- Abdellatif, A. S. A. (2018). Chemical and technological evaluation of quinoa (Chenopodium quinoa) cultivated in Egypt. Acta Scientific Nutritional Health, 2, 42-53.
- Ahmad, P., Abass Ahanger, M., Nasser Alyemeni, M., Wijaya, L., Alam, P., & Ashraf, M. (2018). Mitigation of sodium chloride toxicity in Solanum lycopersicum by supplementation of jasmonic acid and nitric oxide. Journal of Plant Interactions, 13(1), 64-72. https://doi.org/10.1080/17429145.2017.1420830
- Akbari, M., Toorchi, M., & Shakiba, M. R. (2016). The effects of sodium chloride stress on proline content and morphological characteristics in wheat (Triticum aestivum). Biological Forum, 8(1), 379-385.
- Alan, B. (2011). Quinoa an ancient crop to contribute to world food security. 37th FAO Conference.
- Albaladejo, I., Egea, I., Morales, B., Flores, F. B., Capel, C., & Lozano, R. (2018). Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery inducedby salt stress through transcriptomic analysis. BMC Plant Biology, 18(1), 1-19. https://doi.org/10.1186/s12870-018-1436-9
- AOAC. (1999). In: P. Cunnif (Ed.). Official methods of analysis of the association of officialanalytical chemist’s 16th AOAC International Gaithersburg MD USA.
- Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
- Bates, L. S., Waldren. R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060
- Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa - An Indian perspective. Industrial Crops and Products, 23(1), 73-87. https://doi.org/10.1016/j.indcrop.2005.04.002
- Buxton, D. R., & Brasche, M. R. (1991). Digestibility of structural carbohydrates in cool‐season grass and legume forages. Crop Science, 31(5), 1338-1345.
- Cheraghi, M., Hatamnia. A. A. & Ghanbari, F. (2023). Effects of salinity stress on calendula (Calendula officinalis) by exogenous application of melatonin. Plant Process and Function, 12(54), 21-37. (in Persian with English abstract)
- Chien, S. W. C., Liao, J. H., Wang, M. C., & Mannepalli, M. R. (2009). Effect of Cl−, SO42− and fulvate anions on Cd2+ free ion concentrations in simulated rhizosphere soil solutions. Journal of Hazardous Materials, 172(2-3), 809-817. https://doi.org/10.1016/j.jhazmat.2009.07.076
- Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241-248. https://doi.org/10.1016/j.plantsci.2004.07.039
- de Oliveira, V. P., Lima. M. D. R., da Silva, B. R. S., Batista, B. L., & da Silva Lobato, A. K. (2019). Brassinosteroids confer tolerance to salt stress in Eucalyptus urophylla plants enhancing homeostasis antioxidant metabolism and leaf anatomy. Journal of Plant Growth Regulation, 38, 557-573. https://doi.org/10.1007/s00344-018-9870-3
- Deyantitilki, G. A., Salehi, S., & Sadati, E. (2015). Effect of salinity stress (Na2SO4) on forage quality of Medicago polymorpha and Medicago scutelata. Watershed Management Researches (Pajouhesh-va-Sazandegi), 28(107), 57-65.
- FAO. (2024). https://www.fao.org/faostat/en/#data/QCL
- Farzi-Aminabad, R., Nasrollah Zadeh, S., & Ghassemi-Golezani, K. (2021). Response of sunflower in water deficit and foliar application of putrescine and 24-epibrassinolide. Journal of Agricultural Science and Sustainable Production, 31(2), 289-302. (in Persian with English abstract). https://doi.org/10.22034/saps.2021.13110
- Ferreira, J. F., Cornacchione, M. V., Liu, X., & Suarez, D. L. (2015). Nutrient composition forage parameters and antioxidant capacity of alfalfa (Medicago sativa) in response to saline irrigation water. Agriculture, 5(3), 577-597. https://doi.org/10.3390/agriculture5030577
- Firoozeh, R., Khavarinejad, R., Najafi, F., & Saadatmand, S. (2019). Effects of gibberellin on contents of photosynthetic pigments proline phenol and flavonoid in savory plants (Satureja hortensis) under salt stress. Journal of Plant Research (Iranian Journal of Biology), 31(4), 894-908. (in Persian with English abstract). https://dor.isc.ac/dor/20.1001.1.23832592.1397.31.4.12.4
- Fisher, D. S., & Burns, J. C. (1987). Quality analysis of summer‐annual forages. II. Effects of forage carbohydrate constituents on silage fermentation 1. Agronomy Journal, 79(2), 242-248. https://doi.org/10.2134/agronj1987.00021962007900020014x
- Foti, C., Khah, E. M., & Pavli, O. I. (2019). Germination profiling of lentil genotypes subjected to salinity stress. Plant Biology, 21(3), 480-486. https://doi.org/10.1111/plb.12714
- Ghasemi, M., Jahanbin, S., Latifmanesh, H., Farajee, H., & Mirshekari, A. (2021). Effect of brassinolide foliar application on some physiological and agronomic characteristics of sunflower (Helianthus annuus) under drought stress conditions. Journal of Crop Production, 14(1), 31-48. (in Persian with English abstract). https://doi.org/10.22069/ejcp.2021.18084.2339
- Humphreys, M. O. (1999). Water-soluble carbihydradrates in perennial ryegrass breeding. Grass Forage Science, 44, 423-430. https://doi.org/10.1111/j.1365-2494.1989.tb01932.x
- Ismail, A. M., & Horie, T. (2017). Genomics physiology and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology, 68, 405-434. https://doi.org/10.1146/annurev-arplant-042916-040936
- Julkowska, M. M., Koevoets, I. T., Mol, S., Hoefsloot, H., Feron, R., & Tester, M. A. (2017). Genetic components of root architecture remodeling in response to saltstress. The Plant Cell, 29(12), 3198–3213. https://doi.org/10.1105/tpc.16.00680
- Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225(2), 353-364. https://doi.org/10.1007/s00425-006-0361-6
- Kaymakanova, M., & Stoeva, N. (2008). Physiological reaction of bean plants (Phaseolus vulgaris) to salt stress. General and Applied Plant Physiology, 34, 177-188.
- Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
- Lopez-Gomez, M., Hidalgo-Castellanos, J., Lluch, C., & Herrera-Cervera, J. A. (2016). 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. Plant Physiology and Biochemistry, 108, 212-221. https://doi.org/10.1016/j.plaphy.2016.07.017
- Maia Júnior, S. D. O., Andrade, J. R. D., Nascimento, R. D., Lima, R. F. D., Bezerra, C. V. D. C., & Ferreira, V. M. (2022). Brassinosteroid application increases tomato tolerance to salinity by changing the effects of stress on membrane integrity and gas exchange. Acta Scientiarum Agronomy, 44, 1-12. https://doi.org/10.4025/actasciagron.v44i1.55647
- Masters, D., Tiong, M., Vercoe, P., & Norman, H. (2010). The nutritive value of river saltbush (Atriplex amnicola) when grown in different concentrations of sodium chloride irrigation solution. Small Ruminant Research, 91(1), 56-62. https://doi.org/10.1016/j.smallrumres.2009.10.019
- Mc Donald, P., Edwards, R. A., Greanhalgh, J. F. D., & Morgan, C. A. (1995). Animal Nutrition. Addison Wesley Longman Inc. UK. ISE reprint. 607.
- Melchiorre, M., Quero, G. E., Parola, R., Racca, R., Trippi, V. S. & Lascano, R. (2009). Physiological characterization of four model Lotus diploid genotypes: japonicus (MG20 and Gifu) L. filicaulis and L. burttii under salt stress. Plant Science, 177(6), 618-628. https://doi.org/10.1016/j.plantsci.2009.09.010
- Mezni, M., Albouchi, A., Bizid, E., & Hamza, M. (2010). Minerals uptake organic osmotica contents and water balance in alfalfa under salt stress. Journal of Phytology, 2(11), 1-12.
- Mohammadi Khalifelouiy, Z., Abbasifar, A. R., Khadivi, A., & Akramian, M. (2020). The effect of proline and 24-epibrassinolide on growth indices and biochemical characteristics of the summer savory (Satureja hortensis). Journal of Plant Research (Iranian Journal of Biology), 32(4), 925-940. (in Persian with English abstract). https://dor.isc.ac/dor/20.1001.1.23832592.1398.32.4.10.9
- Oliveira Neto, C. F. D., Lobato, A. K. D. S., Gonçalves-Vidigal, M. C., Costa, R. C. L. D., Santos Filho, B. G. D., Alves, G. A. R., & Lopes, M. S. (2009). Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Journal of Food Agriculture & Environment, 7(3,4), 588-593.
- Otie, V., Udo, I., Shao, Y., Itam, M. O., Okamoto, H., An, P., & Eneji, E. A. (2021). Salinity effects on morpho-physiological and yield traits of soybean (Glycine max) as mediated by foliar spray with brassinolide. Plants, 10(3), 541. https://doi.org/10.3390/plants10030541
- Ouji, A., El-Bok, S., Mouelhi, M., Younes, M. B., & Kharrat, M. (2015). Effect of salinity stress on germination of five Tunisian lentil (Lens culinaris ) genotypes. European Scientific Journal, 11(21), 63-75.
- Panda, D., Ghosh, D. C., & Kar, M. (2013). Effect of salt stress on the pigment content and yield of different rice (Oryza sativa) genotypes. InternationalJournal of Bio-resource and Stress Management, 4(3), 431-434.
- Parvin, K., Hasanuzzaman, M., Bhuyan, M. B., Mohsin, S. M., & Fujita, M. (2019). Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants, 8(8), 247. https://doi.org/10.3390/plants8080247
- Pavli, O. I., Foti, C., Skoufogianni, G., Karastergiou, G., & Panagou, A. (2021). Effect of salinity on seed germination and seedling development of soybean genotypes. International Journal of Environmental Sciences and Natural Resources, 27(2), 556210. https://doi.org/10.19080/IJESNR.2021.27.556210
- Pourasadollahi, A., Siosemardeh, A., Hosseinpanahi, F., & Sohrabi, Y. (2020). Effect of spraying of growth regulators on water use efficiency some osmolites and physiological traits of potato in drought stress conditions. Plant Process and Function, 9(35), 329-345. (in Persian with English abstract)
- Pulvento, C., Jacobsen, S. E., Alandia, G., Prins, U., Andria, R., Sellami, M. H., Grimberg, A., Carlsson, A. S., Capannini, S., & Lavini, A. (2016). Evaluation of quinoa adaptability under European conditions to enhance high quality food protein production. In Proceedings of the Quinoa for Future Food and Nutrition Security in Marginal Environments Conference Dubai United ArabEmirates. 28.
- Qiu, Y., Wang, Y., Fan, Y., Hao, X., Li, S., & Kang, S. (2023). Root yield and quality of alfalfa affected by soil salinity in northwest China. Agriculture, 13(4), 750. https://doi.org/10.3390/agriculture13040750
- Rady, M. M. (2011). Effect of 24-epibrassinolide on growth yield antioxidant system and cadmium content of bean (Phaseolus vulgaris) plants under salinity and cadmium stress. Scientia Horticulturae, 129(2), 232-237. https://doi.org/10.1016/j.scienta.2011.03.035
- Ramaswamy, A., & Seeta, R. R. S. (2018). Effect of salinity stress on seedling growth of sunflower (Helianthus annuus) genotypes. International Journal of Biology Research, 3(1), 70-75.
- Ruiz, K. B. S., Biondi, R., Oses, I. S., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Molina-Montenegro, M. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., & Bazile, D. (2014). Quinoa biodiversity and sustainabilityfor food security under climate change. A review. Agronomy for Sustainable Development, 34, 349-359. https://doi.org/10.1007/s13593-013-0195-0
- Sasse, J. M. (2003). Physiological actions of brassinosteroids: An update. Journal of Plant Growth Regulation, 22(4), 276-288. https://doi.org/10.1007/s00344-003-0062-3
- Shamon, M. S., El-Awadi, M. E., Gergis, M. D., & El-Rorkiek, G. A. (2020). Physiological role of brassinosteroids and cauliflower extract on quinoa plant grown under sandy soil. Asian Journal of Applied Sciences, 13(2), 68-75. https://doi.org/10.3923/ajaps.2020.68.75
- Shin, Y. K., Bhandari, S. R., Cho, M. C., & Lee, J. G. (2020). Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture Environment and Biotechnology, 61, 433-443. https://doi.org/10.1007/s13580-020-00231-z
- Singh, M., Singh, V. P., & Prasad, S. M. (2019). Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. Plant Physiology and Biochemistry, 141, 466-476. https://doi.org/10.1016/j.plaphy.2019.04.004
- Su, Q., Zheng, X., Tian, Y., & Wang, C. (2020). Exogenous brassinolide alleviates salt stress in Malus hupehensis by regulating the transcription of NHX-Type Na+(K+)/H+ antiporters. Frontiers in Plant Science, 11(38), 1-13. https://doi.org/10.3389/fpls.2020.00038
- Suyama, H., Benes, S. E., Robinson, P. H., Grattan, S. R., Grieve, C., & Mand Getachew, G. (2007). Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation. Agricultural Water Management, 88(1-3), 159-172. https://doi.org/10.1016/j.agwat.2006.10.011
- Swamy, K., Rao, N. S., & Ram, S. (2010). Effect of brassinosteroids on rooting and early vegetative growth of Coleus [Plectranthus forskohlii (Willd.) Briq.] stem cuttings. Indian Journal of Natural Products Resources, 1(1), 68-73.
- Tavoosi, M., Anafjeh, Z., & Mahdavi Majd, J. (2021). Effect of different salinity levels on germination indices of 20 new quinoa genotypes. Environmental Stresses in Crop Sciences, 14(3), 837-847. https://doi.org/10.22077/escs.2020.2987.1772
- Tawaha, K., Alali, F. Q., Gharaibeh, M., Mohammad, M., & El-Elimat, T. (2007). Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chemistry, 104(4), 1372-1378. https://doi.org/10.1016/j.foodchem.2007.01.064
- Teakle, N. L., & Tyerman, S. D. (2010). Mechanisms of Cl‐transport contributing to salt tolerance. Plant Cell and Environment, 33(4), 566-589. https://doi.org/10.1111/j.1365-3040.2009.02060.x
- Tokas, J., Punia, H., Malik, A., Sangwan, S., Devi, S., & Malik, S. (2021). Growth performance nutritional status forage yield and photosynthetic use efficiency of sorghum [Sorghum bicolor (L.) Moench] under salt stress. Range Management and Agroforestry, 42(1), 59-70.
- Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58, 339-366. https://doi.org/10.1007/BF02180062
- Vardhini, B. V. (2012). Application of brassinolide mitigates saline stress of certain metabolites of sorghum grown in Karaikal. Journal of Phytology, 4(2). 1-4.
- Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 1-10. https://doi.org/10.1186/s12870-016-0771-y
- Wani, A. S., Tahir, I., Ahmad, S. S., Dar, R. A., & Nisar, S. (2017). Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Scientia Horticulturae, 225, 48-55. https://doi.org/10.1016/j.scienta.2017.06.063
- Wu, W., Zhang, Q., Ervin, E. H., Yang, Z., & Zhang, X. (2017). Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science, 8, 1017, 1-11. https://doi.org/10.3389/fpls.2017.01017
- Wu, X. X., Ding, H. D., Zhu, Z. W., Yang, S. J., & Zha, D. S. (2012). Effects of 24-epibrassinolide on photosynthesis of eggplant (Solanum melongena) seedlings under salt stress. African Journal of Biotechnology, 11(35), 8665-8671. http://doi.org/10.5897/AJB11.3416
- Xue-feng LIN, L. X., Hong-tao XIE, X. H., Mu-kui Yu, Y. M., & Shun-Wei Chen, C. S. (2018). Morphological and physiological response and salt-tolerance differences of three coastal plants under salt stress. Forest Research, Beijing, 31(3), 95-103.
- Yang, A. J., Anjum, S. A., Wang, L., Song, J. X., Zong, X. F., Lv, J., & Wang, S. G. (2018). Effect of foliar application of brassinolide on photosynthesis and chlorophyll fluorescence traits of Leymus chinensis under varying levels of shade. Photosynthetica, 56, 873-883. https://doi.org/10.1007/s11099-017-0742-z
- Yusuf, M., Fariduddin, Q., Khan, T. A., & Hayat, S. (2017). Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. South African Journal of Botany, 112, 391-398. https://doi.org/10.1016/j.sajb.2017.06.034
- Zahedi, S. M., Asgarian, Z. S., Gholami, R., & Karami, F. (2019). Effect of 24- epibrassinolide foliar application on the “Camarosa” strawberry plant growth and fruit yield under salinity stress condition in soilless culture. Journal of Plant Production Research,26(1), 169-183. (in Persian with English abstract). https://doi.org/10.22069/jopp.2019.14493.2300
- Zhang, J., Jia, W., Yang, J., & Ismail, A. M. (2006). Role of ABA in integratingplant responses to droughtandsaltstresses. Field Crops Research, 97(1), 111-119. https://doi.org/10.1016/j.fcr.2005.08.018
- Zhang,, & Dai, W. (2019). Plant response to salinity stress. In Stress, Physiology of Woody Plants. 155-173. CRC Press. https://doi.org/10.1201/9780429190476
- Zheng, Q., Liu, J., Liu, R., Wu, H., Jiang, C., Wang, C., & Guan, Y. (2016). Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance. Plant and Soil, 400, 147-164. https://doi.org/10.1007/s11104-015-2712-1
|