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Abstract

Investors need to grasp how liquidity affects both risk and return in order to
optimize their portfolio performance. There are three classes of stocks that
accommodate those criteria: Liquid, high-yield, and less-risky. Classifying
stocks help investors build portfolios that align with their risk profiles and
investment goals, in which the model was constructed using the one-versus-
one support vector machines method with a radial basis function kernel.
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601 Multi-objective portfolio optimization using real coded genetic algorithm ...

This model was trained using a combination of the Kompas100 index and
the Indonesian industrial sectors stocks data. Single optimal portfolios
were created using the real coded genetic algorithm based on different sets
of objectives: Maximizing short-term and long-term returns, maximizing
liquidity, and minimizing risk. In conclusion, portfolios with a balance
on all these four investment objectives yielded better results compared to
those focused on partial objectives. Furthermore, our proposed method for
selecting portfolios of top-performing stocks across all criteria outperformed
the approach of choosing top stocks based on a single criterion.

AMS subject classifications (2020): Primary 65K10; Secondary 68T05, 62P05.

Keywords: Genetic algorithm; Liquidity; Multi-objective optimization; One-
versus-one support vector machines; Radial basis functions.

1 Introduction

Portfolio optimization has long been a challenging, lucrative, and promi-
nent research topic in investment management. Achieving the right balance
between risk and return while maintaining liquidity has consistently been
essential for effective portfolio selection [7, 3]. The stock market often over-
looked changes in liquidity which can yield monthly returns (0.7-1.2%) in the
short term [2, 6]. Santoso et al. [25] also suggested that liquidity can act as
an early warning indicator for financial instability of an entity.

By taking all of these factors into account, selecting the top-performing
stocks has always been a crucial task in successful portfolio optimization.
Contemporary research utilized machine learning and artificial intelligence
algorithms. Many researchers had noted that artificial neural network con-
verged slowly. For example, finding the optimal number of neurons in hidden
layers was often tiresome, as it involved trial-and-error [24].

Research by Huang [15] employed genetic algorithm (GA) for feature se-
lection and parameter optimization. Subsequently, support vector regression
(SVR) predicted and identified stocks with high returns serving as surrogates
of actual returns, without considering liquidity. Similarly, Ma, Han, and
Wang [20] predicted return of stocks by combining machine learning models,
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namely random forest (RF) and SVR, and deep learning models, such as
LSTM neural network, deep multilayer perceptron, and convolutional neural
network, with mean-variance (MV) and omega portfolio optimization models.
The result showed that the RF-MV optimization model performed the best.
More recently, studies by Chen et al. [5], Guijarro [10], Jimbo et al. [17],
and Kessaci [19] employed a GA for effective portfolio optimization method.

Gupta, Mehlawat, and Saxena [12] split stocks into three classes: Liquid,
high-yield, and less-risky, by utilizing support vector machine (SVM) whose
parameters were optimized by the grid-search method. Stocks in the dataset
were first filtered for the highly liquid class, then categorized based on high
yield, which indicated high returns. The remaining stocks with lower return
and liquidity were classified as the residual category. After categorizing each
stock into the three different classes, they selected the top-performing stocks
in each class by using GA. The final portfolio consisted of all the portfolios
created from the three classes.

The previous research studies have several limitations. First of all, liq-
uidity was not considered along with risk and return. Secondly, the allocated
number of stocks in the portfolio was known in advance, while in practice,
the number of high-performing stocks was not known beforehand. Third of
all, portfolios were assembled from each class and then combined to form the
final portfolio. This approach may be less effective because the fixed number
of stocks chosen for each portfolio might not represent the top-performing
stocks in the overall selection. Lastly, the weights of the multi-objective
model were not further explored to create several optimal portfolios which
were tailored to different investment goals and risk profiles.

The aim of this paper is to demonstrate an extension of the multi-objective
model conducted by Gupta et al. [11] by demonstrating how an optimized
portfolio is immediately selected from the stocks dataset using real coded ge-
netic algorithm (RCGA), in which it successfully handled economic problems
such as portfolio selection and financial budget allocation [4, 23]. The number
of stocks desired by an investor for a portfolio is fixed, and the quantity of
stocks in each category is adjusted to fit this requirement. One of the classes
may contain fewer stocks than the other two in order to create an optimized
portfolio that enhanced return and liquidity while reducing risk. Further-
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more, we examined different weights to develop various optimal portfolios to
accommodate numerous investment objectives of return, liquidity, and risk.

Our work is explained as follows. Section 2 provides the brief introduction
to the underlying methods employed in this paper. Section 3 describes the
dataset and methodology design to conduct the research. Section 4 presents
the results and analysis of the study, including a comparative analysis with
the methodology put forward by Gupta et al. [11]. Finally, in Section 5,
the conclusions are presented along with suggestions to improve for further
research.

2 Overview

2.1 Support vector machines

The SVM method is a machine learning technique based on statistical learn-
ing theory, applying structural risk minimization to minimize model errors
in generalizing data patterns [1]. SVM divides data into two classes, +1 and
−1, using a decision boundary known as a hyperplane. Data points closest
to the hyperplane that influence its orientation are called support vectors,
and the distance between the support vectors is known as the margin. The
hyperplane is a line in two-dimensional data, while it being a plane in three-
dimensional data.

The primary goal of SVM is to find the optimal hyperplane to avoid
misclassification. SVM seeks to maximize the margin so that the model has
a large distance between the hyperplane and the support vectors. A model
that perfectly separates the data without any data points within the margin
and without misclassification errors is called a hard margin SVM. The SVM
hyperplane optimization problem is

min
w,b

1

2
||w||2

subject to yi(w · xi + b)− 1 ≥ 0,i = 1, 2, . . . ,m.

This concept is extended to soft margin SVM problems, where data cannot
be perfectly separated by a hyperplane. The main objective is to find a
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hyperplane that minimizes errors as much as possible [9]. To achieve this
objective, slack variables, which allow data points to lie within the margin
and account for some classification errors, are referred to as margin errors.
The penalty, C, is used to control the model’s error in classifying the data.

The SVM method was initially designed for binary classification prob-
lems, meaning it can only separate data into two classes. In cases where
there are more than two classes, an approach to extend SVM is required. In
this study, the multiclass SVM method used is one-versus-one (OVO) SVM,
because OVO specifically addresses the differences between each class and
has shown good results in previous research [14]. Moreover, its effectiveness
has been proven in various economic issues such as stock selection and credit
assessment [8, 16]. Suppose that a dataset has k classes. Then one-versus-one
support vector machines (OVO SVM) will form k

2 (k− 1) hyperplanes, where
each hyperplane is built based on training data from a pair of classes.

Furthermore, for nonlinear data problems, SVM can utilize kernel func-
tions to transform data into higher dimensions and construct non-linear hy-
perplanes. Some commonly used kernel functions in SVM are polynomial,
radial basis function (RBF), and sigmoid. The kernel used in this study is the
RBF kernel, as suggested by Yu, Wang, and Lai [28]. This decision is based
on the consideration that the sigmoid kernel behaves similarly to the RBF
kernel, while the polynomial kernel requires more time in the SVM training
phase. SVM models with RBF kernels have also been proven to perform
better than other kernels [11].

2.2 Real coded genetic algorithm

GAs are optimization methods inspired by the principles of natural selection
and genetics in biological systems, used to find solutions for problems with
infinitely many possible solutions [26]. Essentially, GA represent solutions
as chromosomes composed of a series of genes, where each gene represents
a variable of the proposed solution. The value of each gene is called an
allele. In the search for the optimal solution, GAs operate with a set of
chromosomes known as a population. The number of chromosomes in a
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population (popsize) is a GA parameter that must be defined before running
the algorithm. In this study, we utilize the RCGA, where alleles are real
numbers.

To optimize the solution to an objective function f(x) with q variables,
RCGA first constructs a population consisting of n chromosomes. Each chro-
mosome consists of q genes, with each allele assigned a random value. The
quality of a chromosome in solving the given problem is evaluated using a fit-
ness value, which indicates how well the chromosome addresses the problem.
The primary goal of RCGA is to find the chromosome with the highest fitness
value [21]. The initial population that is randomly generated, will go through
a series of genetic operators to create a new, more optimal generation [13].

The genetic operations include elitism, selection to choose the best chro-
mosomes as parent, crossover to produce offspring, and mutation to update
genetic information. After going through a series of evolutionary processes, a
new generation is formed, the fitness values are recalculated, and the RCGA
cycle continues until the predetermined number of generations is reached.
The optimal solution to the objective function is the chromosome with the
best fitness value.

3 Data collection and problem formulation

3.1 Data collection

Based on research conducted by Gupta, Mehlawat, and Saxena [12], there
are three classes that mainly represent the characteristics of each stock. De-
scription of each class is as follows.

1. Liquid Class
Stocks in this class have high liquidity but tend to have lower returns
compared to the high-yield class.

2. High-yield Class
This class includes stocks with high risk and high returns, thus having
a high standard deviation. However, liquidity in this class is low.
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3. Less-risky Class
Stocks in this class do not fall into either the liquid or high-yield cate-
gories.

Thus, the information needed to build the OVO SVM model included
long-term returns, risk, and liquidity. Long-term returns were measured
through the average weekly returns over the past year. The choice of weekly
returns, as opposed to daily or monthly, was based on considerations to
avoid excessive daily fluctuations and minimized the risk of losing sensitivity
to market changes. The risk of each stock was analyzed using the standard
deviation of weekly returns over the past year. In the context of risk analysis
in stock investment, the standard deviation of returns provided an overview
of the distribution of possible returns over time. Next, stock liquidity was
measured using the turnover rate to analyze the ability to buy or sell a stock
without incurring significant losses [11]. The turnover rate was defined as
the ratio between the average number of shares traded and the number of
shares held by the public [27].

To train and evaluate the classification model, it was essential to have
a large and representative sample of stocks to reflect the investment poten-
tial in the Indonesian stock market. This dataset was compiled from stocks
listed in the Kompas100 index, along with the top ten performing stocks
from each sectoral index in Indonesia, covering the period between January
1 and December 31, 2023. The stocks in the Kompas100 index are chosen for
their high liquidity and market capitalization, while sectoral stocks represent
diverse investment potentials in Indonesia.

The stocks used in this study were those with at least one year of avail-
ability and high quality. In the data processing stage, ELTY, MYRX, BHIT,
BNBR, CASA, BLTA, and TAXI stocks were excluded from the analysis due
to many rows of data with zero trading volume and returns. The dataset used
in this research consisted of 137 selected stocks, consisting of sectoral stock
data in Table 1 and stocks from the Kompas100 index. This dataset was then
randomly divided into two sets using the train_test_split module from the
sklearn.model_selection library in Python. The first set was the training set,
which comprised 94 stocks from both the Kompas100 and sectoral indexes.
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Table 1: Sectoral stocks excluding stocks in Kompas100 index.

Sectors Stock Ticker
Energy BYAN, DSSA, ITMG, TCPI
Industry IMPC, ARNA, HEXA, MLIA, KBLI, SKRN
Technology DCII, BELI, MTDL, MCAS, NFCX, WIRG
Property MPRO, LPKR, MKPI, RISE
Health CARE, PRDA, TSCP, SAME, BMHS
Finance SMMA, MEGA, DNET
Transportation TMAS, BIRD, SDMR, GIAA, HATM, ELPI, IMJS
Non-cyclic PANI, HMSP, CMRY
Cyclic MSIN, FILM, KPIG, BOGA

The second set, serving as the test set, consisted of the remaining 43 stocks
to form a portfolio.

The first dataset was labeled using the third quartile of each criterion to
avoid subjectivity in determining the high and low values of an evaluation
metric. The choice of using quartiles is adjusted according to the characteris-
tics and distribution of the data. Stocks with liquidity above the third quar-
tile were first included in the liquid class with label 0, whereas the remaining
stocks with risk above the third quartile were included in the high-yield class
with label 1. Stocks that had not been labeled were included in the less-risky
class. Seventy stocks from the first dataset that already had labels were then
randomly selected to be training dataset, while the remaining 24 stocks were
the validation dataset.

3.2 Multi-objective model

In this study, an optimal multi-criteria portfolio is constructed using a multi-
objective model approach. This approach allows investors to consider multi-
ple criteria simultaneously in their investment decision-making process with-
out having to sacrifice one criterion for another [11].
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The multi-objective model is based on the assumption that an investor
intends to select h stocks from a set of 43 stocks in the testing dataset to
construct a portfolio with minimal risk while maximizing short-term and
long-term returns and ensuring high liquidity, using the entire available cap-
ital without engaging in short-selling. Let Ri,j denote the return for the ith
week of the jth stock. The short-term return of the jth stock, represented
as R12

j , is calculated based on the average of weekly returns over the last 12
weeks, while the long-term return of the jth stock, namely R52

j , is computed
based on the average weekly return over the past year. Finally, the liquid-
ity of the jth stock, denoted as Lj , is calculated as the ratio of the average
number of shares traded to the number of shares held by the public.

Assume that there are n stocks in the dataset, that h is the number of
stocks in a portfolio, that xj is the proportion of funds invested in stock j

relative to the total funds, that zj is a binary variable indicating whether
stock j is selected (1) or not (0), and that lj and uj are the minimum and
maximum percentage of funds invested in stock j, respectively. With the
assumption of inability to short-sell, the multi-objective model is defined as
follows:

max f1(x) =

n∑
j=1

R12
j xj , (1)

max f2(x) =

n∑
j=1

R52
j xj , (2)

min f3(x) =

52∑
i=1

|
∑n

j=1(Ri,j −R52
j )xj |+

∑n
j=1(R

52
j −Ri,j)xj

104
, (3)

max f4(x) =

n∑
j=1

Ljxj , (4)

subject to
n∑

j=1

xj = 1,

n∑
j=1

zj = h, xj ⩽ ujzj , xj ⩾ ljzj , uj ⩾ 0, zj ∈ {0, 1},

for j = 1, 2, . . . , n.

This multi-objective model is used to construct a portfolio considering
four different criteria, resulting in four objective functions that need to be
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optimized according to the investor’s preferences. The first objective function
(1) aims to maximize short-term returns, which in turn provides an overview
of the stock’s performance in the short term and is used to evaluate oppor-
tunities for quick gains. The model also aims to maximize long-term returns
through the second objective function (2), which overviews the stock’s per-
formance over a longer period and reflects the stability and growth of the
investment.

To avoid the risks arising from stock price fluctuations, the third objective
function (3), which utilizes mean semi-absolute deviation, is built with the
aim of minimizing risk. In this model, risk considers the difference between
the actual weekly returns and the expected long-term returns over a one-year
evaluation period. The final objective function (4) aims to maximize liquidity.
Analyzing liquidity in a portfolio is important for investors to get an idea of
the ability to trade stocks without incurring significant losses. The portfolio
is constructed by allocating all investment funds into the selected stocks. To
ensure sufficient stock diversification and avoiding inefficient investments, h
stocks are selected and indicated by binary variables. Furthermore, upper and
lower investment limits were set to restrict the proportion of funds allocated
to a single stock.

3.3 Constructing multi-criteria portfolio using RCGA

To simulate the RCGA method, we used the Python software. The first step
is population initialization, where each chromosome represents a portfolio.
Each gene represents a single stock, while the allele on the gene represents
the proportion of that stock in the portfolio. Suppose that an investor wants
to form a portfolio based on data containing n stocks. In this study, the
number of stocks in the portfolio (h) is randomly determined during the
initialization stage, and it is assumed that l and u are the minimum and
maximum percentage of the funds invested in each stock, respectively.

First, the investor needs to determine the number of chromosomes in the
population (popsize) as a limit to the solution search space. Each chromosome
constructed has n genes, where the first gene of a chromosome represents the
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first stock in the data table, the second gene represents the second stock, and
so on. Initially, every gene in each chromosome is assigned an allele value
of zero. The population initialization stage in this study was the following
Algorithm 1.

Algorithm 1 Population initialization
Input: number of stocks in the population (popsize), number of stocks in
the data (n), lower investment bound (l), and upper investment bound (u).

1: Initialize the population as an empty array to be filled with chromosomes.
2: For each chromosome in popsize, do:

• Randomly determine the number of stocks (h) between zero and n.

• Initialize a chromosome as an array of length n with zero values.

• Initialize selected_gens as a list of h stocks chosen randomly, en-
suring no stock is selected more than once.

• For each selected gene, initialize the allele randomly between l and
u.

• Add the new chromosome to the population.

Output: Initial Population.

To evaluate the quality of the formed chromosomes, RCGA enters the
evaluation stage. In the context of portfolio formation, the evaluation func-
tion is used to assess how well a portfolio meets the established investment
criteria. To ensure that the generated chromosomes not exceeding the avail-
able capital budget, a penalty function P is applied. This function reduces
the fitness value of chromosomes that exceed the budget limit. Chromosomes
that produce portfolios with costs exceeding the limit will have lower fitness
values. Let xj be the proportion of stock j. The fifth objective function is

f5(x) =

∣∣∣∣∣∣
n∑

j=1

xj − 1

∣∣∣∣∣∣ ,
so the penalty function P is defined as
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P =

 104 · f5(x), if f5(x) ⩾ 10−5,

0, if f5(x) < 10−5.

The fitness function for chromosome k, with k = 1, 2, . . . , popsize with
popsize being the number of chromosomes in one population, is defined as

fitk = w1 · f1(x) + w2 · f2(x)− w3 · f3(x) + w4 · f4(x)− P, (5)

where w1, w2, w3, and w4 are the weights of the objective functions with∑4
i=1 wi = 1 [11]. The weights assigned to the objective functions indicate

their importance in building the portfolio. High fitness value of chromosome
k indicates how well the solution it provided performs relative to the objective
functions. Algorithm 2 simulated the fitness evaluation stage in this study.

Algorithm 2 Fitness evaluation
Input: population, stock risk, long return, short return, liquidity, weights
w1, w2, w3, w4.

1: Initialize fitness_results as an empty array to be filled with the fitness
values of each chromosome.

2: For each chromosome in the population, do:

• Calculate short_return_value using equation (1).

• Calculate return_value using equation (2).

• Calculate risk using equation (3).

• Calculate liquidity_value using equation (4).

• Calculate penalty as the absolute value of the difference between the
total investment allocation and one.

• If penalty > 10−5, then penalty is calculated as 104 × penalty, oth-
erwise penalty = 0.

• Calculate fitness_value using (5).

• Add the fitness value to fitness_results.

Output: Fitness evaluation results for each chromosome in the population.
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The chromosome with the highest fitness value represents the portfolio
with the stock combination that best aligns with the investor’s preferences
to maximize return and liquidity while minimizing risk. This chromosome is
selected as the elite and is directly passed on to the next generation without
undergoing evolutionary processes such as crossover and mutation.

Next, the roulette wheel selection operation is performed to select candi-
date portfolios that best match the investor’s preferences as parents. This
method works by assigning a selection probability to each chromosome based
on its fitness value. Before calculating the selection probabilities, the fitness
values of each chromosome are normalized. Normalization ensures that all
fitness values fall within a positive range, as fitness values can have both
positive and negative ranges. This is done by subtracting the smallest fit-
ness value in the population from the fitness value of each chromosome, then
adding a small value such as 10−10 to avoid division by zero. The higher the
fitness value of a chromosome, the more likely it is to be selected as a parent.
The selection stage of RCGA in this study is shown in Algorithm 3.

Algorithm 3 Roulette wheel selection
Input: population, fitness values.

1: initialize min_fitness with the smallest value from all fitness values in
the population.

2: calculate normalized_fitness by subtracting min_fitness from the
fitness_values and adding 10−10.

3: calculate total_fitness by summing all values in normalized_fitness.
4: calculate probabilities for each chromosome by dividing

normalized_fitness by total_fitness.
5: selected_index is chosen randomly from the population using the previ-

ously calculated probabilities.

Output: index of the selected chromosome.

The chromosomes selected as parents through the roulette wheel selection
operation is paired to create new offspring that combine characteristics from
both parents. The offspring are generated using the crossover operation,
which swaps portions of genetic information between parent chromosomes.
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The next step in this research is Algorithm 4, which denotes the crossover
stage of RCGA.

Algorithm 4 Crossover
Input: parent1, parent2, crossover_rate (pc).

1: Initialize rc randomly with a value between zero and one.
2: If rc > pc then parent1 = child1 and parent2 = child2, if rc < pc proceed

with:

• Initialize crossover point (Cp) with a value between one and the
length of parent1.

• child1 is created by combining the initial part of parent1 with the
latter part of parent2 after Cp.

• child2 is created by combining the initial part of parent2 with the
latter part of parent1 after Cp.

Output: child1 and child2.

The newly formed offspring through the crossover operation will have
some of their information updated using the mutation operation, which is
performed using Algorithm 5. Next, RCGA will continuously perform the
stages of evaluation, selection, crossover, and mutation until the generation
limit set by the investor is reached. The chromosome with the best fitness
value from the final generation is considered the portfolio that best aligns
with the investor’s preferences.

4 Result and analysis

The initial phase of developing the OVO SVM model with the RBF kernel
was conducted in Python using the SVC module to build the classification
model and the OVO classifier module to handle multi-class problems with
an OVO approach. Both modules are sourced from the scikit-learn library.
The OVO SVM model has two parameters: the penalty parameter C, which
controls the classification error, and the parameter γ, which determines the
maximum distance of data points that influence the hyperplane. In the initial
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Algorithm 5 Mutation
Input: chromosome, mutation_rate (pm), l, u

1: Initialize mutated_chromosome as a copy of the original chromosome.
2: Initialize rm randomly with a value between zero and one.
3: If rm < pm then proceed with:

• Determine num_mutations randomly with a value between one and
the length of the chromosome.

• Initialize mutation_indices as a list of chromosome (gene) indices
randomly determined up to num_mutations.

• For each selected gene, if the allele value is not zero, the allele value
is randomly changed between l and u, while if the allele value is
zero, the allele value will not be changed.

Output: mutated_chromosome

model, where the parameters C and γ were not explicitly set, the accuracy
was only 0.54. The model struggled to recognize data belonging to the high-
yield class, as indicated by its very low precision and accuracy for that class.

Parameter optimization was performed to find a combination that could
enhance the model’s performance using grid-search and GA-SVM. The grid-
search method revealed that the best parameter combination for the com-
bined data was C = 10 and γ = 0.1. The OVO SVM model produced with
these parameters achieved an accuracy of 0.75 and showed significant over-
all performance improvement, though it still faced challenges with high-yield
class data. The results from the GA-SVM method indicated that the best
parameter combination for the data used was C = 403.4645 and γ = 0.1242,
with an accuracy of 0.88. Based on the balanced evaluation metrics across
each class, this model was the most optimal and thus applied to the test stock
data to construct the portfolio.

The OVO SVM model developed using the GA-SVM method classified
15 stocks into the liquid and less-risky classes. Additionally, 13 stocks were
classified into the high-yield class. Table 2 presents the average values of
each criterion for each class. The liquid class consisted of stocks with high
liquidity, as reflected by an average liquidity of 3.1147% for this class. This
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615 Multi-objective portfolio optimization using real coded genetic algorithm ...

classification indicated that a significant portion of the stocks in the test
dataset has adequate liquidity. The high-yield class, as the name suggested,
had the highest average risk of 7.2721% with a long-term average return of
0.8337%, signaling strong investment potential. On the other hand, the less-
risky class had an average risk of 3.7069%, which was lower compared to the
other two classes, though it did not offer high returns.

Table 2: Average criterion for each class.

Class Long return Risk Liquidity
Liquid 0.180615 5.247010 3.114714
High yield 0.833655 7.272134 1.897383
Less risky −0.422793 3.706849 1.901513

From the classified testing dataset, the stocks that best align with the
investor’s preferences are selected to form a portfolio using a multi-objective
model solved by RCGA. During the search process, the population size (pop-
size) is set at 50, and the number of generations is limited to 1,000 to con-
strain the search space for the optimal solution. To ensure stock diversifi-
cation, a crossover probability of 0.3 and a mutation probability of 0.2 are
specified. Additionally, the minimum and maximum percentage of funds in-
vested in a single stock are set between 0 and 0.2 inclusive. The weights for
each objective function are adjusted according to the investor’s preferences
for short-term return, long-term return, risk, and liquidity criteria.

In this study, nine portfolios were constructed to understand the impact
of each criterion on portfolio performance. These nine portfolios were built
under several scenarios, such as balancing all four criteria, focusing on a single
criterion, and building portfolios formed for extreme cases by ignoring one
criterion. Portfolio 1 is constructed under the assumption that the investor
considers all criteria equally important, thus the weights for the objective
functions in the multi-objective model are set equally at 0.25.

Out of the total 43 stocks in the combined testing data, RCGA allocated
investment funds into 11 selected stocks, comprising two stocks from the
liquid class, six stocks from the high-yield class, and three stocks from the
less-risky class. The distribution of investment funds in Portfolio 1 is shown
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in Figure 1. The largest fund allocation is given to the TPIA stock from the
high-yield class, while the smallest allocation is given to the HEXA stock from
the liquid class. The expected weekly return for this portfolio is relatively
balanced for both the long term and short term, at 0.6683% and 0.7867%,
respectively. Furthermore, Portfolio 1 has risk level of 67.78% and liquidity
level of 1.81%.

Figure 1: Stocks allocation in Portfolio 1.

Figure 2: Plot of short return by risk of all optimal portfolios.

To examine the relationship between risk and return, both in the short-
term and long-term, steps similar to those in the previous analysis are taken.
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Portfolio 2 is built as a modification of equation (5). In this construction,
the first objective function f1 is set to be a constraint, that is, f1(x) =

rsr, with rsr ∈ {0.01, 0.02, 0.03, . . . , 0.80}, while the other objective functions
still remained the same. Thus, the weights of w2, w3, and w4 are equal to 1

3 .
The following is the fitness function of Portfolio 2

fitk = w2 · f2(x)− w3 · f3(x) + w4 · f4(x)− P1,

where P1 = P + Psr, with Psr = |f1(x)− rsr| · 104.
Figure 2 illustrates the relationship between risk and short-term return,

obtained by first determining the short-term return target and then con-
structing a portfolio that balances all other criteria. These portfolios are
generated by first setting the short-term return target, after which the RCGA
is executed to maximize liquidity and long-term return while minimizing risk
in a balanced manner.

Portfolio 1 has the highest short-term return with medium risk, similar
to Portfolio 2 which is also set with equal weights for all objective functions.
This means that high risk does not guarantee high short-term return. The
red circles represent portfolios with higher risk than Portfolio 1 but with
lower short-term returns. There is one green circle labeled Portfolio 2 with
a relatively high short-term return expectation and lower risk compared to
Portfolio 1. Figure 3 provides an illustration of the relationship between
long-term return and risk. The mapped portfolios do not form a diagonal
line because Portfolio 1 has a higher long-term return expectation. Both
Figures 2 and 3 show that Portfolio 1 is similarly optimal.

Portfolio 1 was constructed under the assumption that investors balance
all four criteria, but in reality, some investors tend to lean more heavily
towards one criterion over others. Table 3 summarizes the weights used to
build Portfolios 3, 4, and 5. Portfolio 3 was constructed with a primary
focus on return, assuming that the investor readily takes on high risk or
low liquidity. Portfolio 4 was built with an emphasis on risk, where the
investor seeks stability while disregarding return and liquidity. Portfolio 5
was designed to seek out stocks with high liquidity.

Additionally, portfolios are created for extreme scenarios where the in-
vestor intentionally ignores one criterion in the portfolio construction process.
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Figure 3: Plot of long return against risk of all optimal portfolios.

Table 3: Weights of Portfolios 3, 4, and 5.

Portfolio w1 w2 w3 w4

3 0.3 0.4 0.15 0.15

4 0.15 0.15 0.6 0.1

5 0.1 0.1 0.1 0.7

This approach is taken to understand the impact of a particular criterion on
portfolio performance. Portfolio 6 was formed under the assumption that
the investor does not consider risk at all. Portfolio 7 is designed for investors
who seek quick gains, while disregarding long-term returns. Portfolio 8 is
constructed by omitting short-term return considerations entirely. The final
extreme case is Portfolio 9, where the investor does not consider liquidity
during the portfolio construction process. The weights used to build these
three portfolios are summarized in Table 4.

Table 4: Weights of Portfolios 6, 7, 8, and 9.

Portfolio w1 w2 w3 w4

6 0.4 0.4 0 0.2

7 0.8 0 0.1 0.1

8 0 0.8 0.1 0.1

9 0.3 0.3 0.4 0
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In Figure 4, it is observed that the portfolio with the highest risk is Port-
folio 6, which was constructed by ignoring the risk criterion. Although this
portfolio does have the highest expected long-term return, there are several
other alternative portfolios that offer higher short-term return expectations
with lower risk levels. Portfolio 9, which disregards liquidity considerations,
is expected to have a negative short-term return and a low long-term return,
though it does feature low risk.

For comparison purposes, the portfolio selection method proposed by
Gupta et al. [11] was applied. The dataset consisting of 43 testing stocks
was categorized into three distinct portfolios by GA-SVM: one with 15 liquid
stocks, another with 13 high-yield stocks, and the final one containing 15
less-risky stocks. The RCGA method was used for each portfolio to identify
the top-performing stocks, applying weights that prioritized specific criteria,
as detailed in Table 5. Portfolio A, which emphasized liquidity, selected 9
out of the 15 liquid stocks. Portfolio B, focused on returns, included 12 of
the 13 high-yield stocks. Lastly, Portfolio C, which prioritized risk, chose 10
of the 15 less-risky stocks.

Table 5: Weights of Portfolios A, B, and C.

Portfolio w1 w2 w3 w4

A 0.2 0.25 0.2 0.35

B 0.3 0.35 0.2 0.15

C 0.17 0.23 0.45 0.15

Figure 4: Plot of return compared to risk for all optimal portfolios.
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Figure 4 evaluates the performance of all portfolios, including the nine
portfolios using our proposed methodology and the three portfolios based
on the methodology developed by Gupta et al. [11]. Similar to the previous
analysis, Portfolio 1, which is built by balancing all the criteria, has the high-
est short-term return expectation with risk level above 50%. This portfolio
also has a high long-term return expectation, making it a good choice for
risk-taker investors. For moderate investors, forming a portfolio by setting a
short-term return target and balancing all criteria, as in Portfolio 2, is a good
alternative. Furthermore, for conventional investors who avoid high risk, a
portfolio could be constructed by ignoring the long-term return criterion, as
in Portfolio 7. While Portfolio A has higher long-term return and lower risk
compared to Portfolios 1 and 2, its projected short-term return indicates a
negative outcome which is lower than Portfolio 7. Portfolio B exhibits a
lower long-term return, but a higher short-term return compared to Portfolio
8. Nonetheless, its short-term return is still less than that of Portfolio 2,
which also carries a lower risk. Portfolio C is not advisable, as both its short-
term and long-term returns are expected to be negative. The other portfolios
are considered suboptimal due to the availability of alternative portfolios that
offer higher returns for similar risk levels.

5 Conclusions

By classifying Indonesian stocks into three classes, it is concluded that the
OVO SVM classification model optimized using the GA-SVM method is bet-
ter than the model optimized using the grid-search method. The OVO SVM
model classifies 13 stocks into the high-yield class, reflecting the growth po-
tential and opportunities for satisfactory returns in the Indonesian stock
market. The Indonesian stock market also shows adequate liquidity, with
15 stocks in the liquid class. Additionally, there are 15 stocks with minimal
risk in the less-risky class, providing options for investors. Portfolios that
balance the four investment criteria have high gains in both short-term and
long-term. Investors aiming to boost returns might consider adding more
high-yield stocks, whereas those wanting to lower risk could invest in stocks
from a less-risky category. It is also observed that by including liquidity cri-
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teria, the long-term return performance is enhanced, as shown in Portfolio
A. This indicates that adding the liquidity criteria is crucial for optimizing
portfolio performance over the long term.

The portfolios in this study were constructed using RCGA to solve the
multi-objective model. One characteristic of RCGA is the population ini-
tiation stage, which involves randomly generating chromosomes and their
allele values, leading to different portfolio compositions each time RCGA is
run. This results in inconsistent outcomes, although the fitness values ob-
tained tend to be around the same range. The computational time of RCGA
also depends on the number of chromosomes in the population, the number
of generations, and the complexity of the fitness function. Future research
could explore exact optimization approaches, such as CPLEX suggested by
Mutunge and Haugland [22], Jin, Qu, and Atkin [18], and Zhang [29, 30, 31]
or data envelopment analysis as suggested by Zhou et al. [32, 33], to solve
multi-objective problems and achieve more consistent solutions.
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