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Abstract

We propose a mathematical model, SIM , that describes the dynamics
of cochineal insect spread among cacti and examines the effects of various
control strategies. The model is analyzed for the existence and unique-
ness of solutions, and we investigate the equilibrium points and stability
of the system using both local and global stability analyses. By perform-
ing numerical simulations in MATLAB, we validate our theoretical find-
ings. Furthermore, we propose an optimal control strategy to minimize
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the cochineal population in cacti fields. The optimal control problem is
formulated using Pontryagin’s maximum principle, and the corresponding
optimality system is solved iteratively. Our study compares three control
strategies: cutting and burning infected cacti, insecticide spraying, and a
combined approach. The results demonstrate that the combined strategy
is the most effective in reducing the cochineal population. This research
provides valuable insights into managing cochineal infestations and offers
practical recommendations for farmers to control the spread of these pests.

AMS subject classifications (2020): Primary 03C45; Secondary 90C31, 35F21.

Keywords: Mathematical modeling; Stability analysis; Optimal control;
Cochineal insect; Cacti plants.

1 Introduction

The cochineal insect, Dactylopius coccus, is a well-known pest that sig-
nificantly affects cacti and other succulents. It is notorious for feeding on
plant sap, weakening their health, and, in severe cases, leading to the death
of the host plant. These infestations are of considerable economic concern,
especially in regions where cacti are a major agricultural crop. The damage
caused by cochineal infestations includes dehydration, discoloration, and, ul-
timately, the destruction of entire crops. Cochineal is particularly harmful
to cacti, which are otherwise resilient [13, 1].

Historically, cochineal insects were highly valued for their use in produc-
ing carmine dye, a pigment that has been utilized for centuries in the textile
industry and art. The ability of these insects to produce carmine made them
a valuable commodity in pre-Columbian Mesoamerica, where they were a
significant economic resource. During the colonial era, the Spanish estab-
lished a monopoly on cochineal trade, making it one of the most important
exports from the Americas to Europe. The cultivation of cochineal and its
host plants later spread globally, particularly to Mediterranean regions and
parts of Asia, following its introduction by European colonial powers [8].

Mathematical modeling has become an essential tool for understanding
the dynamics of cochineal infestations and assessing the effectiveness of dif-
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ferent control measures. Early mathematical models of pest populations date
back to the works of Verhulst and Lotka, who developed foundational mod-
els describing population growth and interactions [17, 12]. More recently,
mathematical models have been applied to agricultural pest spread, includ-
ing cochineal. These models typically take the form of differential equations
that describe the dynamics of both the pest and its host plants [14, 10].
For example, the SIR (Susceptible-Infected-Removed) model, widely used in
epidemiology, has been adapted to model the spread of various agricultural
pests, including cochineal [5, 4].

However, most previous models have focused on the population dynam-
ics of the pest or the biological aspects of infestation, often neglecting the
effects of control measures and external interventions. In this paper, we pro-
pose a new mathematical model, denoted as the SIM model, that describes
the spread of cochineal insects on cacti while incorporating different types
of control strategies. Our model builds upon the classical SIR framework
by including terms that represent the impact of interventions such as chem-
ical treatments, removal of infected plants, and natural predation. We also
conduct a stability analysis to examine the system’s behavior under vari-
ous conditions and determine the effects of control measures on pest spread
[16, 9].

The novelty of our work lies in integrating optimal control theory with
pest management strategies. Using Pontryagin’s maximum principle, we de-
rive optimal control strategies for minimizing the spread of cochineal while
considering resource constraints. This approach enables us to evaluate the
most efficient allocation of resources for pest control and optimize manage-
ment efforts [15, 6].

This study contributes to the scientific literature by offering a more com-
prehensive approach to understanding cochineal infestations. In addition
to providing theoretical insights into the dynamics of cochineal spread, our
model offers practical guidance for pest management in agricultural settings.
The findings have significant implications for policymakers and farmers, sug-
gesting effective strategies for reducing the impact of cochineal infestations
and preventing their spread to new regions.
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The remainder of the paper is structured as follows: Section 2 introduces
the proposed mathematical model, Section 3 analyzes its fundamental prop-
erties and equilibrium points, and Section 4 presents a stability analysis.
Section 5 provides numerical simulations to validate the theoretical results,
while Section 6 discusses optimal control strategies for managing cochineal
infestations. In Section 7, optimal control numerical results are considered.
Finally, Section 8 concludes with a summary of our findings and potential
applications.

2 Formulation of the mathematical model

Before introducing our model, we first examine the biology and reproductive
behavior of the cochineal insect, as understanding these aspects is essential
for modeling its spread among cacti.

Cochineal insects are soft-bodied, oval-shaped organisms. Males possess
wings, while females remain wingless. After mating, females lay eggs that
rapidly hatch into tiny larvae. These larvae secrete a white waxy substance
on their bodies, which serves as protection against water loss and excessive
sunlight. This waxy coating appears on cacti as white, cotton-like masses.
The larvae migrate to the edges of cactus pads, where wind currents carry
the wax threads, dispersing them onto adjacent plants.

Cochineal infestations can cause significant agricultural losses, as these
insects feed on cacti by extracting their fluids. In severe cases, this leads
to plant desiccation and eventual death. In most instances, if a cactus is
infested, it either perishes or must be removed—farmers typically resort to
cutting, burying, or burning infected plants to prevent further spread. The
insect’s rapid dispersion is facilitated by wind, as well as by transportation
via farming equipment, trucks, livestock wool, and the movement of animals
and people from infested areas.

Based on these observations, we propose a mathematical model, denoted
as SIM, to describe the spread of cochineal insects among cacti. We categorize
the total cacti population, N , into two compartments:

• S: Represents the healthy (susceptible) cacti plants in the region.
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Figure 1: Compartments of cacti population

• I: Represents the infected cacti plants affected by the cochineal insect.

Additionally, we introduce a third compartment to represent the cochineal
insect population, denoted as M.

In Figure 1, λ is the rate of cochineal insect encounters with cacti (mea-
sured in [cochineal/day]), γ is the cochineal insect mortality rate (measured
in [cochineal/day]), δ is the death rate of cacti due to infection (measured in
[cacti/day]), β is the growth rate of the cochineal insect population (measured
in [cochineal/day] and β > 0), K is the carrying capacity of the cochineal
insect population (measured in [cochineal/day] and K > 0), Λ is the recruit-
ment rate of cacti (measured in [cacti/day]), and µ is the natural mortality
rate of cacti (measured in [cacti/day]). Moreover,

dS
dt = Λ− λSM − µS,
dI
dt = λSM − µI − δI,
dM
dt = βM

(
1− M

K

)
− γM,

(1)

with the following nonnegative initial conditions: S(0) ⩾ 0, I(0) ⩾ 0,M(0) ⩾
0.
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3 Model basic properties

The provided model describes the populations of both cacti and Cochineal
insects. Therefore, it becomes necessary to investigate some fundamental
properties of the system (1) such as the existence, positivity, and boundedness
of the solutions.

3.1 Positivity of solutions

Theorem 1. If S(0) ≥ 0, I(0) ≥ 0 and M(0) ≥ 0, then the solutions S(t),
I(t), and M(t) of system (1) are positive for all t ≥ 0.

Proof. It follows from the first equation of system (1) that

dS
dt = Λ− λSM − µS ≥ − (λM + µ)S. (2)

Then, we have
dS
S

≥ − (λM + µ) dt. (3)

Integrating this inequality from 0 to t gives

S(t) ≥ Sb(0)e
−

∫ t
0
(λM+µ)ds.

That implies
S(t) ≥ 0 for all t ≥ 0.

Similarly, we prove that I(t) ≥ 0 and M(t) ≥ 0 for all t ≥ 0.

3.2 Boundedness of the solutions

Theorem 2. Let C = max{M(0),K}. Then the set

Γ =

{
(S, I) ∈ R2

+ : N(t) ≤ Λ

µ

}
× {M ∈ R+ : M(t) ≤ C}
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is positively invariant under system (1) with nonnegative initial conditions
S(0), I(0), and M(0).

Proof. From the three equations of the system (1), we have

dN(t)

dt
= Λ− µN(t)− δI ≤ Λ− µN(t). (4)

Then,
N(t) ≤ N(0)e−µt +

Λ

µ

[
1− e−µt

]
. (5)

If we take limit t → ∞, we have 0 ≤ N(t) ≤ Λ
µ .

From the last equation of (1), we have

dM
dt ≤ βM

(
1− M

K

)
. (6)

Hence, employing a typical comparison approach yields lim supt→∞ M(t) ≤
K.

Finally, the set Γ is positively invariant for the system (1).

3.3 Existence of solutions

Theorem 3. The system (1) that satisfies a given initial condition (S(0), I(0),M(0))
has a unique solution.

Proof. Model (1) can be reformulated in matrix form as follows:
Let X(t) = (S, I,M)

T and F (X(t)) =
(
dS
dt ,

dI
dt ,

dM
dt

)T .
The system (1) can be rewritten as follows:

F (X(t)) = AX +B(X(t)),

where

A =


−µ 0 0

0 − (µ+ δ) 0

0 0 β − γ


and
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B(X(t)) =


Λ− λSM

λSM

−βM2

K

 .

Let X1 and X2 be solutions of (1). Then

|B (X1)−B (X2)| ≤ | λ(S2M2 − S1M1)|+ | λ(S1M1 − S2M2)|+ | β

K
(M2

2 −M2
1 )|

≤ | λ(S2M2 − S2M1)|+ | λ(S2M1 − S1M1)|

+ | λ(S1M1 − S1M2)|+ | λ(S1M2 − S2M2)|+ | β

K
(M2

2 −M2
1 )|

≤λS2 | M2 −M1|+ λM1 | S2 − S1|+ λS1 | M1 −M2|

+ λM2 | S1 − S2|+
β

K
| M2 −M1| | M2 +M1|

≤λΛ

µ
| M2 −M1|+ λC | S2 − S1|

+
λΛ

µ
| M1 −M2|+ λC | S1 − S2|+

2βC

K
| M2 −M1|

≤
(
2λΛ

µ
+

2βC

K

)
| M1 −M2|+ 2λC | S1 − S2|

≤N ∥X1 −X2∥ ,

where
N = max

(
2λΛ

µ
+

2βC

K
, 2λC, ∥A∥

)
.

Therefore,
∥F (X1)− F (X2)∥ ≤ N ∥X1 −X2∥ .

Thus, it follows that the function F is uniformly Lipschitz continuous, and
the restriction on S(t) ≥ 0, I(t) ≥ 0, and M(t) ≥ 0 in R3

+. Therefore, a
solution of the model (1) exists [3].

4 Stability analysis of the model

In this section, we explore the stability characteristics of model (1) for both
the cochineal insect-free equilibrium point denoted as E0 and the cochineal
insect endemic equilibrium point denoted as E∗.

The equilibrium point of model (1) satisfies the following equations:

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 823–851
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Λ− λSM − µS = 0, (7)

λSM − µI − δI = 0, (8)

βM

(
1− M

K

)
− γM = 0. (9)

From (9), we have

M

(
β

(
1− M

K

)
− γ

)
= 0 ⇒ M = 0 or M = K − γK

β
.

For M = 0: (7) ⇒ Λ − µS = 0 ⇒ S = Λ
µ , (8) ⇒ I = 0, then E0 =(

Λ
µ , 0, 0

)
.

For M = M∗ = K − γK
β = K(1− 1

ℜ0
): From (7), we have

S∗ =
Λβ

λK(β − γ) + µβ
=

Λ

λK(1− 1
ℜ0

) + µ
.

From (8), we have

I∗ =
λΛK(β − γ)

(µ+ δ) (λK(β − γ) + µβ)
=

λΛK(1− 1
ℜ0

)

(µ+ δ)
(
λK(1− 1

ℜ0
) + µ

) .
Therefore,

E∗ = (S∗, I∗,M∗) ,

where ℜ0 represents the basic reproduction number, defined as

ℜ0 =
β

γ
.

In epidemiology, the basic reproduction number ℜ0 signifies the aver-
age number of secondary infections caused by one infected individual in a
population entirely susceptible. We calculated this value utilizing the next-
generation matrix method as described in [2, 18]

Indeed, if we let x = (S, I,M), then the model (1) can be expressed as

dx
dt = F (x)− ϑ(x),

where
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F (x) =


Λ

λSM

βM
(
1− M

K

)
 ,

ϑ(x) =


λSM + µS

µI + δI

γM

 .

The Jacobian matrices of F (x) and ϑ(x) at the free equilibrium E0 are,
respectively,

DF (E0) =


0 0 0

0 0 λΛ
µ

0 0 β

 ,

Dϑ(E0) =


µ 0 λΛ

µ

0 µ+ δ 0

0 0 γ

 .

where

F =

(
0 λΛ

µ

0 β

)
,

V =

(
µ+ δ 0

0 γ

)
.

Finally, we have
ℜ0 = ρ

(
FV −1

)
=

β

γ
.

4.1 Local stability

In this section, we analyze the local stability of both the free equilibrium
point E0 and the endemic equilibrium point E∗.

Theorem 4. If ℜ0 < 1, then E0 is locally asymptotically stable.

Proof. The Jacobian matrix calculated for system (1) at E0 is given by

JE0
=


−µ 0 −λΛ

µ

0 −µ− δ λΛ
µ

0 0 β − γ

 .
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We put d1 = −µ < 0, d2 = −µ − δ and d3 = β − γ = γ(ℜ0 − 1). Then,
let us consider the matrix:

T1 =


d1 − r 0 −λΛ

µ

0 d2 − r λΛ
µ

0 0 d3 − r

 .

Hence, the eigenvalues of JE0
are r1 = d1, r2 = d2 and r3 = d3. Clearly,

all the eigenvalues of the characteristic equation are negative if ℜ0 < 1. Then,
E0 is locally asymptotically stable.

Theorem 5. If ℜ0 > 1, then E∗ is locally asymptotically stable.

Proof. Let J∗
E be the Jacobian matrix of the system (1) evaluated at E1,

JE∗ =


−λM∗ − µ 0 −λS∗

λM∗ −µ− δ λS∗

0 0 β − 2β
K M∗ − γ

 .

We put d1 = −λM∗ − µ < 0, d2 = −λM∗ − µ and d3 = β − γ − 2β
K M∗.

Then, we consider the following matrix:

T2 =


d1 − r 0 −λS∗

λM∗ d2 − r λS∗

0 0 d3 − r

 .

The characteristic equation of T2 can be written as

(d1 − r)(d2 − r)(d3 − r) = 0.

Hence, the eigenvalues of JE∗ are r1 = −d1, r2 = −d2, and r3 = d3, where

d3 = β − γ − 2β

K
M∗ = γ (1−ℜ0) .

Clearly, all the eigenvalues of the characteristic equation are negative if
ℜ0 > 1. Then, E∗ is locally asymptotically stable if ℜ0 > 1, proving the
desired result.
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4.2 Global stability analysis

Now, our aim is to evaluate the global asymptotic stability of both the free
equilibrium E0 and the endemic equilibrium E∗ of model (1).

Theorem 6. If ℜ0 ≤ 1, then E0 is globally asymptotically stable on Γ.

Proof. We consider the Lyapunov function V (S, I,M) = M . We have

V̇ = Ṁ

= βM

(
1− M

K

)
− γM

= γ (ℜ0 − 1)M − β

K
M2.

Therefore, it is clearly that if ℜ0 ≤ 1, then V̇ ≤ 0.
Indeed, if ℜ0 ≤ 1, then V̇ (S, I,M) = 0 ⇔ M = 0.
Hence, according to LaSalle’s invariance principle [11], the free equilib-

rium point E0 is globally asymptotically stable on Γ.

Theorem 7. If ℜ0 > 1, then E∗ is globally asymptotically stable on Γ.

Proof. To investigate the global stability of the endemic equilibrium E∗, we
examine the Lyapunov function represented as

V (S, I,M) = M −M∗
(
1 + ln( M

M∗ )

)
. (10)

Then, the time derivative of the Lyapunov function is given by

V̇ =
1

M
(M −M∗) Ṁ

=
1

M
(M −M∗)

(
βM

(
1− M

K

)
− γM

)
= (M −M∗)

(
β − β

K
M − γ

)
= (M −M∗)

(
β − γ(ℜ0 − 1)

M

M∗ − γ

)
= γ (M −M∗) (ℜ0 − 1)

(
1− M

M∗

)
= γ (1−ℜ0)

(M −M∗)
2

M∗ .
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Therefore, it is obvious that if ℜ0 > 1, then V̇ < 0.
In addition, if ℜ0 > 1, then V̇ (S, I,M) = 0 ⇔ M = M∗.
Hence, by LaSalle’s invariance principle [11], the endemic equilibrium E∗

is globally asymptotically stable on Γ.

5 Numerical simulation

In this section, we present several numerical solutions of system (1) using
approximate parameter values, given the lack of actual data resulting from
the absence of statistical studies on this phenomenon. The system (1) was
solved using Euler’s method. We employed different initial values for each
state variable and utilized the parameter set: Λ = 700 [cacti/day], µ =

0.05 [cacti/day], λ = 0.02 [cochineal/day], δ = 0.03 [cacti/day], β = 0.02

[cochineal/day], γ = 0.05 [cochineal/day], and K = 5000 [cochineal/day].
It is noteworthy that we identified the disease-free equilibrium point E0 =

(14000, 0, 0) with ℜ0 = 0.4 < 1.
The provided figures illustrate the evolution of the state variables S, I,

and M over time (in days), representing the susceptible cacti, infected cacti,
and cochineal insects, respectively. Three scenarios with different initial val-
ues are depicted in each figure:

• Figure 2 (S): Evolution of susceptible cacti

– S(0) = 150,000 (blue line): The number of susceptible cacti de-
creases rapidly and stabilizes around 14,000 over time.

– S(0) = 100,000 (orange line): Similarly, the population decreases
and reaches the same steady-state value of 14,000.

– S(0) = 50,000 (yellow line): Despite a lower initial population,
the system stabilizes at the same steady-state level.

This figure demonstrates that the system consistently converges to S =

14,000 regardless of initial conditions.

• Figure 2 (I): Evolution of infected cacti

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 823–851
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Figure 2: SIM model with a disease-free equilibrium

– I(0) = 70,000 (blue line): The number of infected cacti increases
initially, reaching a peak near 18× 104 before gradually declining
to zero.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 823–851
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– I(0) = 40,000 (orange line): Following a similar pattern, the pop-
ulation rises to a peak before declining to zero.

– I(0) = 10,000 (yellow line): Even with smaller initial infections,
the population exhibits the same behavior, with infection eradica-
tion over time.

This figure highlights that infection is eliminated in all scenarios as the
system stabilizes.

• Figure 2 (M): Evolution of cochineal insects

– M(0) = 5,000 (blue line): The cochineal insect population de-
creases steadily, approaching zero within approximately 60 days.

– M(0) = 3,000 (orange line): Similarly, the population declines to
zero at a slightly faster rate.

– M(0) = 2,000 (yellow line): A smaller initial population also di-
minishes to zero over time.

This figure demonstrates that the cochineal insect population is eradi-
cated in all scenarios.

Across all figures, the application of the model confirms that the system
is globally stable at E0 = (14,000, 0, 0). This stability is achieved regardless
of initial conditions, as long as ℜ0 < 1. The results highlight the robustness
of the system’s dynamics in eliminating infections and cochineal insects while
stabilizing the susceptible cactus population. According to Theorem 6, E0 is
stable on Γ.

Additionally, considering diverse initial values for each state variable and
the set of parameters: Λ = 700 [cacti/day], µ = 0.05 [cacti/day], λ = 0.02

[cochineal/day], δ = 0.03 [cacti/day], β = 0.07 [cochineal/day], γ = 0.01

[cochineal/day], and K = 5000 [cochineal/day], we observe that the endemic
equilibrium point E∗ = (20000, 72000, 3000) and ℜ0 = 7 > 1.

The provided figures illustrate the evolution of the state variables S, I,
and M over time (in days), representing the susceptible cacti, infected cacti,
and cochineal insects, respectively. Three scenarios with different initial val-
ues are depicted in each figure:
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Khassal, Moumine and Balatif 838

Figure 3: SIM model with an epidemic equilibrium

• Figure 3 (S): Evolution of Susceptible Cacti

– S(0) = 150,000 (blue line): The susceptible cactus population
decreases over time, stabilizing at a value near 20,000.

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 823–851
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– S(0) = 100,000 (orange line): The population follows a similar
trend, reaching the same steady-state value of S ≈ 20,000.

– S(0) = 50,000 (yellow line): Despite a lower initial population,
the system stabilizes at the same steady-state value.

• Figure 3 (I): Evolution of Infected Cacti

– I(0) = 30,000 (blue line): The number of infected cacti rises and
stabilizes at a value near 72,000.

– I(0) = 20,000 (orange line): Similarly, the population stabilizes at
I ≈ 72,000 after an initial increase.

– I(0) = 10,000 (yellow line): Even with a smaller starting popula-
tion, the system converges to the same equilibrium.

• Figure 3 (M): Evolution of Cochineal Insects

– M(0) = 1,000 (blue line): The population of cochineal insects
grows steadily, approaching a value near 3,000 over time.

– M(0) = 1,500 (orange line): Similarly, the population stabilizes
near 3,000 after initial growth.

– M(0) = 2,000 (yellow line): Regardless of the higher initial popu-
lation, the system stabilizes at M ≈ 3,000.

Over time, the system stabilizes with the susceptible cactus population
S close to 20,000, the infected cactus population I near 72,000, and the
cochineal insect populationM at approximately 3,000. This behavior demon-
strates that, for ℜ0 > 1, the solution curves converge towards the equilibrium
point E∗. According to Theorem 7, the equilibrium E∗ is stable on Γ.

6 The optimal control problem

Given the ongoing threat of cochineal infestations and their severe economic
impact on cactus production, farmers need a cost-effective strategy to control
the pest’s spread within a specific timeframe. To address this, we develop an
optimal control problem that focuses on minimizing the number of infected
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plants, I(t), while maximizing the number of recovered plants, R(t), over the
period [t0, tf ]. Additionally, the model aims to minimize the costs associated
with control measures, ensuring a balance between effective pest management
and economic feasibility.

A key aspect of our approach is the natural control provided by Hy-
peraspis trifurcata, a predatory beetle that feeds on cochineal insects. By
incorporating this biological control agent into the model, we emphasize the
beetle’s role in naturally reducing cochineal infestations. Hyperaspis trifur-
cata offers a sustainable and environmentally friendly alternative to chemical
pesticides, as it directly targets the cochineal population, helping to curb its
spread.

The system of equations (1) is adjusted to include two control variables,
u1(t) and u2(t) for t ∈ [t0, tf ], as follows:

dS
dt = Λ− λS(t)M(t)− µS(t),
dI
dt = λS(t)M(t)− δI(t)− µI(t)− u1(t)I(t),
dM
dt = βM(t)

(
1− M(t)

K

)
− γM(t)− u2(t)M(t),

(11)

with the initial conditions S(0) ≥ 0, I(0) ≥ 0, and C(0) ≥ 0.

The control u1(t) represents cutting and burning cactus infected with
cochineal, while the control u2(t) denotes the application of insecticide to
combat cochineal.

The problem is to minimize the objective functional:

J(u1, u2) = I(tf )+M(tf )+

∫ tf

t0

[
I(t) +M(t) +

C1

2
(u1(t))

2
+

C2

2
(u2(t))

2

]
dt,

(12)
where C1 > 0 and C2 > 0 are chosen to assign the relative importance of
u1(t) and u2(t) at any given time t, with tf representing the final time.

In other words, our goal is to find the optimal controls u∗
1 and u∗

2 such
that

J(u∗
1, u

∗
2) = min

(u
1
,u

2
)∈U

J(u1, u2),

where U is the set of admissible controls defined by

U = {(u1(t), u2(t)) : 0 ≤ u1(t) ≤ 1 , 0 ≤ u2(t) ≤ 1, / t ∈ [t0, tf ]} .
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6.1 Existence of optimal controls

In this part, we present the theorem that proves the existence of an optimal
control (u∗

1, u∗
2) minimizing the cost function J .

Theorem 8. There exists an optimal control (u∗
1, u

∗
2) ∈ U such that

J(u∗
1, u

∗
2) = min

(u1,u2)∈U
J(u1, u2).

Proof. To use the existence result in [7], we must check the following prop-
erties:
(A1): The set of controls and the corresponding state variables is nonempty.
(A2): The control set U is convex and closed.
(A3): The right-hand side of the state system is bounded by a linear function
in the state and control variables.
(A4): The integral L(I,M, u1, u2) of the objective functional is convex on
U , and there exist constants κ

1
> 0, κ

2
> 0, and ε > 1 such that

L(I,M, u1, u2) ≥ −κ1 + κ2

(
|u1|2 + |u2|2

) ε
2

.

The first condition (A1) is verified using the result in Lukes. The set U is
convex and closed by definition, thus the condition (A2) is satisfied. Our
state system is linear in u1 and u2; moreover the solutions of the system are
bounded as proved in model (1), hence the condition (A3) is satisfied. Also,
we have the last needed condition (A4),

L(I,M, u1, u2) ≥ −κ1 + κ2

(
|u1|2 + |u2|2

) ε
2

.

where

κ
1
= 2 sup

t∈[t0,tf ]

(I(t),M(t)), κ2 = inf(C1

2
,
C2

2
) and ε = 2,

since C1 > 0 and C2 > 0. We conclude that there exists an optimal control
(u∗

1, u
∗
2) ∈ U such that

J(u∗
1, u

∗
2) = min

(u1,u2)∈U
J(u1, u2).

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 823–851



Khassal, Moumine and Balatif 842

6.2 Characterization of the optimal controls

In this section, we utilize Pontryagin’s principle [15]. The central concept is
to introduce the adjoint function, which connects the system of differential
equations to the objective functional. This connection leads to the formula-
tion of the Hamiltonian. By applying this principle, the task of determining
a control that optimizes the objective functional with a specified initial con-
dition is transformed into the problem of finding a control that optimizes the
Hamiltonian pointwise.

To derive the optimal control conditions, we apply Pontryagin’s maximum
principle such that the Hamiltonian H at time t is defined by

H(t) = I(t) +M(t) +
C1

2
(u1(t))

2
+

C2

2
(u2(t))

2
+

3∑
i=1

λihi, (13)

where hi is the right side of the system of differential equations (11) of ith
state variable.

Theorem 9. Given the optimal controls (u∗
1, u

∗
2) and solutions S∗, I∗, and

M∗ of the corresponding state system (11), there exist adjoint functions
λ1, λ2, and λ3 satisfying


h1 = Λ− λS(t)M(t)− µS(t),

h2 = λS(t)M(t)− δI(t)− µI(t)− u1(t)I(t),

h3 = βM(t)
(
1− M(t)

K

)
− γM(t)− u2(t)M(t),

(14)

such that the transversality conditions at time tf are
λ1(tf ) = 0,

λ2(tf ) = 1,

λ3(tf ) = 1.

(15)

In addition to that we have, for t ∈ [t0, tf ] , optimal controls u∗
1(t) and

u∗
2(t) are given by

u∗
1(t) = min

(
1,max

(
0,

λ2

C1
I(t)

))
,

u∗
2(t) = min

(
1,max

(
0,

λ3

C2
M(t)

))
.

(16)
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Proof. The Hamiltonian H is defined as follows:

H(t) = I(t) +M(t) +
C1

2
(u1(t))

2
+

C2

2
(u2(t))

2
+

3∑
i=1

λihi,

where 
h1 = Λ− λS(t)M(t)− µS(t),

h2 = λS(t)M(t)− δI(t)− µI(t)− u1(t)I(t),

h3 = βM(t)
(
1− M(t)

K

)
− γM(t)− u2(t)M(t).

For t ∈ [t0, tf ], the adjoint equations and transversality conditions can be
obtained by using Pontryagin’s maximum principle [15] such that


λ′
1 = − dH

dS
= λ1(λM(t) + µ)− λ2λM(t),

λ′
2 = − dH

dI
= −1 + λ2 (δ + µ+ u1(t)) ,

λ′
3 = − dH

dM
= −1 + λ1λS(t)− λ2λS(t)− λ3

(
β − 2βM(t)

K
− γ − u2(t)

)
,

for t ∈ [t0, tf ], the optimal controls u∗
1 and u∗

2 can be solved from the opti-
mality condition. We have

dH

du1
= C1u1(t)− λ2I(t) = 0.

So
u1(t) =

λ2

C1
I(t).

We have
dH

du2
= C2u2(t)− λ3M(t) = 0.

So
u2(t) =

λ3

C2
M(t).

By the bounds in U of the controls, it is convenient to obtain u∗
1 and u∗

2

in the form of (16).

7 Optimal control numerical results

In this section, we present the results obtained by solving the optimality sys-
tem. For our control problem, we define conditions for the state variables and
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terminal conditions for the adjoint variables. The optimality system is essen-
tially a two-point boundary value problem, with conditions at the initial time
step i = t0 and the final time step i = tf . To solve this system, we initially
solve the state model, followed by solving the adjoint system in reverse order.
In the first iteration, we start with an initial guess for the control variables
and update them based on a characterization of the optimal controls before
moving on to the next iteration. This process is repeated until the iterates
converge. To achieve this, we created a MATLAB code utilizing the following
parameters. Given the lack of real-world data, the parameter values were cho-
sen hypothetically. The plots illustrating susceptible, infected, and recovered
cochineal individuals both with and without control measures are generated
based on these parameter values: Λ = 1000 [cacti/day], µ = 0.05 [cacti/day],
λ = 0.02 [cochineal/day], δ = 0.03 [cacti/day], β = 0.07 [cochineal/day],
γ = 0.01 [cochineal/day], and K = 70000 [cochineal/day]. When analyzing
the graphs, please be aware that solid lines represent cochineal individuals
without control measures, whereas dashed lines indicate those with control
measures.

7.1 Control Strategy 1: Cutting and burning cactus
infected with cochineal

The goal of this approach is to minimize the function (12), with a primary
focus on reducing the cochineal population through cutting and burning cac-
tus infected with cochineal. Figure 4 illustrates the effects of this spraying
on the cacti plants.

This figure illustrates the evolution of the state variable I, representing
the number of infected cacti, over time (in days). Two scenarios are depicted:

• Without control u1 (solid red line): In this scenario, the number of
infected cacti increases rapidly and levels off, approaching a steady-
state at approximately 7× 105 after around 50 days.

• With control u1 (dashed red line): When control u1 is applied, the
number of infected cacti grows initially but peaks at a lower value.
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Figure 4: The evolution of the number of infected cacti with and without the control
u1

After reaching the peak, the number steadily declines, indicating that
the control measure is effective in reducing the infection.

This comparison demonstrates the significant impact of control u1 on
managing the infection levels among the cacti.

7.2 Control Strategy 2: Effects of insecticide spraying

The main objective of treating cacti infested with cochineal, within the con-
text of a strategy, is to minimize the function (12) while maintaining other
control measures at zero. Figure 5 illustrates the cochineal dynamics, taking
into account the presence or absence of this control measure.

This figure illustrates the evolution of the state variable M , representing
the number of cochineals, over time (in days). Two scenarios are depicted:

• Without control u2 (solid green line): In this scenario, the number of
cochineals increases rapidly and levels off, approaching a steady-state
at approximately 6× 105 after around 30 days.

• With control u2 (dashed green line): When control u2 is applied,
the number of cochineals grows initially but stabilizes at a much lower
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Figure 5: The evolution of the number of cochineals with and without the control u2

value. This indicates that the control measure effectively limits the
growth of the population.

This comparison demonstrates the significant impact of control u2 in man-
aging the cochineal population.

7.3 Control Strategy 3: Cutting and burning cactus
infected with cochineal and insecticide spraying

This strategy aims to minimize the objective function (12) by implementing
both control measures. Figure 6 illustrates the disease progression with both
controls in effect, compared to the scenario where no control measures are
utilized to manage the disease.

This first figure illustrates the evolution of the state variable I, repre-
senting the number of infected cacti, over time (in days). Two scenarios are
depicted as follows:

• Without control u1 and u2 (solid red line): In this scenario, the
number of infected cacti increases rapidly at first and then levels off,
approaching a steady-state at approximately 7 × 105 after around 50
days.
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Figure 6: The evolution of the number of infected cacti and cochineals, both with and
without u1 and u2

• With control u1 and u2 (dashed red line): When control measures
are applied, the number of infected cacti initially grows but peaks at a
lower value compared to the uncontrolled scenario. After reaching the
peak, the number of infected cacti steadily declines, indicating that the
controls effectively reduce the infection levels over time.

This comparison highlights the effectiveness of control measures (u1 and
u2) in managing the spread of the infection among cacti.

The second figure illustrates the evolution of the state variable M , rep-
resenting the number of cochineals, over time (in days). Two scenarios are
depicted:
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• Without control u1 and u2 (solid green line): In this scenario, the
number of cochineals increases rapidly at first and then levels off, ap-
proaching a steady-state at approximately 6×105 after around 30 days.

• With control u1 and u2 (dashed green line): When control measures
are applied, the number of cochineals grows at a much slower rate and
stabilizes at a significantly lower value, suggesting the effectiveness of
the controls in limiting the population of cochineals.

This comparison highlights the impact of control measures (u1 and u2) in
managing the population growth of cochineals.

8 Conclusion

In this paper, we presented a mathematical model, SIM , that describes the
spread of the cochineal insect among cacti. We showed that the overall be-
havior of the model is entirely determined by a critical parameter, the basic
reproduction number ℜ0. Specifically, we demonstrated that the infection-
free equilibrium, E0, is both locally and globally asymptotically stable when
ℜ0 < 1, leading to a gradual decline in the cochineal population over time
and its eventual eradication. Conversely, when ℜ0 > 1, the cochineal popu-
lation increases. Furthermore, we established that the endemic equilibrium,
E∗, is locally and globally asymptotically stable when ℜ0 > 1, ensuring the
persistence of the infestation.

Our numerical simulations validated the analytical findings regarding the
stability of both the infection-free equilibrium E0 and the endemic equilib-
rium E∗. These results provide a solid foundation for the development of an
optimal control strategy to help farmers minimize losses caused by cochineal
infestations in cacti fields.

The model incorporates the dynamics of cochineal infestations and the
effects of control measures. We analyzed the system’s behavior under three
control strategies aimed at managing the cochineal population:

• Control Strategy 1 (cutting and burning infected cacti, u1):
This strategy effectively reduces the number of infected cacti, but the
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decline is slow, and the population stabilizes at a higher level compared
to other strategies. While effective, it requires continuous intervention
over an extended period.

• Control Strategy 2 (insecticide spraying, u2): Insecticide applica-
tion significantly accelerates the reduction of the cochineal population.
The population stabilizes at a lower level more quickly, reflecting the
effectiveness of chemical control in mitigating infestation rates.

• Control Strategy 3 (combined approach, u1 and u2): The com-
bined application of cutting and burning infected cacti along with in-
secticide spraying yields the most substantial reduction in the cochineal
population. This strategy results in a faster decline and a lower steady-
state population, showcasing the synergistic effect of integrating both
physical and chemical control measures.

In conclusion, the combined strategy (Control Strategy 3) proves to be
the most effective in reducing the cochineal population, offering a more com-
prehensive and sustainable solution. However, the choice of the most ap-
propriate strategy depends on factors such as the severity of the infestation,
available resources, and environmental considerations. The SIM model pro-
vides a valuable tool for evaluating these control measures and supporting
decision-making in the management of cochineal infestations on cacti.
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