and lower
RMSE, MAPE, and MAE outcomes confirm
that the proposed model fits well to the
experimental drying data, and it can be applied
for prediction (Dotto, Souza, Simoes,
Morejon, & Moreira, 2017; Nematollahi &
Mousavi Khaneghah, 2019).

Results and Discussion

The experimental drying data underwent
statistical analysis using IBM SPSS software
(version 26). Statistical assessment of the
results was performed using a factorial design
to find the effect of drying air temperature (T)
at three levels (30, 35, and 40 °C), CPt at three
levels (0, 15, and 30 s) and USp at four levels
(0, 60, 120, and 180 W) on drying time,
effective  moisture  diffusivity,  energy
consumption, total color change, and rupture
force of dried cumin seeds during drying
(Table 2). The experiment was conducted in a
complete randomized design (CRD) with three
replicates. The degree of freedom, sum
squares, means squares, and F-values of the
individual linear and interaction terms of CPt,
T, and USp were generated through the
analysis of variance (ANOVA) table.
Additionally, the significance of each program
evaluated was analyzed using ANOVA, with
the results presented in Table 2.
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Table 2- ANOVA results for the main and interaction effects of CPt, T, and USp on the studied parameters.

S.0.V. D.F. DT EC AE RF
CPt 2 13758.176™ 1.910E-7" 1.152™ 114.093™ 316.732™
T 2 16289.065 3.694E-7" 1.604™ 11.901™  18.307™
USp 3 16952.012™ 1.524E-7" 1.386™ 9.916™  464.006™
USpxT 4 136.343" 1.197E-8" 0.017" 0.942" 4.286™
CPtxUSp 6 1698.744™ 1.101E-8™ 0.077™ 0.491" 25.624™
CPtxT 6 1489.262™ 4.717E-9™ 0.125™ 0.468"™ 4.267
CPtxTxUSp 12 71.577" 1.628E-9™ 0.018™ 0.066" 0.250"
Error 72 51.167 1.329E-9  0.005 0.318 0.990
Total 107

**: significant at 0.01, *; significant at 0.05, and ": not significant

Results of the WNN, MLPNN, RBFNN, and MQR
models

In this research, we aimed to develop some
predicting models for correlating the inputs
parameters (CP exposure time, drying air
temperature, and ultrasound power) and
outputs variables (drying time, effective
moisture diffusivity, energy consumption, total
color change, and rupture force). These models
can readily reveal the optimal dehydration
process for cumin seeds. In this regard, three
well-known neural networks-based models,
namely the MLPNN, RBFNN, and WNN were
employed.

In order to minimize the error of MLPNN
predictions, sufficient number of hidden layers
and neurons should be considered for the
architecture of network. In this regard, two
hidden layers were used, and the sigmoid
function was adopted as the transfer function.
In an iterative learning procedure, the number
of included neurons was systematically
increased for improving the accuracy of
predictions. The training process for the
network was conducted using the Levenberg—
Marquardt algorithm. Then it was found that
by using 11 neurons within the hidden layers,
acceptable accuracy may be achieved and
adding more neurons did not provide any
significant contribution.

To calibrate the outputs of the model with
the prepared experimental data, the WNN
model should be trained by selecting
appropriate wavelet and examining different

layers of resolution. In the special case of
cumin seed drying, the second resolution and
the Gaussian type wavelet were found to be
the optimal parameters for the WNN.

The performances of WNN, MLPNN, and
RBFNN, along with the regression-based
MQR model, were evaluated, and their results
are given in Table 3. As can be seen, MQR
failed to provide accurate predictions,
especially very poor results were obtained in
this model for the total change in color of
dried samples. MLP and RBF models provided
sufficient estimations for drying time and
energy consumption. However, the average
accuracy of MLP was 2.28% better than that
achieved in the RBF model. In this study, the
most accurate predictions for the performance
of drying system were evaluated by the WNN
model. The average accuracy of results in
WNN for all defined output variables was
3.02% and 5.37% better than MLP and RBF
models, respectively. Furthermore, WNN
enjoys a non-iterative learning algorithm for
training neural networks. This greatly reduces
the computational time and provides an
important advantage for WNN. Therefore, in
the subsequent sections of this paper, we used
a WNN model for evaluating the effects of
various input parameters on drying time,
effective  moisture  diffusivity, energy
consumption, total color change, and rupture
force of dried seeds.
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data were found to be 0.9681 and 0.9432,
respectively. This clearly indicates that the
WNN model can properly predict the linear

Drying time

The neural network developed on the basis
of WNN is used in this section for predicting
the impact of various drying programs on the

time duration of cumin seeds. As can be seen

and complex correlations between drying time
and the influential input variables. Our results
are consistent with the outcomes reported in

in Fig. 4, the R?-values for the training and test
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earlier related studies.

Specifically, the

obtained R?-values are in good agreement with
the findings of Potisate et al. (2014) which

320

300+ R=0.988
280
260+
240

220

(Drying time),,

200

180

160

140

© Data Points

== Best Linear Fit

- -lDT)P = (DT)M

120 . . . . .
120 140 160 180 200 220 240 260 280 300 320
(Drying time)\_|

varied between 0.81 and 0.98 across different
drying treatments of moringa leaves.

280 - R=0.969 (b)

260

240 ¢

(Drying time),

220+

200 -

180+ O Data Points
= Best Linear Fit

O - [DT;P = (DT)M

160

160 180 200 220 240 260 280
(Drying time),,

Fig. 4. The regression of the measured and predicted drying time: a) Train data, and b) Test data
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Fig. 5. Response surface plots for the effect of independent variables on drying time of cumin seeds during the drying
process

The drying time of cumin seeds was
assessed across various drying temperatures,
USp, and CPt, with results presented in Fig. 5.
In pure convective drying, drying times ranged
from 219 to 293 minutes, with higher
temperatures  leading
Introducing ultrasound waves accelerated

to

faster drying.

drying, with total drying times ranging from
124 to 303 minutes, depending on temperature
and ultrasound power. CPt before drying
reduced drying times by 11.65% to 15.29% at
various temperatures. Combining CP and
ultrasound technologies further reduced drying
times, with a minimum of 124 minutes
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observed. However, longer CPt increased
drying times due to surface hardening and
increased evaporative resistance. Excessive
CPt may disrupt cell walls and hinder water
removal. Overall, CPt for 15 seconds
significantly reduced drying times in an
ultrasound-assisted system.

Effective moisture diffusivity

The results of the WNN model for effective
moisture diffusivity were evaluated in Fig 6.
The correlation coefficient (R?) for train and
test data was obtained as 0.9264 and 0.9421,
respectively. Other introduced statistical

"l R=0.976 (a)

O Data Points

== Best Linear Fit

= -(Drll]p = [Dm}“

35 4 4.5 5 5.5 6 6.5 7 7.5
(Dm)M %107

measures were also used for further
improvement of the model. To this end, the
learning procedure continued until the values
0.2274x10°, 3.1278, and 0.1732x10° were
attained, respectively, for the root mean square
error (RMSE), mean absolute percentage error
(MAPE), and mean absolute error (MAE).
Then, RMSE, MAPE, and MAE were found to
be 0.1895x10°, 2.4963, and 0.1387x10° for
the test data, respectively. Similar conclusions
were also made by Onwude et al. (2018) and
Khanlari et al. (2020) for sweet potato and
celery drying, respectively.

6.5

O Data Points
= Best Linear Fit

(_; - -(DN()P = (Duu')“
_L L L L i L L -
4 4.5 5 5.5 6 6.5
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Fig. 6. The regression of the measured and predicted effective moisture diffusivity of cumin seeds: a) Train
data, and b) Test data

Figure 7 illustrates the influence of various
independent variables on enhancing the
effective moisture diffusivity of samples. In a
traditional drying setup, elevating the
temperature resulted in increased seed
diffusivity, reaching a maximum value of
9.29x10% m2 st at 40 °C, while the lowest
diffusivity of 6.29x1071° m2 st was observed at
30 °C.

In a combined drying system, varying
ultrasound powers led to an increase in
moisture diffusivity. The highest diffusivity
(1.24x10° m2 s1) was achieved at 40 °C with
an ultrasound power of 180 W, while the
lowest (7.51x101° m2 ) was observed at 30
°C with 60 W. Exposure to CP for 30 seconds

enhanced seed moisture diffusivity. However,
ultrasound power contributed more
significantly to diffusivity enhancement at the
same air temperatures, with longer exposure
times (30 s) providing less modification. This
suggests that excessive exposure to CP can
increase diffusion resistance at the seed's
surface.

Energy consumption

The results of experimental analysis for
energy consumption were categorized into two
test and train datasets and depicted in Figure 8.
Two well-suited linear regression functions
were proposed based on WNN. The error
indices were evaluated in Table 3 for verifying
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the predictions. As can be seen, RMSE,
MAPE, and MAE for the training data are
slightly more than those obtained for the test
results. However, the correlation coefficient of
results (R = 0.9722 for train, and R? = 0.9254
for test data) demonstrated that the calculated
values for energy consumption agree with the
experimental results. The energetic
investigations for drying of potato (Aghbashlo,
Kianmehr, & Arabhosseini, 2008; Akpinar,
Midilli, & Bicer, 2005), carrot slices
(Nazghelichi, Kianmehr, & Aghbashlo, 2010),
kodo millet grains, and fenugreek seeds
(Yogendrasasidhar & Setty, 2018) also led to
similar results.

Under different drying conditions, the
results for energy consumption are given in
Fig. 9. Various drying conditions were tested,
and energy consumption was analyzed. In
conventional  convective drying, energy
consumption ranged from 2.27 to 2.93 kWh,
with lower temperatures resulting in higher
energy usage due to longer drying times.
Ultrasound-assisted drying showed a range of
1.95-2.93 kWh, with lower consumption at
higher temperatures and ultrasound powers.
Combining cold plasma pretreatment with
ultrasound/convective  drying significantly

3070

CP" (S)

reduced energy usage to 1.42-2.85 kWh. CP
pretreatment alone showed some energy
savings, but the combination of CP and
ultrasound provided the most efficient drying
method, reducing energy consumption while
maintaining product quality.

Color change

The results of experimental analysis and the
WNN model for the change in color of dried
seeds were illustrated in Fig. 10. The
predictions of neural network for this variable
had R? = 0.9256 for testing data, and R? =
0.9076 for training set. So, WNN can provide
reliable predictions for the case which have
not been experimentally investigated. Guiné et
al. (2015), showed that for different drying
treatments, artificial neural network modeling
can precisely evaluate the color change of the
banana variety. Bai et al. (2018) developed an
ANNs model for investigating the drying
kinetics and color changes of Ginkgo biloba
seeds during microwave drying. The ANN
models showed strong correlation to the
experimental data, with correlation
coefficients ranging from 0.956 to 0.9834. The
models also had low mean square errors,
between 0.0014 and 2.2044.

6.3

~_USp=180(W)
S Usp=120W)

)A\US,FGO(W)
USp=0(W)

Fig. 7. Response surface plots for the effect of independent variables on moisture diffusivity of cumin seeds during the
drying process
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Fig. 9. Response surface plots for the effect of independent variables on the energy consumption of cumin seeds during
the drying process

In this section, the changes in the color of
cumin seeds were investigated, and the results
were given in Fig. 11. In conventional drying,
higher temperatures lead to greater color
change, indicating potential degradation of
quality. Introducing ultrasound reduces color
change, with lower temperatures and higher
ultrasound power showing the least change in
color. CPt results in significant color change
reduction, but prolonged exposure may have

adverse effects. Combining CP pretreatment
and ultrasound shows the most effective
preservation of color, with minimal change
observed at lower temperatures and higher
ultrasound power. This indicates that
integrating both CP and ultrasound
technologies, while meticulously managing the
parameters, presents the most effective method
for maintaining seed quality.
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Fig. 11. Response surface plots for the effect of independent variables on the color change of cumin seeds during the
drying process

Rupture force

The experimental data for the rupture force
of dried seeds were displayed in Figure 12.
Using the developed WNN model, the
regression analysis was performed for
mapping the input parameters with the desired
variable. For both train and test datasets, the
values of R? were found to be more than 0.90,
and therefore best-fitting lines were proposed
for the rupture force. The obtained values for

RMSE, MAPE, and MAE (see Table 3) also
reaffirmed that the WNN model suitably
predicted the impact of drying conditions on
the quality of end-products. The overall results
are also found to be in very good agreement
with the results of available investigations in
the literature (Barreiro, Steinmetz, & Ruiz-
Altisent, 1997; Saeidirad, Rohani, &
Zarifneshat, 2013).
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The effect of drying temperature, as well as
exposing the seeds to US and CP, were
evaluated and the results for the rupture force
were given in Fig. 13. Convective drying
temperatures showed minimal impact on seed
crispiness. Introducing ultrasound led to cell
collapse and increased ease of seed crushing.
Higher ultrasound power resulted in
significantly reduced rupture force. CPt had a

30 0 CPt (S)

lesser impact on reducing rupture force
compared to ultrasound. Combining CPt with
hybrid ultrasound/convective drying resulted
in varying rupture forces depending on CP
exposure time and ultrasound power. The
scheme with CP pretreatment time of 15
seconds and ultrasound power of 180 W
proved most effective in reducing rupture
force.

USp=0(w)
USp=60(W)
USp=120(W)
USp=180(W)

Fig. 13. Response surface plots for the effect of independent variables on the rupture force of cumin seeds during the
drying process
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Sensitivity analysis

Sensitivity analysis is a technique for
evaluating the weight of each input parameter
on output variables defined in the model. In
this analysis, the inputs are systematically
varying and the change in outputs are studied.
This reveals which inputs inflict prominent
impacts on the variation in outputs. Sensitivity
analysis ~ quantifies  input  uncertainty
propagation and identifies  influential

[EEN

parameters  (Bhaskaran, Chennippan, &
Subramaniam, 2020). In this section, the
influence of input variables on DT, EC, AE,
RF, and Desf were studied, and the results were
graphically shown in Fig. 14. It is evident that
the  drying  temperature  conveniently
stimulated the moisture diffusivity Det but had
no significant effects on the color change and
rupture force.
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Fig. 14. Results of sensitivity analysis for hybrid drying of cumin seed

This raises the need for extra drying sources
for improving the dehydration process.
According to the results of sensitivity analysis,
the average contribution of CP, temperature,
and ultrasound to the output variables is
3.4176, 2.1227, and 3.2752, respectively. This
clearly demonstrates the superiority of hybrid
drying programs to the pure hot-air convective
drying, and the CP was recognized as the most
prominent factor. The maximum improvement
in energy consumption EC and color change
AE were created by exposing the seeds to CP.
However, Fig. 9 shows that the ultrasound
provided 21.73 and 50.73% more increase in
Detf and RF compared with those achieved CP.
But contrary to CP, the ultrasonic power also
had a negligible effect on the color change of
cumin seed during the drying process.

Conclusion

In this study, some numerical predicting
models were developed for investigating the

contribution of cold plasma and high-power
ultrasound waves for improving the convective
air drying of cumin seeds. Three neural
network models, namely MLPNN, RBFNN,
and WNN, were used for predicting the
performance of drying systems. The drying air
temperature, CP exposing time, and the
sonication power were selected as the input
variables. The dehydration process was
described by drying time, effective moisture
diffusivity, energy consumption, color change,
and the rupture force of dried seeds. The
available experimental data was used for
training and testing the models. The results of
the regression-based MQR model were also
evaluated and compared with the results of
neural network models. Among all developed
models, MLPNN and WNN showed the best
fitting with the experimental data. The average
values of R? = 0.9523 and RMSE = 1.93055
were found for the results of MLPNN, while
the error indices obtained for the predictions of
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WNN were estimated as R? = 0.8972 and
RMSE = 1.808552. However, the WNN model
used a non-iterative learning algorithm with a
significantly shorter computational time.
Therefore, this model was recognized as the
most  appropriate  predicting tool for
investigating the hybrid convective drying of
cumin seeds.
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