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Abstract

In this study, we propose a novel method for computing both primal and
dual filters for nonstationary biorthogonal wavelets, offering an advanced
approach to wavelet filter design. The key challenge in image compres-
sion that this study addresses is the inefficiency of conventional station-
ary wavelets, which rely on fixed filter banks that do not adapt to local
variations in an image. This limitation results in suboptimal compression
performance, particularly for images with varying statistical properties and
localized features. To address this, we use a nonstationary biorthogonal fil-
ter banks, which modify basis functions at different scaling levels, leading
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705 Numerical design of nonstationary wavelets: Enhanced filter design ...

to improved frequency resolution, signal representation, and compression
efficiency.

Our technique employs cardinal Chebyshev B-splines to derive explicit
formulas for the primal filters, enabling precise calculation of filter coeffi-
cients essential for wavelet transforms. Additionally, we enforce normality
and biorthogonality conditions within nonstationary multiresolution anal-
ysis to maintain the relationship between primal and dual wavelet filters at
each scaling level. This structured approach allows for explicit formulation
of the dual filters while ensuring accurate decomposition and reconstruc-
tion. Experimental results confirm that the proposed method improves
compression efficiency over conventional Daubechies biorthogonal filters,
increasing the number of zero coefficients in compressed images. This leads
to better visual quality and reduced storage requirements while maintaining
computational efficiency. Such improvements are particularly beneficial in
applications requiring high-fidelity image reconstruction, such as medical
imaging, satellite data processing, and video compression. MATLAB sim-
ulations validate the effectiveness of the approach, making it a promising
alternative for image processing and data compression applications.

AMS subject classifications (2020): Primary 42C40; Secondary 65T60, 42C10.

Keywords: Cardinal Chebyshev B-splines; Biorthogonality; Wavelets; Im-
age compression.

1 Introduction

Biorthogonal wavelets form a distinct class of wavelets that, unlike orthogo-
nal wavelets [6, 4], employ separate functions for analysis and reconstruction.
This fundamental distinction allows for greater flexibility in signal represen-
tation and improved frequency resolution, making them particularly use-
ful in various signal processing applications. Key properties of biorthogonal
wavelets include:

• Symmetry: They can be designed with varying degrees of symmetry,
which is beneficial for specific applications.
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• Smoothness: Greater smoothness corresponds to more vanishing mo-
ments, enabling better approximations of signals with smooth varia-
tions.

• Compact Support: Their scaling and wavelet functions are nonzero
only over a finite interval, ensuring computational efficiency in fast
algorithms like the discrete wavelet transform.

Nonstationary biorthogonal wavelets extend these advantages by adap-
tively adjusting their basis functions at each scaling level, based on the sig-
nal’s properties. This adaptability enhances their ability to represent lo-
calized features or varying statistical properties, making them particularly
effective in image processing, audio signal processing, and biomedical sig-
nal analysis. In contrast, stationary biorthogonal wavelets rely on a fixed
set of basis functions, which may not be optimal for signals with complex
characteristics.

A key advancement in this field is the use of cardinal Chebyshev B-splines
[8, 7, 2] as a basis for constructing nonstationary biorthogonal wavelets.
These splines offer excellent time-frequency localization properties, making
them highly effective for analyzing nonstationary signals. Previous stud-
ies have explored their applications in wavelet construction. For example,
Lee and Yoon [5] introduced a lifting scheme-based algorithm that enhances
wavelet approximation properties and computational efficiency. Similarly,
Vonesch, Blu, and Unser [10] developed a family of generalized Daubechies
wavelets [3] incorporating Chebyshev B-splines, and Boxing. Zhang et al.
[11] proposed a construction method based on exponential pseudo-splines.

While significant progress has been made, current methods for designing
nonstationary biorthogonal wavelets still face several challenges, particularly
in computational efficiency and systematic filter design. Many approaches
rely on iterative or heuristic techniques, which can be computationally in-
tensive and lack a structured framework. Additionally, solving the under-
lying systems of equations during wavelet construction remains a compu-
tational bottleneck, limiting practical applications in real-time or resource-
constrained environments.
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To address these challenges, this paper introduces a novel approach that
systematically derives a linear system based on the normality and biorthog-
onality conditions of nonstationary multiresolution analysis. Our key contri-
butions include:

• Novel Design Method: We propose a new method for constructing
nonstationary biorthogonal wavelets using fundamental conditions from
multiresolution analysis [9].

• Efficient Numerical Solution: By formulating a linear system, we
enable the use of direct numerical methods such as Gauss–Jordan elim-
ination and LU factorization, improving computational efficiency.

• Explicit Filter Formulation: Our approach provides explicit formu-
las for filters and dual filters at all scaling levels, ensuring a systematic
and practical wavelet design process.

• Comprehensive Framework: We integrate theoretical insights with
practical applications, making our method accessible to both researchers
and practitioners in signal processing.

The remainder of this paper is structured as follows: Section 2 provides
an overview of nonstationary biorthogonal multiresolution analysis, includ-
ing key definitions and properties. Section 3 explores the use of cardinal
Chebyshev B-splines in constructing nonstationary biorthogonal wavelets.
By the conclusion, readers will gain a comprehensive understanding of the
theory, practical applications, and our novel design method for nonstationary
biorthogonal wavelets.

2 Definitions and properties of biorthogonal
nonstationary wavelets

Let (Vj)j≤j0 and (
∼
Vj)j≤j0 be a pair of NSRMAs [1] generated by a pair of

dual scaling functions φj and ∼
φj , j ≤ j0, such that

⟨φj ,
∼
φj(.− k)⟩ = δ0,k, k ∈ Z. (1)
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The concept of biorthogonal wavelets is to find complementary spaces Wj

and
∼
Wj satisfying

Vj+1 = Vj +Wj , and
∼
Vj+1 =

∼
Vj +

∼
Wj , (2)

Wj⊥
∼
Vj , and

∼
Wj⊥Vj . (3)

The nesting property for the subspaces Vj and
∼
Vj , implies the existence of

filters hj = (hj [k])k∈Z ∈ ℓ2(Z),
∼
hj = (

∼
hj [k])k∈Z ∈ ℓ2(Z), j ≤ j0, which satisfy

φj(t) =
√
2
∑
k∈Z

hj [k]φj+1(2t− k),
∼
φj(t) =

√
2
∑
k∈Z

∼
hj [k]

∼
φj+1(2t− k). (4)

By the Fourier transform, we have

φ̂j(ω) = Hj(e
iω
2 )φ̂j+1

(ω
2

)
, (5)

∼̂
φj(ω) =

∼
Hj(e

iω
2 )

∼̂
φj+1

(ω
2

)
, (6)

with

Hj(e
iω) =

1√
2

∑
k∈Z

hj [k]e
−ikω, (7)

∼
Hj(e

iω) =
1√
2

∑
k∈Z

∼
hj [k]e

−ikω. (8)

We assume that z = e−iω.

Proposition 1. The filters Hj and
∼
Hj associated for φj and ∼

φj satisfy the
scaling condition:

Hj(z)
∼
Hj(z

−1) +Hj(−z)
∼
Hj(−z−1) = 1. (9)

For all k ∈ Z, the preceding condition is equivalent to∑
ℓ∈Z

∼
hj [ℓ]hj [ℓ− 2k] = δk,0. (10)

Definition 1. The biorthogonal wavelet functions are given as follows:

ψj(t) =
√
2
∑
k∈Z

gj [k]φj+1(2t− k),
∼
ψj(t) =

√
2
∑
k∈Z

∼
gj [k]

∼
φj+1(2t− k),(11)

such that
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∼
gj [k] = (−1)khj [1− k], gj [k] = (−1)k

∼
hj [1− k], (12)

where

gj = (gj [k])k∈Z,
∼
gj = (

∼
gj [k])k∈Z, (13)

are the scaling filters associated for ψj and
∼
ψj , respectively.

For all k ∈ Z, we have∑
k∈Z

hj [k] =
√
2,

∑
k∈Z

∼
hj [k] =

√
2, (14)∑

k∈Z

gj [k] = 0,
∑
k∈Z

∼
gj [k] = 0. (15)

As in the stationary case for a function f ∈ L2(R), a wavelet decomposition
at level j0 can be introduced, as follows:

f =
∑
k∈Z

aj0 [k]φj0,k +
∑
j≤j0

∑
k∈Z

dj [k]ψj,k, (16)

where

aj0 [k] = ⟨f,∼φj0,k⟩, dj [k] = ⟨f,
∼
ψj,k⟩, (17)

and

∼
φj,k(t) = 2j/2

∼
φj(2

jt− k),
∼
ψj,k(t) = 2j/2

∼
ψj(2

jt− k). (18)

3 Construction of scaling filters and dual scaling filters

The function we choose as a scaling function is the cardinal Chebyshev B-
splines. Let us first recall the definition of the exponential Chebyshev B-
splines mentioned in [1]. Let λ = (λ1, . . . , λn) be a complex vector.

Definition 2. Suppose that α ∈ R. The function N1
α is defined by

N1
α(t) = eαtχ[0,1](t), t ∈ R. (19)

Function Nn
λ is defined by convolution as follows:
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Nn
λ = N1

λ1
∗ · · · ∗N1

λn
. (20)

The function Nn
2−jλ(t) can generate a Riesz basis only if the vector λ does

not have any distinct purely imaginary components λi and λj , where the
difference between them equals i2πk for some integer k.

For n = 1,

N1
α(t) = N1

α
2
(2t) + e

α
2 N1

α
2
(2t− 1).

By the Fourier transform, we have

N̂1
α(ω) =

(
1 + e

α−iω
2

2

)
N̂1

α
2

(ω
2

)
.

In the following, we assume that α ∈ [0, 10] \ {2π} with 2π ≈ 6.2831. This
restriction ensures that the denominator remains nonzero for all the filters of
the primal and dual functions.

3.1 Second order cardinal Chebyshev B-splines

Let λ = (λ1, λ2) = (−iα, iα). We assume that

φj(t) = N2
2−jλ(t). (21)

Then

φ̂j(ω)

= N̂1
2−jλ1

(ω)N̂1
2−jλ2

(ω)

=
1

4

(
1 + (e2

−(j+1)λ1 + e2
−(j+1)λ2)e

−iω
2 + e2

−(j+1)(λ1+λ2)e−iω
)

̂N2
2−(j+1)λ

(ω
2

)
= Hj

(ω
2

)
φ̂j+1

(ω
2

)
.

In accordance with (5), we obtain

hj [0] = hj [2] =

√
2

4
, hj [1] =

2
√
2 cos(2−(j+1)α)

4
.
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However, these coefficients are not normalized. To normalize them, we simply
divide by Hj(0), yielding

hj [0] = hj [2] =

√
2

2 + 2 cos(2−(j+1)α)
, hj [1] =

2
√
2 cos(2−(j+1)α)

2 + 2 cos(2−(j+1)α)
.

We will now introduce a method to explicitly determine the filters of dual
scaling functions. Let the filters coefficients of the dual scaling functions
(
∼
φj)j≤j0 be

∼
hj [−1],

∼
hj [0],

∼
hj [1],

∼
hj [2],

∼
hj [3]. First, we assume that the dual

scaling functions are symmetric, which means
∼
hj [−1] =

∼
hj [3],

∼
hj [0] =

∼
hj [2].

The relation (14) implies

2
∼
hj [3] + 2

∼
hj [2] +

∼
hj [1] =

√
2. (22)

Using (10) for k = 0, we obtain

cos
(
2−(j+1)α

)∼
hj [1] +

∼
hj [2] =

2 + 2 cos(2−(j+1)α)

2
√
2

, (23)

and for k = 1, we have

2 cos
(
2−(j+1)α

)∼
hj [3] +

∼
h[2] = 0. (24)

As an additional condition to simplify the calculation, we use (15) to get

2∑
k=−2

(−1)k
∼
hj [1− k] = 0,

which leads to

2
∼
hj [3]− 2

∼
hj [2] +

∼
hj [1] = 0. (25)

To determine
∼
hj [1],

∼
hj [2], and

∼
hj [3], the above system is solved using the

Gaussian elimination.

Therefore,
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∼
hj [−1] =

∼
hj [3] = −

√
2

8 cos(2−(j+1)α)
,

∼
hj [0] =

∼
hj [2] =

√
2

4
,

∼
hj [1] =

2
√
2 cos(2−(j+1)α) +

√
2

4 cos(2−(j+1)α)
.

3.2 Third order cardinal Chebyshev B-splines

Let λ = (λ1, λ2, λ3) = (0,−iα, iα), let
∼
λ = (λ2, λ3), and let

N3
λ(x) = N1

λ1
∗N2

∼
λ
(x).

We assume that

φj(t) = N3
2−jλ(t). (26)

Then

φ̂j(ω) = N̂2

2−j
∼
λ
(ω)N̂1

2−jλ1
(ω),

=

(
1

8
+

1 + 2 cos(2−(j+1)α)

8
e−iω

2 +
1 + 2 cos(2−(j+1)α)

8
e−iω +

1

8
e−i 3ω

2

)
× ̂N3

2−(j+1)γ

(ω
2

)
= Hj

(ω
2

)
φ̂j+1

(ω
2

)
.

The normalized coefficients are derived using the same method as described
earlier:

hj [0] = hj [3] =

√
2

4 + 4 cos(2−(j+1)α)
,

hj [1] = hj [2] =

√
2(2 cos(2−(j+1)α) + 1)

4 + 4 cos(2−(j+1)α)
.

Using the same steps as for n = 2, we assume that
∼
hj [−1],

∼
hj [0],

∼
hj [1],

∼
hj [2],

∼
hj [3],

∼
hj [4], are the filters coefficients of the dual scaling functions(∼φj)j≤j0 ,

subject to the condition that they are symmetric:
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∼
hj [−1] =

∼
hj [4],

∼
hj [0] =

∼
hj [3],

∼
hj [1] =

∼
hj [2].

The relation (14) implies

∼
hj [2] +

∼
hj [3] +

∼
hj [4] =

√
2

2
. (27)

Using (10), we can find the following equations:

For k = 0,

(2 cos(2−(j+1)α) + 1)
∼
hj [2] +

∼
hj [3] =

4 + 4 cos(2−(j+1)α)

2
√
2

, (28)

and for k = 1,
∼
hj [2] +

(
2 cos(2−(j+1)α) + 1

)∼
hj [3] +

(
2 cos(2−(j+1)α) + 1

)∼
hj [4] = 0.(29)

We can use Gaussian elimination to solve the above linear system and obtain
∼
hj [2],

∼
hj [3], and

∼
hj [4], with the following explicit formulas:

∼
hj [−1] =

∼
hj [4] = 0,

∼
hj [0] =

∼
hj [3] =

−
√
2

4 cos(2−(j+1)α)
,

∼
hj [1] =

∼
hj [2] =

2
√
2 cos(2−(j+1)α) +

√
2

4 cos(2−(j+1)α)
.

3.3 Fourth order cardinal Chebyshev B-splines

Let λ = (δ1, δ2), where δ1 = (λ1, λ2) = (0, 0), δ2 = (λ3, λ4) = (−iα, iα), and

N4
λ(x) = N2

δ1 ∗N
2
δ2(x).

Then, we assume that

φj(t) = N4
2−jλ(t). (30)

Then

φ̂j(ω) = N̂2
2−jδ1

(ω)N̂2
2−jδ2

(ω),

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 704–727



Boussaad, Fourar and Melkemi 714

=

(
1

16
+

2 + 2 cos(2−(j+1)α)

16
e−iω

2 +
2 + 4 cos(2−(j+1)α)

16
e−iω

+
2 + 2 cos(2−(j+1)α)

16
e−i 3ω

2 +
1

16
e2iω

)
̂N4
2−(j+1)λ

(ω
2

)
= Hj

(ω
2

)
φ̂j+1

(ω
2

)
,

Following the same steps as before, we obtain the normalized coefficients:

hj [0] = hj [4] =

√
2

8 + 8(cos(2−(j+1)α)
,

hj [1] = hj [3] =
2
√
2(cos(2−(j+1)α) + 1)

8 + 8(cos(2−(j+1)α)
,

hj [2] =
2
√
2(2 cos(2−(j+1)α) + 1)

8 + 8(cos(2−(j+1)α)
.

As before, let us assume that
∼
hj [−1],

∼
hj [0],

∼
hj [1],

∼
hj [2],

∼
hj [3],

∼
hj [4],

∼
hj [5] are

the filters coefficients of dual scaling functions. Moreover, to ensure that the
dual scaling functions are symmetric, we set

∼
hj [−1] =

∼
hj [5],

∼
hj [0] =

∼
hj [4],

∼
hj [1] =

∼
hj [3].

The relation (14) implies

2
∼
hj [5] + 2

∼
hj [4] + 2

∼
hj [3] +

∼
hj [2] =

√
2. (31)

Using (10), we find, for k = 0,
∼
hj [4] + 2

(
cos(2−(j+1)α) + 1

)∼
hj [3] +

(
2 cos(2−(j+1)α) + 1

)∼
hj [2]

=
8 + 8(cos(2−(j+1)α)

2
√
2

, (32)

for k = 1,
∼
hj [2] + 2

(
cos(2−(j+1)α) + 1

)∼
hj [3] + 2

(
2 cos(2−(j+1)α) + 1

)∼
hj [4]

+2
(
cos(2−(j+1)α) + 1

)∼
hj [5] = 0, (33)

and for k = 2,
∼
h[4] + 2

(
cos(2−(j+1)α) + 1

)∼
hj [5] = 0. (34)
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As in n = 2, we take the following additional condition to simplify the com-
putation:

2∑
k=−4

(−1)k
∼
hj [1− k] = 0,

which implies

2
∼
hj [5]− 2

∼
hj [4] + 2

∼
hj [3]−

∼
hj [2] = 0. (35)

Finally, we find
∼
hj [2],

∼
hj [3],

∼
hj [4] and

∼
hj [5] by the following formulas:

∼
hj [−1] =

∼
hj [5] =

√
2 cos(2−(j+1)α) + 2

√
2

16 cos(2−(j+1)α) + 8 cos(2−jα) + 8
,

∼
hj [0] =

∼
hj [4] =

−6
√
2 cos(2−(j+1)α)−

√
2 cos(2−jα)− 5

√
2

16 cos(2−(j+1)α) + 8 cos(2−jα) + 8
,

∼
hj [1] =

∼
hj [3]

=
8
√
2 cos(2−(j+1)α) + 7

√
2 cos(2−jα) + 2

√
2 cos(3 2−(j+1)α) + 3

√
2

56 cos(2−(j+1)α) + 32 cos(2−jα) + 8 cos(3 2−(j+1)α) + 32
,

∼
hj [2] =

10
√
2 cos(2−(j+1)α) + 3

√
2 cos(2−jα) + 7

√
2

8 cos(2−(j+1)α) + 4 cos(2−jα) + 4
.

3.4 Fifth order cardinal Chebyshev B-splines

Let λ = (δ1, δ2), where δ1 = (λ1, λ2, λ3) = (0, 0, 0), δ2 = (λ4, λ5) = (−iα, iα),
and

N5
λ(x) = N3

δ1 ∗N
2
δ2(x).

Then we assume that

φj(t) = N5
2−jλ(t). (36)

Therefore,

φ̂j(ω) = N̂3
2−jδ1

(ω)N̂2
2−jδ2

(ω),

=
1

32

(
1 + (1 + 4 cos(2−(j+1)α)e−iω

2
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+ (4 + 4 cos(2−(j+1)α) + 2 cos(2−jα))e−iω

+ (4 + 4 cos(2−(j+1)α) + 2 cos(2−jα))e−i 3ω
2

+(1 + 4 cos(2−(j+1)α)e−2iω + e−i 5ω
2

)
N̂5

2−jλ

(ω
2

)
= Hj

(ω
2

)
φ̂j+1

(ω
2

)
,

So, the normalized coefficients are given by

hj [0] = hj [5] =

√
2

12 + 16 cos(2−(j+1)α) + 4 cos(2−jα)
,

hj [1] = hj [4] =

√
2(1 + 4 cos(2−(j+1)α)

12 + 16 cos(2−(j+1)α) + 4 cos(2−jα)
,

hj [2] = hj [3] =
2
√
2(2 + 2 cos(2−(j+1)α) + cos(2−jα))

12 + 16 cos(2−(j+1)α) + 4 cos(2−jα)
.

We assume that
∼
hj [−1],

∼
hj [0],

∼
hj [1],

∼
hj [2],

∼
hj [3],

∼
hj [4],

∼
hj [5], and

∼
hj [6] are

the filters coefficients of dual scaling functions. Moreover, to ensure that the
dual scaling functions are symmetric, we put

∼
hj [−1] =

∼
hj [6],

∼
hj [0] =

∼
hj [5],

∼
hj [1] =

∼
hj [4],

∼
hj [2] =

∼
hj [3].

The relation (14) implies

2
∼
hj [3] + 2

∼
hj [4] + 2

∼
hj [5] + 2

∼
hj [6] =

√
2. (37)

Using (10), we find, for k = 0,

(4 + 4 cos(2−(j+1)α) + 2 cos(2−jα))
∼
hj [3] + (1 + 4 cos(2−(j+1)α)

∼
hj [4] +

∼
hj [5]

=
12 + 16 cos(2−(j+1)α) + 4 cos(2−jα)

2
√
2

, (38)

for k = 1,

(2 + 4 cos(2−(j+1)α)
∼
hj [3] + (4 + 4 cos(2−(j+1)α) + 2 cos(2−jα))

∼
hj [4]

+ (4 + 4 cos(2−(j+1)α) + 2 cos(2−jα))
∼
hj [5] + (1 + 4 cos(2−(j+1)α)

∼
hj [6]

= 0, (39)

and for k = 2,
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∼
h[4] + (1 + 4 cos(2−(j+1)α)

∼
hj [5]

+ (4 + 4 cos(2−(j+1)α) + 2 cos(2−jα))
∼
hj [6] = 0. (40)

Finally, we find
∼
hj [3],

∼
hj [4],

∼
hj [5], and

∼
hj [6] by the following formulas:

∼
hj [−1] =

∼
hj [6] = 0,

∼
hj [0] =

∼
hj [5] =

2
√
2 cos(2−(j+1)α) +

√
2

12 cos(2−(j+1)α) + 4 cos(3 2−(j+1)α)
,

∼
hj [1] =

∼
hj [4] =

−6
√
2 cos(2−(j+1)α)− 4

√
2 cos(2−jα)− 5

√
2

12 cos(2−(j+1)α) + 4 cos(3 2−(j+1)α)
,

∼
hj [2] =

∼
hj [3]

=
5
√
2 cos(2−(j+1)α) + 2

√
2 cos(2−jα) +

√
2 cos(3 2−(j+1)α) + 2

√
2

6 cos(2−(j+1)α) + 2 cos(3 2−(j+1)α)
.

3.5 Sixth order cardinal Chebyshev B-splines

Let λ = (δ1, δ2), where δ1 = (λ1, λ2, λ3) = (0, 0, 0), δ2 = (λ4, λ5, λ6) =

(0,−iα, iα), and

N6
λ(x) = N3

δ1 ∗N
3
δ2(x).

Then, we assume that

φj(t) = N6
2−jλ(t). (41)

Therefore,

φ̂j(ω) = N̂3
2−jδ1

(ω)N̂3
2−jδ2

(ω),

=
1

64

(
1 + (2 + 4 cos(2−(j+1)α))e−iω

2 + (5 + 8 cos(2−(j+1)α)

+ 2 cos(2−jα))e−iω +(8 + 8 cos(2−(j+1)α) + 4 cos(2−jα))e−i 3ω
2

+ (5 + 8 cos(2−(j+1)α) + 2 cos(2−jα))e−2iω

+(2 + 4 cos(2−(j+1)α))e−i 5ω
2 + e−3iω

)
N̂6

2−jλ

(ω
2

)
= Hj

(ω
2

)
φ̂j+1

(ω
2

)
.
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Thus, the normalized coefficients are expressed as

hj [0] = hj [6] =

√
2

24 + 32 cos(2−(j+1)α) + 8 cos(2−jα)
,

hj [1] = hj [5] =
2
√
2
(
1 + 2 cos(2−(j+1)α)

)
24 + 32 cos(2−(j+1)α) + 8 cos(2−jα)

,

hj [2] = hj [4] =

√
2
(
5 + 8 cos(2−(j+1)α) + 2 cos(2−jα)

)
24 + 32 cos(2−(j+1)α) + 8 cos(2−jα)

,

hj [3] =
2
√
2
(
4 + 4 cos(2−(j+1)α) + 2 cos(2−jα)

)
24 + 32 cos(2−(j+1)α) + 8 cos(2−jα)

.

As in previous instances, let us assume that
∼
hj [−1],

∼
hj [0],

∼
hj [1],

∼
hj [2],

∼
hj [3],

∼
hj [4],

∼
hj [5],

∼
hj [6], and

∼
hj [7], where

∼
hj [−1] =

∼
hj [7],

∼
hj [0] =

∼
hj [6],

∼
hj [1] =

∼
hj [5],

∼
hj [2] =

∼
hj [4].

The relation (14) implies
∼
hj [3] + 2

∼
hj [4] + 2

∼
hj [5] + 2

∼
hj [6] + 2

∼
hj [7] =

√
2. (42)

Using (10), we find, for k = 0(
4 + 4 cos(2−(j+1)α) + 2 cos(2−jα)

)∼
hj [3] +

(
5 + 8 cos(2−(j+1)α) + 2 cos(2−jα)

)∼
hj [4]

+
(
2 + 4 cos(2−(j+1)α)

)∼
hj [5] +

∼
hj [6] =

24 + 32 cos(2−(j+1)α) + 8 cos(2−jα)

2
√
2

, (43)

for k = 1,(
2 + 4 cos(2−(j+1)α)

)∼
hj [3] +

(
6 + 8 cos(2−(j+1)α) + 2 cos(2−jα)

)∼
hj [4]

+
(
8 + 8 cos(2−(j+1)α) + 4 cos(2−jα)

)∼
hj [5]

+
(
5 + 8 cos(2−(j+1)α) + 2 cos(2−jα)

)∼
hj [6]

+
(
2 + 4 cos(2−(j+1)α)

)∼
hj [7] = 0, (44)

for k = 2,
∼
hj [4] +

(
2 + 4 cos(2−(j+1)α)

)∼
hj [5]

+
(
5 + 8 cos(2−(j+1)α) + 2 cos(2−jα)

)∼
hj [6]
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+
(
8 + 8 cos(2−(j+1)α) + 4 cos(2−jα)

)∼
hj [7] = 0, (45)

and for k = 3,
∼
hj [6] +

(
2 + 4 cos(2−(j+1)α)

)∼
hj [7] = 0. (46)

We take the following additional condition to simplify the computation:

2∑
k=−6

(−1)k
∼
hj [1− k] = 0.

Finally, we can derive explicit formulas of
∼
hj [3],

∼
hj [4],

∼
hj [5],

∼
hj [6], and

∼
hj [7]

as follows:

∼
hj [−1] =

∼
hj [7] =

−8
√
2β2 − 9

√
2β −

√
2ββ2 − 2

√
2

64β2 + 48β + 16ββ2
2 + 64β2β2 + 64ββ2

,

∼
hj [0] =

∼
hj [6] =

16
√
2β3 + 26

√
2β2 + 13

√
2β + 2

√
2β2β2 +

√
2ββ2 + 2

√
2

32β2 + 24β + 8ββ2
2 + 32β2β2 + 32ββ2

,

∼
hj [1] =

∼
hj [5] =

−8
√
2β −

√
2β2 − 5

√
2

8β2 + 8
,

∼
hj [2] =

∼
hj [4]

=
−16

√
2β3 − 18

√
2β2 − 7

√
2β + 2

√
2ββ2

2 + 6
√
2β2β2 + 7

√
2ββ2 − 2

√
2

32β2 + 24β + 8ββ2
2 + 32β2β2 + 32ββ2

,

∼
hj [3] =

64
√
2β3 + 112

√
2β2 + 51

√
2β + 6

√
2ββ2

2 + 40
√
2β2β2 + 33

√
2ββ2 + 2

√
2

32β2 + 24β + 8ββ2
2 + 32β2β2 + 32ββ2

,

where

β = cos
(
2−(j+1)α

)
, β2 = cos

(
2−jα

)
.

The figures presented below (Figure 1) illustrate the scaling and wavelet
functions associated with the previously obtained biorthogonal filter banks.

4 Application of nonstationary biorthogonal filter banks
for image compression

In this section of our comparative study, we analyze the performance of
nonstationary biorthogonal filter banks, derived in the previous section with
parameters n = 6, in comparison to the widely used Daubechies biorthogonal
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(a) φj ,
∼
φj , ψj , and

∼
φj for α = 0, j = 0, and

n = 2

(b) φj ,
∼
φj , ψj and ∼

φj for α = 0, j = 0 and
n = 3

(c) φj ,
∼
φj , ψj , and

∼
φj for α = 0, j = 0, and

n = 4

(d) φj ,
∼
φj , ψj , and

∼
φj for α = 0, j = 0, and

n = 5

(e) φj ,
∼
φj , ψj , and

∼
φj for α = 0, j = 0, and

n = 6

Figure 1: Curves of scaling functions and wavelet functions

filter bior bior 3.3, bior 4.4, and bior 5.5 [3]. The evaluation is conducted
using the peak signal-to-noise ratio (PSNR) quality measure. The images
considered in our study include pepper, bamboo, Barbara, lighthouse, boat,
X-ray, and a textured image. The results of our analysis are presented in
Table 1:
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Table 1: Comparison of PSNR values for different images using stationary and nonsta-
tionary biorthogonal filter banks (PS-NS).

Image

Filter
bior
3.3

bior
4.4

bior
5.5 PS-NS

Optimal
value
of α

Pepper
image

373.0289 321.8209 317.6718 377.4309 0.4

Bamboo
image

373.3974 312.1773 310.2757 376.0176 1.4

Barbara
image

370.5101 312.7138 311.3224 373.5105 1.4

Lighthouse
image

368.791 315.1341 312.1767 372.6814 3

Boat
image

369.5577 316.4587 312.8915 372.7301 0.1

X-ray
image

374.7837 321.2239 317.7600 379.4312 0.4

Textured
image

372.4533 309.4582 305.5483 375.9778 1.3

Nonstationary filters optimized with an adaptive parameter α consistently
offer better image reconstruction quality, as measured by a higher PSNR.
Although the improvement varies depending on the image, this demonstrates
the potential of nonstationary filters to outperform traditional biorthogonal
approaches in terms of reconstruction fidelity.

In this section, we further analyze the effectiveness of these filter banks in
image compression. Beyond the PSNR measure discussed earlier, we evaluate
compression performance by quantifying the number of zeros introduced in
the processed image. A higher count of zeros signifies greater compression
efficiency, as it indicates a substantial reduction in redundant information
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while retaining key image details. This metric is crucial for minimizing file
size while maintaining satisfactory visual quality.

For each image, the parameter α is optimized to maximize the number
of zeros, ensuring the best compression performance for the specific image.
Thresholds are selected adaptively based on the characteristics of each im-
age, striking a balance between maintaining visual quality and enhancing
compression efficiency.

Table 2: Comparison of the number of zeros in the image after compression using sta-
tionary and nonstationary biorthogonal filter banks (PS-NS).

Image

Threshold

Filter

bior
3.3

bior
4.4

bior
5.5 PS-NS

Optimal

value of

α

Pepper
image

0.01 200271 195713 197236 202269 3.4
0.05 201226 202617 204126 203773 5.5
0.1 201408 202871 204126 205864 5.6
0.15 201698 203119 204618 207672 5.6
0.2 202298 203660 205135 207453 5.4

Bamboo
image

0.1 205408 203566 203099 203737 0.1
0.2 217290 217299 218389 218952 0.1
0.3 223279 223417 224895 226805 7.9
0.4 227922 228209 229755 232402 7.9
0.5 232562 233066 234571 236767 7.9

Barbara
image

0.1 193788 193613 194121 195190 0.1
0.2 199199 199351 200434 203116 0.2
0.3 203980 203945 204867 208590 7.8
0.4 209261 209146 210240 214263 7.9
0.5 213573 213464 214480 218510 7.9

Lighthouse
image

0.1 200554 200951 201971 202509 0.2
0.15 201904 202386 203638 204443 2.3
0.2 202665 203358 204573 205806 2.5
0.25 203531 204284 205498 206993 3
0.3 204524 205309 206534 208083 3

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 704–727



723 Numerical design of nonstationary wavelets: Enhanced filter design ...

Boat
image

0.15 202593 203857 205311 206093 5.3
0.3 206465 207617 208973 210035 7.4
0.45 209932 210944 212315 213802 7.3
0.6 212121 213224 214562 217194 7.3
0.75 214717 215921 217330 220750 7.2

X-ray
image

0.05 201017 202083 203617 203654 4.6
0.1 201263 202711 204266 206469 4.8
0.15 201330 202797 204349 209284 4.8
0.2 232677 234175 235987 238573 4.5
0.25 238801 240088 241793 244086 7.4

Textured
image

0.05 202284 197225 197596 206985 0.1
0.1 211203 208244 207600 212592 0.1
0.15 216815 215130 214592 217219 0.1
0.2 221580 220335 219984 221975 0.1
0.25 225770 225134 225145 226346 0.1

The nonstationary filter consistently outperforms all other filters, achiev-
ing the highest number of zeros across all threshold values and images. This
performance is particularly notable when compared to bior 5.5, highlighting
its superior effectiveness in compression (Table 2).

The figures presented below (Figure 2–8) provide a qualitative evalua-
tion of the reconstructed images after compression using the nonstationary
biorthogonal filter bank PS-NS. These visualizations validate the filter’s
capability to achieve high compression efficiency without compromising per-
ceptual image quality.

(a) Original pepper image. (b) Reconstructed pepper im-
age for th = 0.01 and α = 3.4.

(c) Reconstructed pepper im-
age for th = 0.2 and α = 5.

Figure 2: Visualization of the original pepper image and its reconstructions with non-
stationary filter.
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(a) Original mandrill image. (b) Reconstructed mandrill
image for th = 0.1 and α = 0.1.

(c) Reconstructed mandrill im-
age for th = 0.5 and α = 7.9.

Figure 3: Visualization of the original mandrill image and its reconstructions with non-
stationary filter.

(a) Original Barbara image. (b) Reconstructed Barbara im-
age for th = 0.1 and α = 0.1.

(c) Reconstructed Barbara im-
age for th = 0.5 and α = 7.9.

Figure 4: Visualization of the original Barbara image and its reconstructions with non-
stationary filter.

(a) Original lighthouse image.(b) Reconstructed lighthouse
image for th = 0.1 and α = 0.2.

(c) Reconstructed lighthouse
image for th = 0.3 and α = 3.

Figure 5: Visualization of the original lighthouse image and its reconstructions with
nonstationary filter.
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(a) Original boat image. (b) Reconstructed boat image
for th = 0.15 and α = 5.3.

(c) Reconstructed boat image
for th = 0.75 and α = 7.2.

Figure 6: Visualization of the original boat image and its reconstructions with nonsta-
tionary filter.

(a) Original X-ray image. (b) Reconstructed X-ray im-
age for th = 0.2 and α = 4.5.

(c) Reconstructed X-ray im-
age for th = 0.25 and α = 7.4.

Figure 7: Visualization of the original X-ray image and its reconstructions with nonsta-
tionary filter.

(a) Original textured image. (b) Reconstructed textured
image for th = 0.2 and α = 0.1.

(c) Reconstructed textured im-
age for th = 0.25 and α = 0.1.

Figure 8: Visualization of the original textured image and its reconstructions with non-
stationary filter.
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5 Conclusion

In conclusion, nonstationary biorthogonal wavelets are powerful tools for sig-
nal analysis, with recent advancements showcasing the utility of cardinal
Chebyshev B-splines in their construction. The proposed method simplifies
filter design by explicitly formulating filters and dual filters at all scaling lev-
els, enabling efficient implementation through numerical methods like Gauss
elimination or LU factorization. This streamlined approach, combined with
the practical applications of nonstationary wavelets, underscores their impor-
tance in image processing.

Filters based on cardinal Chebyshev B-splines offer potential improve-
ments in compression quality and computational efficiency, although perfor-
mance may depend on the specific characteristics of the images processed.

Future research could focus on optimizing the method for high-dimensional
data and integrating it into machine learning workflows, broadening the
applicability of nonstationary wavelets across scientific and engineering do-
mains.
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