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Numerical design of nonstationary

wavelets: Enhanced filter design ...

A. Boussaad, Y. Fourar* and K. Melkemi

Abstract

In this study, we propose a novel method for computing both primal and
dual filters for nonstationary biorthogonal wavelets, offering an advanced
approach to wavelet filter design. The key challenge in image compres-
sion that this study addresses is the inefficiency of conventional station-
ary wavelets, which rely on fixed filter banks that do not adapt to local
variations in an image. This limitation results in suboptimal compression
performance, particularly for images with varying statistical properties and
localized features. To address this, we use a nonstationary biorthogonal fil-

ter banks, which modify basis functions at different scaling levels, leading

*Corresponding author

Received 22 December 2024; revised 20 February 2025; accepted 2 March 2025
Abdelmalik Boussaad
Department of Mathematics, Faculty of Mathematics And Computer Science, University

of Batna 2, Algeria. e-mail: a.boussaad2001@Qgmail.com

Yasmine Fourar
Department of Mathematics, Faculty of Mathematics And Computer Science, University

of Batna 2, Algeria. e-mail: ya.fourar@Quniv-batna2.dz

Khaled Melkemi
Department of Mathematics, Faculty of Mathematics And Computer Science, University

of Batna 2, Algeria. e-mail: k.melkemi@univ-batna2.dz

How to cite this article

Boussaad, A. Fourar, Y. and Melkemi, K., Numerical design of nonstationary wavelets:
Enhanced filter design andapplications in image compression. Iran. J. Numer. Anal.
Optim., 2025; 15(2): 704-727. https://doi.org/10.22067 /ijnao.2025.91265.1571

704


https://doi.org/10.22067/ijnao.2025.91265.1571
https://ijnao.um.ac.ir/
https://doi.org/10.22067/ijnao.2025.91265.1571

705 Numerical design of nonstationary wavelets: Enhanced filter design ...

to improved frequency resolution, signal representation, and compression

efficiency.

Our technique employs cardinal Chebyshev B-splines to derive explicit
formulas for the primal filters, enabling precise calculation of filter coeffi-
cients essential for wavelet transforms. Additionally, we enforce normality
and biorthogonality conditions within nonstationary multiresolution anal-
ysis to maintain the relationship between primal and dual wavelet filters at
each scaling level. This structured approach allows for explicit formulation
of the dual filters while ensuring accurate decomposition and reconstruc-
tion. Experimental results confirm that the proposed method improves
compression efficiency over conventional Daubechies biorthogonal filters,
increasing the number of zero coefficients in compressed images. This leads
to better visual quality and reduced storage requirements while maintaining
computational efficiency. Such improvements are particularly beneficial in
applications requiring high-fidelity image reconstruction, such as medical
imaging, satellite data processing, and video compression. MATLAB sim-
ulations validate the effectiveness of the approach, making it a promising

alternative for image processing and data compression applications.

AMS subject classifications (2020): Primary 42C40; Secondary 65T60, 42C10.

Keywords: Cardinal Chebyshev B-splines; Biorthogonality; Wavelets; Im-

age compression.

1 Introduction

Biorthogonal wavelets form a distinct class of wavelets that, unlike orthogo-
nal wavelets [6, 4], employ separate functions for analysis and reconstruction.
This fundamental distinction allows for greater flexibility in signal represen-
tation and improved frequency resolution, making them particularly use-
ful in various signal processing applications. Key properties of biorthogonal

wavelets include:

e Symmetry: They can be designed with varying degrees of symmetry,

which is beneficial for specific applications.
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Boussaad, Fourar and Melkemi 706

¢ Smoothness: Greater smoothness corresponds to more vanishing mo-
ments, enabling better approximations of signals with smooth varia-

tions.

¢ Compact Support: Their scaling and wavelet functions are nonzero
only over a finite interval, ensuring computational efficiency in fast

algorithms like the discrete wavelet transform.

Nonstationary biorthogonal wavelets extend these advantages by adap-
tively adjusting their basis functions at each scaling level, based on the sig-
nal’s properties. This adaptability enhances their ability to represent lo-
calized features or varying statistical properties, making them particularly
effective in image processing, audio signal processing, and biomedical sig-
nal analysis. In contrast, stationary biorthogonal wavelets rely on a fixed
set of basis functions, which may not be optimal for signals with complex

characteristics.

A key advancement in this field is the use of cardinal Chebyshev B-splines
[8, 7, 2] as a basis for constructing nonstationary biorthogonal wavelets.
These splines offer excellent time-frequency localization properties, making
them highly effective for analyzing nonstationary signals. Previous stud-
ies have explored their applications in wavelet construction. For example,
Lee and Yoon [5] introduced a lifting scheme-based algorithm that enhances
wavelet approximation properties and computational efficiency. Similarly,
Vonesch, Blu, and Unser [10] developed a family of generalized Daubechies
wavelets [3] incorporating Chebyshev B-splines, and Boxing. Zhang et al.

[11] proposed a construction method based on exponential pseudo-splines.

While significant progress has been made, current methods for designing
nonstationary biorthogonal wavelets still face several challenges, particularly
in computational efficiency and systematic filter design. Many approaches
rely on iterative or heuristic techniques, which can be computationally in-
tensive and lack a structured framework. Additionally, solving the under-
lying systems of equations during wavelet construction remains a compu-
tational bottleneck, limiting practical applications in real-time or resource-

constrained environments.
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To address these challenges, this paper introduces a novel approach that
systematically derives a linear system based on the normality and biorthog-
onality conditions of nonstationary multiresolution analysis. Our key contri-

butions include:

¢ Novel Design Method: We propose a new method for constructing
nonstationary biorthogonal wavelets using fundamental conditions from

multiresolution analysis [9].

o Efficient Numerical Solution: By formulating a linear system, we
enable the use of direct numerical methods such as Gauss—Jordan elim-

ination and LU factorization, improving computational efficiency.

o Explicit Filter Formulation: Our approach provides explicit formu-
las for filters and dual filters at all scaling levels, ensuring a systematic

and practical wavelet design process.

e Comprehensive Framework: We integrate theoretical insights with
practical applications, making our method accessible to both researchers

and practitioners in signal processing.

The remainder of this paper is structured as follows: Section 2 provides
an overview of nonstationary biorthogonal multiresolution analysis, includ-
ing key definitions and properties. Section 3 explores the use of cardinal
Chebyshev B-splines in constructing nonstationary biorthogonal wavelets.
By the conclusion, readers will gain a comprehensive understanding of the
theory, practical applications, and our novel design method for nonstationary

biorthogonal wavelets.

2 Definitions and properties of biorthogonal

nonstationary wavelets

~

Let (V});<j, and (V});<j, be a pair of NSRMAs [1] generated by a pair of

dual scaling functions ¢; and ng, j < jo, such that

(pj,0;(.—k)) =60k, kEL (1)
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The concept of biorthogonal wavelets is to find complementary spaces W;
and W; satisfying
Vj+1 = V_] + Wja and Vj+1 - V_] + W]7 (2)
WjJ_Vj, and WjJ_Vj. (3)

The nesting property for the subspaces V; and lN)j, implies the existence of
filters h; = (h;[k])kez € (*(Z), hj = (h;[k])kez € (*(Z), j < jo, which satisfy

=2 hlklpja(2t — k), = V2 Y hiMP (2t — k). (4)

kEZ kEZ

By the Fourier transform, we have

8i(w) = Hi (€ )P (3) (5)
5i(@) = 3 )5, (5). (6)
with
Hy(e') = = > hylkle ™, g
() = > iyt Q

—iw

We assume that z = e

Proposition 1. The filters H; and H; associated for ¢; and <,N0j satisfy the
scaling condition:

~

Hi(2)Hi (271 + Hy(—2)H (=27 = 1. 9)
For all k € Z, the preceding condition is equivalent to

> bl h [ (€ — 2k] = Spo. (10)
LeZ
Definition 1. The biorthogonal wavelet functions are given as follows:
t) = \/izgj [k]SOj—s-l(?t — k), T/Jj(t) = \@Z Ej [k](EjJrl(Qt —k),(11)
kez keZ

such that
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709 Numerical design of nonstationary wavelets: Enhanced filter design ...

~

glk] = (=D h;[1 = k], gjlk] = (=1)*h;[1 - K], (12)

where

~ ~

g9j = (gj[k])k627 gg = (gj[k})k€Z7 (13)
are the scaling filters associated for ¢; and @Zj7 respectively.

For all k& € Z, we have

SThilk = V2, Y hlk] = V2, (14)
kezZ keZ
gkl =0, G,k =o. (15)
kezZ keZ

As in the stationary case for a function f € L?(R), a wavelet decomposition

at level jy can be introduced, as follows:

F=Yas[kleion+ > dilklwx, (16)

kEZ 7<jo kEZ
where
aiolk] = (f,Bj00)s dilk] = (F,005), (17)
and
Pir) =225t —k), () =220k (18)

3 Construction of scaling filters and dual scaling filters

The function we choose as a scaling function is the cardinal Chebyshev B-
splines. Let us first recall the definition of the exponential Chebyshev B-

splines mentioned in [1]. Let A = (A1,...,\,) be a complex vector.
Definition 2. Suppose that o € R. The function N/} is defined by
Nit) =e"xpo1(t), tER. (19)

Function NY is defined by convolution as follows:
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Boussaad, Fourar and Melkemi

710
N3 =Ny #---*Nj . (20)
The function NJ' ;, (t) can generate a Riesz basis only if the vector A does
not have any distinct purely imaginary components A\; and A;, where the
difference between them equals i27k for some integer k

Forn =1,

Ny(t) = N&(2t) + eZ N& (2t - 1).

By the Fourier transform, we have

A 1 + ea—in o w
Ni(w) = <2> Ni (f)

2

In the following, we assume that « € [0,10] \ {27} with 27 ~ 6.2831. This

restriction ensures that the denominator remains nonzero for all the filters of
the primal and dual functions.

3.1 Second order cardinal Chebyshev B-splines
Let A = (A1, A2) = (—ia,ic). We assume that

@;(t) = N3-5\(t).
Then

(21)
j(w)

= Nzl—j,\1 (W)Ngl—uz (w)

=7 (1

-1 (9)5 (5)

~G+1) —iw
e? A2)e 72

27T (N 420) —iw | a2 (W
€ e Ny G BY
2

In accordance with (5), we obtain

272 9—(i+1)
JYZ gy = 22 )
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However, these coefficients are not normalized. To normalize them, we simply
divide by #;(0), yielding

V2 2v/2cos(2- U+ q)

= - h;[1l] = - .
2+ 2cos(2-0+Da)’ sl 2+ 2cos(2-Uta)

h;[0] = h;[2]

We will now introduce a method to explicitly determine the filters of dual
scaling functions. Let the filters coefficients of the dual scaling functions
(gzj)jgjo be h;[—1], h;[0], h;[1], h;[2], h;[3]. First, we assume that the dual

scaling functions are symmetric, which means

The relation (14) implies

~ ~

2’};]‘ [3] + 2hj[2} + hj[l

I
S
—

©

[\
=

Using (10) for k = 0, we obtain

~ 24 2cos(27UHYq)

cos (2*<J‘+1>a) hi[1] + hy[2] , (23)
2V2
and for k = 1, we have
2 cos (2_U+1)a) Ej[?)] + %[2] =0. (24)

As an additional condition to simplify the calculation, we use (15) to get

2

3 (~1)F[L - K] =0,

k=-2

which leads to

~ ~

2h,[3] — 2h;[2] + h;[1] = 0. (25)

~

To determine h;[1], h;[2], and h;[3], the above system is solved using the

Gaussian elimination.

Therefore,
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- V2
1] = - v
h][ ] h] [3] 8COS(27(J+1)04)7
S
o =i = 2.
E[I] ~ 2y2cos(270tVa) + /2
T 4cos(2-U+Da) '

3.2 Third order cardinal Chebyshev B-splines

Let A = (A1, A2, As) = (0, —ic, i), let A = (Ag, Ag), and let
N3(z) = Ny, = N§(m).

We assume that

pj(t) = N33, (t). (26)
Then
Bw) = N2 (V] 5, @)
1 1+2cos(27Uta) .o  14+2cos(270+a) . 1 s
=|\gt e "z + e T +ce "2
8 8 8
T (W
X N237<j+1>7 (5)

% (5)7m(3)

The normalized coefficients are derived using the same method as described

earlier:
V2
h] [O] - h][?’] - 4+4COS(27(j+1)04)7
V2(2cos(270+Dq) +1
) = nylp) = Y222 T+

4 +4cos(2-Utha)

Using the same steps as for n = 2, we assume that ,}\Ijj[—l], ,}\Ijj [0], ;Lj[l], %j 2],
h;[3], h;[4], are the filters coefficients of the dual scaling functions(g?)j)jgjo,

subject to the condition that they are symmetric:
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hil=1] = h;[4],  Ry[0] = hy[3],  hy[l] = hy[2).

The relation (14) implies

R
2]+ hfs) + iyl = 2. (27)
Using (10), we can find the following equations:
For k =0,
) ~ ~ 444 9—(+1)
(2cos(2"5+Va) + 1)h,2] + ny[3] = 220 %) (28)

and for k =1,

~ ~ ~

h;[2] + (2 cos(2~UDa) + 1) hy[3] + (2 cos(2~UDa) + 1) h;[4] = 0.(29)

We can use Gaussian elimination to solve the above linear system and obtain
h;[2], h;[3], and h;[4], with the following explicit formulas:

hyl=1] = hy[4] = 0,

0= e = 1o
Ej 1] = %j 2] = 2V2cos(2 U o) + V2

4cos(2-UtDq)

3.3 Fourth order cardinal Chebyshev B-splines

Let A\ = (d1,02), where 01 = (A1, A2) = (0,0), 62 = (A3, A1) = (—iq, i), and
Ni(z) = Nj = N§ ().
Then, we assume that
#i(t) = Ny (1). (30)

Then

—_—

Pj(w) = N3_j5, (WN3 5, (),
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1 2+4+2cos(27UtVa) _,u 244cos(27UVa) _
= — + e 2+
16 16 16
2+2c0s(27V ) s 1 o\ 7 (W
o ) Mo (3)

GEO)

Following the same steps as before, we obtain the normalized coeflicients:

_ V2
8+ 8(cos(2-UtDa)’
it = nyfy = 2 ),
cos(2- Ut q)
hif2) = 2v/2(2cos(2-U+tVa) 4 1)
/ 8 + 8(cos(2- U+ ha)

h;[0] = hy[4]

As before, let us assume that %j[—l],%j [0],%[1],% [2],%1- [3],%[4]7%]-[5] are
the filters coefficients of dual scaling functions. Moreover, to ensure that the
dual scaling functions are symmetric, we set

~ ~ ~ ~

hyl=1] = hy[5),  hy[0] = hy[4],  hy[1] = hy(3).

23 [5] + 2 4] + 23] + oy [2] = V2. (31)
Using (10), we find, for & = 0,

%j [4] + 2 (cos(2UHVa) 4 1) ;zJj 3] + (2cos(27U+Ya) + 1) Zj 2]
8+ 8(cos(27Ua)

: 32
e (32)
for k=1,
hj[2] + 2 (cos(2-UDa) + 1) (3] + 2 (2cos(2- 0D a) + 1) hy[4]
+2 (cos(2- 0+ Da) + 1) hy[5] = 0, (33)
and for k = 2,
h[4] + 2 (COS(Q_(j+1)a) n 1) h;[5] = 0. (34)

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 704-727
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As in n = 2, we take the following additional condition to simplify the com-

putation:

2
> (“DFh[L -k =0,
k=—4

which implies

~

2h;[5] — 2h;[4] + 2h;[3] — hy[2] = 0. (35)

~ ~

Finally, we find h;[2], Zj (3], h;[4] and %j [5] by the following formulas:

% 1] = %[ = \/5005(2—(1-5-1)0[) +2v2

/ 7 16cos(2-UHDa) + 8cos(27Ta) + 8

~ ~ —6v/2cos(27 Ut D) — /2cos(279a) — 5v2
hilo) = b l4] = e 2 )

16 cos(2-U+Da) + 8cos(277ar) + 8 ’

hj[t] = h;[3]
~ 8v2cos(27UVa) + 7v2cos(277a) + 2v/2 cos(327 U a) + 3/2
B 56 cos(2-U+tNa) + 32 cos(277a) + 8 cos(32~ U+t Da) 4 32 ’

2[2] B 10v/2 cos(2- UV a) + 3v/2 cos(277 ) + 72
7 8cos(2-UtDa) +4cos(27 ) + 4

3.4 Fifth order cardinal Chebyshev B-splines

Let A\ = ((51,62), where 61 = ()\1, )\2,)\3) = (0,0,0), 62 = ()\4,)\5) = (—ia,ia),

and
N;(x) = N531 * N522 (x).
Then we assume that

wj(t) = N3—5,\(1). (36)

Therefore,

—_—

@(W) = Nzgfjal (W)szjgg (W)ﬂ

]. : ;W
=33 (1 + (14 4cos(270HDqa)e %
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270t ) 4+ 2cos(277 ar))e ™
270t 0) 4+ 2cos(277a))e VT

+ (44 4 cos(
+ (44 4 cos(

5

+(1+ 4COS(2_(j+1)a)e—2iw 4o

(G

So, the normalized coefficients are given by

N—
A
;4

~
| E
N——

hl0] = hy15) = 12+16 cos(Q(J”:{)ia) +4cos(277a)’
hyll] = by = Y2+ cos2 U a)
! / 12 4+ 16 cos(2-U+Da) + 4cos(2-7a)’
hif2] = hi[3] = 2v/2(2 + 2cos(2_.(-7'+1)a) + COS(Q_J:Oz)).
! / 12 + 16 cos(2- UtV a) + 4 cos(27 )

We assume that h;[—1], h;[0], k;[1], k;[2], h;[3], h;[4], h;[5], and h;[6] are
the filters coefficients of dual scaling functions. Moreover, to ensure that the
dual scaling functions are symmetric, we put

hil=1) = hl6), hyl0] = hyls), k[l =hyl4), Byl =hyl3)
The relation (14) implies

23] + 2h;[4] + 2h;[5] + 2h,[6] = V2. (37)
Using (10), we find, for & =0,

(4+4cos(27Uta) + 2 cos(2_joz))%j 3] + (1 + 4005(2_(j+1)a)%j [4] + %j [5]
124 16cos(27UHa) + 4 cos(277a)
- 273 ,

(38)

for k=1,

~

(2+ 4cos(27(j+1)oz)i~zj 3] + (44 4cos(27UFYa) 4 2cos(277a)) b [4]
+ (44 4cos(270HDa) + 2 cos(277a)) 5] + (1 + 4 cos(2-GHD ) h[6]

=0, (39)

and for k = 2,
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~

h4] + (1 + 4 cos(2-0+Va)h, 5]
+ (44 4cos(270HVa) + 2 cos(27a) ) by [6] = 0. (40)

~

Finally, we find h;[3], h;[4], h;[5], and h;[6] by the following formulas:

~

hyl=1] = hy[6] = 0,

Y 0l = 5] — 2v/2cos(2- U a) + /2
][ ] - J[ } - 12COS(2—(j+1)a) +4cos(32_(j+1)a)’
= ) —6V2eos2-UHa) — 4B eos(27a) — 52
][ ] - J[ ] - 12 COS(Q_(J'H)Q) T 4cos(3 2—(j+1)a) s
hi[2) = hy[3)

~ 5v2c0s(270Va) 4+ 2v/2cos(27a) + v2cos(327 U a) +2¢/2
B 6 cos(2-UtDa) + 2cos(32-U+Da) :

3.5 Sixth order cardinal Chebyshev B-splines

Let A = (51,52), where (51 = ()\1,)\2,/\3) = (0,0,0), 52 = (/\4,)\5,)\6) =

(0, —ic, i), and
N3 (z) = Nj, = Nj ().
Then, we assume that

@i (t) = N3_\(1). (41)

Therefore,

Bi(w) = N5 (@)NG 5, (@),
- 6i4 (14 2+ dcos(270+Da))e™% + (5 + Scos(2” 0+ Va)
+2c08(2 7 a))e ™ +(8+ Beos(2” U a) + deos(2Va))e " E
+ (5 +8cos(27U N a) 4+ 2cos (277 ) )e 2w

+(2 + 4cos(27 0D a))e % + 6_3“"> N9, (E)

2
(37 ()
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Thus, the normalized coefficients are expressed as

l0] = hyf6] = v
T 24 4 32c08(2- G a) + 8cos(277 )’
B[] = hy[5] = 2v2 (1 +2cos(27UHDa))
T 924 432 cos(2- U a) 4+ 8cos(27 )’
V2 (5 +8cos(27UHa) + 2 cos(277 )
h][Q} = h][4] = —G+1) "y )
24 + 32cos(2=UtDa) + 8cos(277 )
22 (4 +4 cos(2_(j+1)a) +2 cos(2_ja))
h;[3] = —D ~
24 + 32 cos(2=UtDa) 4+ 8cos(277 )
As in previous instances, let us assume that ,}\Ijj[—l], ;LJ]- [0], Nj[l}, Ej 2], }sz 3],

h[4], hy[5], h;]6], and f;[7], where
hi[=1] = h;[7],  h;[0] = hy[6],  h;[1] = hy[5],  h;[2] = hy[4].
The relation (14) implies

~ ~ ~ ~

h[3] + 2h;[4] + 2h;[5] + 2h;[6] + 2h;[7

Il
N
—
N
S
-

Using (10), we find, for k=0

(4+4cos(27U+Ya) + 2cos(2 7)) ;;/j 3] + (5 + 8cos(2~ U Na) + 2cos(277 ) isz [4]

: > ~ 24 + 32 cos(2-U+D) (2
+ (24 dcos(20Da)) By [5] + by 6] = 22320 2\/;%H&:os( @)

, (43)
for k=1,

(2 + 4cos(2_(j+1)a)) Ej [3] + (6 +8cos(27Ua) + 2008(2_]@)) gj [4]

+ (8 +8cos(27UVa) + 4cos(2_ja)) Zj [5]

+ (5 +8cos(27UVq) +2 cos(2_ja)> Zj [6]

+ (2 + 4005(2_(j+1)a)> h;[7] = 0, (44)

for k = 2,

~

h[4] + (2 + 4cos(2*<j+1>a)) h;[5]

+ (5 +8cos(27 U a) + 2cos(2*joz)) ,;lj [6]

Iran. J. Numer. Anal. Optim., Vol. 15, No. 2, 2025, pp 704-727



719 Numerical design of nonstationary wavelets: Enhanced filter design ...

~

n (8 +8cos(2-UHVq) + 4cos(2*ja)) h;[7] = 0, (45)
and for k = 3,
h;[6] + (2 + 4cos(2-UDa)) (7] = 0. (46)

We take the following additional condition to simplify the computation:

2

S (~1)Fh[L - K] = 0.

k=—6

Finally, we can derive explicit formulas of Zj 3], Ej [4], ;Lj [5], Zj [6], and 7Lj [7]

as follows:
~ o —8V28% —9v2B8—V28B2 — 2V2
hyl=1] = Ryl = 6432 + 4853 + 16833 + 64323 ’
3 2 + 64552
0= el = 16v/28% + 26282 + 13v/28 + 22822 + V/26P2 + 2v2
g =Bl = 3282 + 2453 4 8833 + 328282 + 32802 ’
T —8v28 - fﬁz*fmf
h;[1] = h;[5] = 8, 1 8
hjl2) = hyl4)
—16v/28% — 18v/258% — 7v/2B + 2v/2BB2 + 6128282 + Tv2BB2 — 2\f
32832 + 248 + 8832 + 3258282 + 328032
s = 64/28° + 112v/252 + 51v/28 + 62853 + 40v28% B2 + 33v/28B2 + 2\f
! 3252 + 24P + 8653 + 326252 + 32652
where

B = cos (2*(]*1)04) , P2 =cos (Z*ja) .

The figures presented below (Figure 1) illustrate the scaling and wavelet

functions associated with the previously obtained biorthogonal filter banks.

4 Application of nonstationary biorthogonal filter banks

for image compression

In this section of our comparative study, we analyze the performance of
nonstationary biorthogonal filter banks, derived in the previous section with

parameters n = 6, in comparison to the widely used Daubechies biorthogonal
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n==6

Figure 1: Curves of scaling functions and wavelet functions

filter bior bior 3.3, bior 4.4, and bior 5.5 [3]. The evaluation is conducted
using the peak signal-to-noise ratio (PSNR) quality measure. The images
considered in our study include pepper, bamboo, Barbara, lighthouse, boat,

X-ray, and a textured image. The results of our analysis are presented in

Table 1:
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Table 1: Comparison of PSNR values for different images using stationary and nonsta-
tionary biorthogonal filter banks (PS-NS).

Filter Optimal
bior bior bior value
3.3 4.4 5.5 PS-NS of «
Image
Pepper
373.0289 | 321.8209 | 317.6718 | 377.4309 0.4
image
Bamboo
. 373.3974 | 312.1773 | 310.2757 | 376.0176 1.4
image
Barbara
370.5101 | 312.7138 | 311.3224 | 373.5105 1.4
image
Lighthouse
368.791 | 315.1341 | 312.1767 | 372.6814 3
image
Boat
. 369.5577 | 316.4587 | 312.8915 | 372.7301 0.1
image
X-ray
374.7837 | 321.2239 | 317.7600 | 379.4312 0.4
image
Textured
. 372.4533 | 309.4582 | 305.5483 | 375.9778 1.3
image

Nonstationary filters optimized with an adaptive parameter « consistently
offer better image reconstruction quality, as measured by a higher PSNR.
Although the improvement varies depending on the image, this demonstrates
the potential of nonstationary filters to outperform traditional biorthogonal

approaches in terms of reconstruction fidelity.

In this section, we further analyze the effectiveness of these filter banks in
image compression. Beyond the PSNR measure discussed earlier, we evaluate
compression performance by quantifying the number of zeros introduced in
the processed image. A higher count of zeros signifies greater compression

efficiency, as it indicates a substantial reduction in redundant information
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while retaining key image details. This metric is crucial for minimizing file
size while maintaining satisfactory visual quality.

For each image, the parameter « is optimized to maximize the number
of zeros, ensuring the best compression performance for the specific image.
Thresholds are selected adaptively based on the characteristics of each im-
age, striking a balance between maintaining visual quality and enhancing
compression efficiency.

Table 2: Comparison of the number of zeros in the image after compression using sta-

tionary and nonstationary biorthogonal filter banks (PS-NS).

Filter Optimal
bior bior bior value of
Image 3.3 4.4 5.5 PS-NS o}
Threshold
0.01 200271 | 195713 | 197236 | 202269 3.4
Pepper 0.05 201226 | 202617 | 204126 | 203773 5.5
. 0.1 201408 | 202871 | 204126 | 205864 5.6
Image 0.15 201698 | 203119 | 204618 | 207672 5.6
0.2 202298 | 203660 | 205135 | 207453 5.4
0.1 205408 | 203566 | 203099 | 203737 0.1
Bamboo 0.2 217290 | 217299 | 218389 | 218952 0.1
. 0.3 223279 | 223417 | 224895 | 226805 7.9
image 0.4 227922 | 228209 | 229755 | 232402 7.9
0.5 232562 | 233066 | 234571 | 236767 7.9
0.1 193788 | 193613 | 194121 | 195190 0.1
Barbara 0.2 199199 | 199351 | 200434 | 203116 0.2
. 0.3 203980 | 203945 | 204867 | 208590 7.8
mage 0.4 209261 | 209146 | 210240 | 214263 7.9
0.5 213573 | 213464 | 214480 | 218510 7.9
0.1 200554 | 200951 | 201971 | 202509 0.2
Lighthouse 0.15 201904 | 202386 | 203638 | 204443 2.3
; 0.2 202665 | 203358 | 204573 | 205806 2.5
image 0.25 203531 | 204284 | 205498 | 206993 3
0.3 204524 | 205309 | 206534 | 208083 3
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0.15 202593 | 203857 | 205311 | 206093 5.3

Boat 0.3 206465 | 207617 | 208973 | 210035 7.4
0.45 209932 | 210944 | 212315 | 213802 7.3

image 0.6 212121 | 213224 | 214562 | 217194 7.3
0.75 214717 | 215921 | 217330 | 220750 7.2

0.05 201017 | 202083 | 203617 | 203654 4.6

X-ray 0.1 201263 | 202711 | 204266 | 206469 4.8
. 0.15 201330 | 202797 | 204349 | 209284 4.8
Image 0.2 232677 | 234175 | 235987 | 238573 4.5
0.25 238801 | 240088 | 241793 | 244086 7.4

0.05 202284 | 197225 | 197596 | 206985 0.1

Textured 0.1 211203 | 208244 | 207600 | 212592 0.1
. 0.15 216815 | 215130 | 214592 | 217219 0.1
1mage 0.2 221580 | 220335 | 219984 | 221975 0.1
0.25 225770 | 225134 | 225145 | 226346 0.1

The nonstationary filter consistently outperforms all other filters, achiev-
ing the highest number of zeros across all threshold values and images. This
performance is particularly notable when compared to bior 5.5, highlighting
its superior effectiveness in compression (Table 2).

The figures presented below (Figure 2-8) provide a qualitative evalua-
tion of the reconstructed images after compression using the nonstationary
biorthogonal filter bank PS-NS. These visualizations validate the filter’s
capability to achieve high compression efficiency without compromising per-

ceptual image quality.

(a) Original pepper image. (b) Reconstructed pepper im-(c) Reconstructed pepper im-

age for th = 0.01 and a = 3.4.age for th =0.2 and o = 5.
Figure 2: Visualization of the original pepper image and its reconstructions with non-

stationary filter.
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(a) Original mandrill image. (b) Reconstructed mandrill(c) Reconstructed mandrill im-
image for th = 0.1 and o = 0.1.age for th = 0.5 and o = 7.9.
Figure 3: Visualization of the original mandrill image and its reconstructions with non-

stationary filter.

(a) Original Barbara image. (b) Reconstructed Barbara im-(c) Reconstructed Barbara im-

age for th = 0.1 and a = 0.1. age for th =0.5 and o = 7.9.
Figure 4: Visualization of the original Barbara image and its reconstructions with non-

stationary filter.

(a) Original lighthouse image.(b) Reconstructed lighthouse(c) Reconstructed lighthouse
image for th = 0.1 and a = 0.2.image for th = 0.3 and « = 3.

Figure 5: Visualization of the original lighthouse image and its reconstructions with

nonstationary filter.
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(a) Original boat image.  (b) Reconstructed boat image(c) Reconstructed boat image

for th = 0.15 and « = 5.3. for th =0.75 and o = 7.2.
Figure 6: Visualization of the original boat image and its reconstructions with nonsta-

tionary filter.

(a) Original X-ray image. (b) Reconstructed X-ray im-(c) Reconstructed X-ray im-
age for th = 0.2 and a = 4.5. age for th =0.25 and o = 7.4.

Figure 7: Visualization of the original X-ray image and its reconstructions with nonsta-

tionary filter.

(a) Original textured image. (b) Reconstructed textured(c) Reconstructed textured im-

image for th = 0.2 and o = 0.1.age for th = 0.25 and « = 0.1.

Figure 8: Visualization of the original textured image and its reconstructions with non-

stationary filter.
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5 Conclusion

In conclusion, nonstationary biorthogonal wavelets are powerful tools for sig-
nal analysis, with recent advancements showcasing the utility of cardinal
Chebyshev B-splines in their construction. The proposed method simplifies
filter design by explicitly formulating filters and dual filters at all scaling lev-
els, enabling efficient implementation through numerical methods like Gauss
elimination or LU factorization. This streamlined approach, combined with
the practical applications of nonstationary wavelets, underscores their impor-
tance in image processing.

Filters based on cardinal Chebyshev B-splines offer potential improve-
ments in compression quality and computational efficiency, although perfor-
mance may depend on the specific characteristics of the images processed.

Future research could focus on optimizing the method for high-dimensional
data and integrating it into machine learning workflows, broadening the
applicability of nonstationary wavelets across scientific and engineering do-

mains.
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