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Abstract

This study aims to address a specific class of mathematical problems known
as fractional integro-differential equations. These equations are used to
model various phenomena„ including heat conduction in materials with
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memory, damping laws, diffusion processes, earthquake models, fluid dy-
namics, traffic flow, and continuum mechanics. This research focuses on
problems where the fractional derivative operator is defined in the Caputo
sense. Our proposed methodology employs an operational approach based
on the use of shifted Jacobi polynomials. We derive operational matrices
for fractional integration and product, which are then applied to approx-
imate solutions for both linear and nonlinear problems. By using these
matrices in conjunction with the collocation method, we transform the orig-
inal problem into a system of algebraic equations. Notably, our approach
is simpler and more cost-effective compared to established methods such
as Adomian decomposition, Homotopy perturbation, Sinc-collocation, and
Legendre wavelet techniques. We provide several illustrative examples to
validate our method’s effectiveness and reliability. Additionally, we present
theorems concerning the existence of a unique solution and the convergence
of our proposed approach.

AMS subject classifications (2020): Primary 33C45; Secondary 65D15, 34K37,

45J05.

Keywords: Fractional integro-differential equation; Caputo derivative op-
erator; Jacobi polynomials; Operational matrices; Convergence.

1 Introduction

Fractional calculus has gained significant attention from mathematicians and
engineers in recent decades due to the widespread use of fractional integral
and derivative operators in various disciplines and engineering applications
[22, 18, 19, 27, 4]. These operators are relevant in modeling numerous physical
phenomena, including heat conduction in materials with memory, damping
laws, diffusion processes, earthquake models, fluid dynamics, traffic flow, con-
tinuum mechanics, chemistry, acoustics, and psychology [22, 18, 19, 27, 4].
Functional equations of fractional order, such as fractional integro-differential
equations (FIDEs), are crucial for accurately modeling these phenomena.
The derivatives in these equations typically appear in the Riemann–Liouville
and Caputo senses. The Caputo derivative is especially favored in prac-
tice due to its physically interpretable initial conditions, which resemble
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those of integer-order differential equations. In contrast, initial conditions
derived from the Riemann–Liouville derivative lack a clear physical interpre-
tation [22, 18, 19, 27, 4]. FIDEs arise in various scientific and engineering
fields, such as viscosity measurement in oil exploration, continuum and sta-
tistical mechanics, chemical kinetics, fluid dynamics, and biological models
[12, 11, 23, 26]. Understanding the properties and physical nature of these
equations is crucial, leading many researchers and mathematicians to de-
velop or refine methods for solving integro-differential equations with frac-
tional derivatives. However, solving these equations presents both analytical
and numerical challenges, driving the search for effective methods. In this
context, Huang et al. [22] extended the Taylor method to solve a gener-
alization of fractional differential, Fredholm integral, and Volterra integral
equations. Authors in [16, 15] developed the Homotopy perturbation method
to solve both linear and nonlinear FIDEs. The Homotopy analysis method
has been applied to solve linear FIDEs in [1], while in [24], the Chebyshev
pseudo-spectral method was used to solve systems of FIDEs of the Volterra
type. In [25], the authors presented three numerical schemes for solving lin-
ear FIDEs. Mokhtary [29] applied a discrete Galerkin method to solve linear
FIDEs. Laguerre polynomials and a collocation method were developed in
[49] to solve fractional linear Volterra integro-differential equations. Nazari,
Shahmorad, and Jahanshahi [31] proposed a quadrature method for solving
nonlinear FIDEs of the Hammerstein type. Babaei, Jafari, and Banihashemi
[5] introduced a collocation approach based on sixth-kind Chebyshev poly-
nomials to reduce variable-order FIDEs to a system of algebraic equations
and determined an approximate solution. Darweesh, Al-Khaled, and Al-
Yaqeen [9] used the Laplace Haar wavelet method to solve systems of linear
fractional Fredholm integro-differential equations and evaluated the rate of
convergence.

Among the many numerical methods developed, spectral methods are
particularly notable for their high accuracy and ease of implementation.
These methods, including Galerkin, collocation, and tau methods, involve
expressing the solution to a functional equation as a linear combination of
basis functions, which transforms the original equation into a discrete al-
gebraic form. In this context, Rahimkhani, Ordokhani, and Babolian [34]
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employed a Bernoulli wavelet operational approach to solve fractional delay
differential equations. In [35], the authors introduced generalized fractional-
order Bernoulli wavelet functions to obtain numerical solutions for fractional-
order pantograph differential equations. In [37], a new technique based on
Muntz–Legendre functions and their operational matrices was proposed to
solve fractional-order pantograph equations. Bernoulli wavelet functions
were also applied to solve delay fractional-order optimal control problems
in [33]. Rahimkhani, Ordokhani, and Babolian [36] utilized fractional-order
Bernoulli functions to achieve numerical solutions for fractional Fredholm–
Volterra integro-differential equations. Rahimkhani and Ordokhani [32] used
a Bernoulli wavelet collocation method to solve fractional-order partial dif-
ferential equations. The Bernstein collocation method was developed in [41]
to solve Sylvester matrix differential equations. A method combining Bell
polynomials and the Galerkin approach was proposed to address fractional
optimal control problems [43]. Sadek and Bataineh [40] presented generalized
Bernstein functions and the collocation method to approximate solutions for
χ-fractional differential equations. Jacobi orthogonal polynomials are widely
used as basis functions in spectral methods. For example, shifted Jacobi
polynomials have been employed alongside spectral tau and collocation meth-
ods to solve linear and nonlinear multi-term fractional differential equations
[13]. Similarly, the shifted Chebyshev spectral tau method has been used
to construct numerical solutions for linear multi-order fractional differential
equations [6]. A new numerical approach for solving fractional-order panto-
graph partial differential equations was introduced in [52] by utilizing two-
variable Gegenbauer polynomials. The Lucas wavelets, combined with the
Legendre–Gauss quadrature rule and modified operational matrices for inte-
gration and pseudo-operational fractional derivatives, were used to study the
solution of fractional Fredholm–Volterra integro-differential equations [10].
Hosseininia, Heydari, and Avazzadeh [21] proposed the use of orthonormal
shifted discrete Legendre polynomials and the collocation method for solving
the variable-order fractional extended Fisher–Kolmogorov equation. A finite
class of Romanovski–Jacobi polynomials was used as basis functions in the
spectral tau method to approximate solutions to time-fractional partial dif-
ferential equations on a semi-infinite interval [3]. Shifted Jacobi polynomials
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were employed by Heydari, Zhagharian, and Razzaghi [20] to find numeri-
cal solutions to one- and two-dimensional stochastic multi-order fractional
diffusion-wave equations. In [2], shifted Jacobi polynomials and a fractional-
order shifted Jacobi–Gauss collocation method were applied to solve FIDEs
with weakly singular kernels. In [51], shifted sixth-kind Chebyshev polyno-
mials, combined with the collocation method, were used to convert systems
of FIDEs with weakly singular kernels into algebraic systems, allowing for
approximate solutions. Authors in [7] employed shifted Jacobi polynomials
with an operational collocation method to obtain approximate solutions to
a class of weakly singular FIDEs. Ebrahimi and Sadri [14] solved fractional-
order pantograph differential equations by introducing fractional-order Ja-
cobi functions based on Jacobi polynomials, presenting a relationship between
the basis functions with delay and the original Jacobi polynomials. These
examples highlight the versatility and effectiveness of spectral methods in
solving FIDEs and related problems.

In this paper, we extend the use of classical orthogonal Jacobi polyno-
mials to solve both linear and nonlinear integro-differential equations with
fractional orders of arbitrary nature. Specifically, we focus on three distinct
types of these equations:

D
ν
y(t)+h(t) y(t)+

∫ t

0

k(t, s) y(s) ds+

∫ t

0

k̃(t, s)D
γ
y(s) ds = f(t), 0 ⩽ t ⩽ 1, 0 < γ < ν ⩽ m,

y′′(t) + h(t) y′(t) + g(t)Dνy(t) +

∫ t

0

k(t, s) y(s) ds = f(t), 0 ⩽ t ⩽ 1, 0 < ν < 2,

Dνy(t) + h(t) y(t) + λ1

∫ t

0

k(t, s) y2(s) ds+ λ2

∫ 1

0

k̃(t, s) y2(s) ds = f(t), 0 ⩽ t ⩽ 1.

Under appropriate initial conditions, let ν, γ ∈ R, m ∈ Z+, and f, g, h, k,
and k̃ be known and continuous real-valued functions. The function y is
unknown, and λ1 and λ2 are real numbers. As the first step in our solution
approach, we derive the fractional operational matrices for integration and
multiplication through straightforward algebraic computations, thus reduc-
ing computational costs. These resulting matrices and approximations are
then substituted into the original problem, transforming it into a correspond-
ing system of algebraic equations. This system is subsequently collocated at
the N + 1 roots of the N + 1th shifted Jacobi polynomials, P (α,β)

N+1 (t), where
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t ∈ [0, 1]. Notably, Jacobi polynomials are parameterized by α and β, both of
which are greater than −1. By varying these parameters, different variants of
this family of orthogonal polynomials can be obtained. Solving the resulting
system gives an approximate solution, denoted as yN (t). For handling non-
linear systems, we employ the well-known Newton’s iteration method. Addi-
tionally, we provide a convergence analysis of our proposed method within a
Jacobi-weighted Sobolev space.

The contributions of this paper can be summarized as follows:

• Enhanced precision compared to existing methods.

• Flexibility in adjusting parameters α and β, enabling investigation into
their impact on obtained solutions.

• Computation of error bounds for resulting approximate solutions within
a Jacobi-weighted Sobolev space.

• Estimation of errors in approximate solutions in scenarios where exact
solutions are unknown, allowing comparison with absolute errors.

The novelty of this research lies in its innovative application of the Jacobi
operational method to solve a wide range of integro-differential equations
(IDEs) featuring fractional derivatives of arbitrary order ν. By harnessing
the versatility of shifted Jacobi polynomials on the interval [0, 1], the study
introduces a novel approach to transforming complex IDEs—both linear and
nonlinear—into more manageable algebraic equations. This method not only
simplifies the solution process but also offers a systematic framework for de-
termining coefficients and constructing operational matrices for fractional in-
tegration and product. Furthermore, the study delves into investigating the
existence, uniqueness, and convergence of solutions, shedding light on the
method’s theoretical underpinnings and practical efficacy. Through illustra-
tive examples and comparative analyses with existing methods, the research
showcases the superior accuracy and computational efficiency of the proposed
approach, positioning it as a promising tool for tackling a broad spectrum of
functional equations. The organization of this paper is as follows:

• Section 1 introduces the topic.
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• Section 2 provides preliminary definitions and concepts of fractional
calculus.

• Section 3 delves into the existence and uniqueness of solutions for the
equations under consideration.

• Section 4 discusses shifted Jacobi polynomials and their properties,
along with deriving their operational matrices of fractional integration
and product.

• Section 5 presents and proves theorems regarding the convergence of
the proposed method.

• Section 6 offers several examples to illustrate the simplicity and effi-
ciency of our proposed method.

• Finally, section 7 contains discussions and conclusions.

2 Preliminaries

Despite the various definitions of fractional-order derivative and integral oper-
ators, such as theΘ-conformable fractional derivatives [39], Caputo cotangent
fractional derivatives [38], Hilfer cotangent fractional derivatives [42], and q-
trigonometric derivatives [44], the Caputo derivative and Riemann–Liouville
integral operators remain popular and widely used. Some definitions and
properties of fractional operators used in this paper are recalled [48].

Definition 1. The Riemann–Liouville fractional integral operator of order
ν > 0 of a function u(t), is defined as

Iνu(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1 u(s) ds, ν > 0, t > 0,

I0u(t) = u(t),

(1)

where Γ(α) is the Gamma function defined as

Γ(α) =

∫ ∞

0

tα−1 exp(−t) dt, Re(α) > 0.
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Definition 2. The fractional derivative operator in the Caputo sense of order
ν > 0 of a function u(t), is given as

D
ν
u(t) = I

m−ν
D

m
u(t) =

1

Γ(m − ν)

∫ t

0

(t − s)
m−ν−1 dm

dsm
u(s) ds, m − 1 < ν ⩽ m, t > 0,

D
0
u(t) = u(t).

(2)

Some properties of the operators Iν and Dν are recalled as follows:

1. Iν1Iν2u(t) = Iν1+ν2u(t),

2. Iν(λ1 u1(t) + λ2 u2(t)) = λ1 I
νu1(t) + λ2 I

νu2(t),

3. Iνtγ = Γ(γ+1)
Γ(ν+γ+1) t

ν+γ , γ > −1,

4. DνIνu(t) = u(t),

5. IνDνu(t) = u(t)−
m−1∑
k=0

u(k)(0+)
k! tk, m− 1 < ν ⩽ m,

6. Dνtγ =

{
0, ν > γ,
Γ(γ+1)

Γ(γ−ν+1) t
γ−ν , otherwise,

7. Dνλ = 0, λ ∈ R,

where ν, ν1, ν2, γ, λ, λ1, λ2 ∈ R.

3 Existence and uniqueness of solution

In this section, we explore various forms of integro-differential equations in-
volving fractional derivatives of arbitrary order. To investigate the existence
of unique solutions and the convergence of our proposed methodology, we
analyze the following FIDE:

Dνy(t)+h(t) y(t)+

∫ t

0

k(t, s) y(s) ds+

∫ t

0

k̃(t, s)Dγy(s) ds = f(t), 0 ⩽ t ⩽ 1,

(3)
where 0 < γ < ν, f(t), h(t), k(t, s), and k̃(t, s), t, s ∈ [0, 1], are continuous real
functions, and the proper initial conditions y(i)(0) = di, i = 0, 1, . . . ,m − 1

exist, where m− 1 < ν ⩽ m.
In this section, the existence of a solution of (3) is established using

the fixed point theorem. Let Y be a Banach space and let C(J, Y ) be the
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Banach space of continuous function y(t) ∈ Y , t ∈ J = [0, 1], with the norm
∥y∥ = max

t∈J
|y(t)|. Moreover, suppose that Br(y, Y ) is a closed ball with center

at y and radius r in Y . By applying the fractional integral operator, (3) will
be converted to the following integral equation:

y(t) = F (t) −
1

Γ(ν)

∫ t

0

(t − s)
ν−1

h(s) y(s) ds −
1

Γ(ν)

∫ t

0

(t − s)
ν−1

∫ s

0

k(s, s
′
) y(s

′
) ds

′
ds

−
1

Γ(ν)

∫ t

0

(t − s)
ν−1

∫ s

0

k̃(s, s
′
)D

γ
y(s

′
) ds

′
ds,

(4)

where

F (t) =

m−1∑
i=0

di t
i

Γ(i+ 1)
+

1

Γ(ν)

∫ t

0

(t− s)ν−1f(s) ds.

Now, suppose that for any given function y(t) ∈ Y and kernels k(t, s), k̃(t, s),
there exist positive constants L,M, M̃ ∈ R such that the following conditions
are satisfied:

∥Dγy(t)∥ ⩽ L ∥y(t)∥, for all t ∈ J,

∥k(t, s)∥ ⩽ M, ∥k̃(t, s)∥ ⩽ M̃, for all (t, s) ∈ J × J.
(5)

Following theorem states the existence of a solution of (3).

Theorem 1. Suppose that ν > 0 ∈ R, that conditions (5) hold, and that
∥h∥/Γ(ν + 1) + (M + M̃L)/Γ(ν + 2) < 1/2, where ∥h∥ = max

t∈J
|h(t)|. Then,

fractional-order integro-differential equation (3) has a unique solution.

Proof. Let W = C(J, Y ), and define a mapping Ψy(t) : W −→ W , as fol-
lows:

Ψy(t) = F (t) −
1

Γ(ν)

∫ t

0

(t − s)
ν−1

h(s) y(s) ds −
1

Γ(ν)

∫ t

0

(t − s)
ν−1

∫ s

0

k(s, s
′
) y(s

′
) ds

′
ds

−
1

Γ(ν)

∫ t

0

(t − s)
ν−1

∫ s

0

k̃(s, s
′
)D

γ
y(s

′
) ds

′
ds.

It should be shown that Ψ has a fixed point and this fixed point is a solution
of (3). Set r ⩾ 2∥F∥, where ∥F∥ = max

t∈J
|F (t)|. Then, it can be shown that

ΨBr ⊆ Br, where Br = {y(t) ∈ W | ∥y∥ ⩽ r}. So, one has

||Ψy(t)|| ⩽ ||F ||+ ||h||
Γ(ν)

∫ t

0

(t− s)ν−1||y(s)|| ds

+
1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

||k(s, s′)|| ||y(s′)|| ds′ ds
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+
1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

||k̃(s, s′)|| ||Dγy(s′)|| ds′ ds

⩽ ||F ||+ ||h|| r
ν Γ(ν)

+
M r

ν(ν + 1) Γ(ν)
+

M̃ L r

ν(ν + 1)Γ(ν)

= ||F ||+ ||h|| r
Γ(ν + 1)

+
M r

Γ(ν + 2)
+

M̃ L r

Γ(ν + 2)

⩽ r.

Thus, Ψ maps Br into itself. Now, for y1(t), y2(t) ∈ W , one has

||Ψy1(t)−Ψy2(t)|| ⩽
||h||
Γ(ν)

∫ t

0

(t− s)ν−1||y1(s)− y2(s)|| ds

+
M

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

||y1(s′)− y2(s
′)|| ds′ ds

+
M̃

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

||Dγ(y1(s
′)− y2(s

′))|| ds′ ds

⩽
(

||h||
Γ(ν + 1)

+
M + M̃L

Γ(ν + 2)

)
||y1(t)− y2(t)||.

Since ||h||/Γ(ν + 1) + (M + M̃L)/Γ(ν + 2) < 1/2, the mapping Ψ is a con-
traction one, and therefore a unique fixed point y(t) ∈ Br exists such that
Ψy(t) = y(t).

4 Shifted Jacobi polynomials and their operational
matrices

The shifted Jacobi polynomials are defined on the interval [0, 1], with the
weight function w(α,β)(t) = tβ(1− t)α. These polynomials can be determined
by the following recursive relation [47]:

P
(α,β)
i+1 (t) = A(α, β, i)P

(α,β)
i (t)+(2t−1)B(α, β, i)P

(α,β)
i (t)−C(α, β, i)P

(α,β)
i−1 (t), i = 1, 2, . . . ,

(6)

where

A(α, β, i) =
(2i+ α+ β + 1)(α2 − β2)

2(i+ 1)(i+ α+ β + 1)(2i+ α+ β)
,

B(α, β, i) =
(2i+ α+ β + 2)(2i+ α+ β + 1)

2(i+ 1)(i+ α+ β + 1)
,
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C(α, β, i) =
(i+ α)(i+ β)(2i+ α+ β + 2)

(i+ 1)(i+ α+ β + 1)(2i+ α+ β)
,

and
P

(α,β)
0 (t) = 1, P

(α,β)
1 (t) =

α+ β + 2

2
(2t− 1) +

α− β

2
.

In addition, these shifted polynomials are orthogonal, that is,∫ 1

0

P
(α,β)
i (t)P

(α,β)
j (t)w(α,β)(t) dt = hi δij ,

where
hi =

Γ(i+ α+ 1)Γ(i+ β + 1)

(2i+ α+ β + 1) i! Γ(i+ α+ β + 1)
,

and δij denotes the Kronecker delta function. Moreover, the shifted Jacobi
polynomials have the following power series presentation, which will be used
throughout this research:

P
(α,β)
i (t) =

i∑
k=0

(−1)i−kΓ(i+ β + 1)Γ(i+ k + α+ β + 1) tk

Γ(k + β + 1)Γ(i+ α+ β + 1) (i− k)! k!
, i = 0, 1, . . . .

(7)
A square integrable function u(t), in the interval [0, 1], can be expressed in
terms of shifted Jacobi polynomials as the following equation:

u(t) =

∞∑
j=0

ûj P
(α,β)
j (t), (8)

where the coefficients ûj are given by

ûj =
1

hj

∫ 1

0

u(t)P
(α,β)
j (t)w(α,β)(t) dt, j = 0, 1, . . . .

In practice, only the first (N +1) terms of the shifted Jacobi polynomials are
considered. Therefore, we have

u(t) ≈ uN (t) =

N∑
j=0

ûj P
(α,β)
j (t) = ΦT (t) Û = Û

T
Φ(t), (9)

where the vectors Û and Φ(t) are given by

Û = [û0, û1, . . . , ûN ]T , Φ(t) = [P
(α,β)
0 (t), P

(α,β)
1 (t), . . . , P

(α,β)
N (t)]T .

(10)
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Similarly, any continuous two-variable function, say g(t, s), defined on [0, 1]×
[0, 1], can be expanded as follows in terms of the double-shifted Jacobi poly-
nomials:

gN (t, s) =

N∑
i=0

N∑
j=0

gij P
(α,β)
i (t)P

(α,β)
j (s) = ΦT (t)GΦ(s),

where G is a (N + 1)× (N + 1) matrix and its entries are given by

gij =
1

hi hj

∫ 1

0

∫ 1

0

g(t, s)P
(α,β)
i (t)P

(α,β)
j (s)w

(α,β)
(t)w

(α,β)
(s) dt ds, i, j = 0, 1, . . . , N. (11)

The following relations hold for the shifted Jacobi polynomials:

(i) P
(α,β)
i (0) = (−1)i

(
i+ β

i

)
,

(ii) diP (α,β)
n (t)
dti = Γ(n+i+α+β+1)

Γ(n+α+β+1) P
(α+i,β+i)
n−i (t), i = 0, 1, . . . .

4.1 The Jacobi operational matrices

In implementing operations on the Jacobi basis, we frequently encounter the
integration of the vector Φ(t) defined in (10), as well as the need to evaluate
the product of two vectors, Φ(t) and ΦT (t) (the product matrix). To address
this, we will derive the corresponding operational matrices. To proceed, some
lemmas regarding the shifted Jacobi polynomials are necessary. These are as
follows:

Lemma 1. The shifted Jacobi polynomial P (α,β)
i (t), t ∈ [0, 1], can be pre-

sented in the form

P
(α,β)
i (t) =

i∑
j=0

γ
(i)
j tj , i = 0, 1, . . . ,

where the coefficients γ(i)
j are calculated as

γ
(i)
j = (−1)i−j

(
i+ j + α+ β

j

)(
i+ β

i− j

)
.

Proof. The coefficients γ(i)
j can be obtained as
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γ
(i)
j =

1

j!

dj

dtj
P

(α,β)
i (t)

∣∣∣∣
t=0

.

Now, using the relations (i) and (ii) stated in the above, the lemma can be
proved.

Lemma 2. If i ∈ N and l ⩾ i, then∫ 1

0

tl P
(α,β)
i (t)w(α,β)(t) dt

=

i∑
k=0

(−1)i−k Γ(i+ β + 1)Γ(i+ k + α+ β + 1)Γ(l + k + β + 1)Γ(α+ 1)

Γ(k + β + 1)Γ(i+ α+ β + 1)Γ(l + k + α+ β + 2) (i− k)! k!
.

Proof. The lemma can be easily proved by integrating of (7).

In FIDEs, such as (3), one of the derivative orders, either ν or γ, may
be an integer. Therefore, both the operational matrices for the integration
of integer and fractional orders need to be applied to approximate the main
equation. Specifically, the integral operational matrix of integer order is used
to approximate the integral component of the given equation. As a result,
Jacobi operational matrices for integration are derived for both cases. The
entries of these matrices are computed using the following theorems.

Theorem 2. Let Φ(t) be the Jacobi vector in (10) and ν ∈ R. Then, one
has

IνΦ(t) ≈ P(ν) Φ(t),

where Iν is the Riemann–Liouville fractional integral operator of order ν and
P(ν) is the (N +1)× (N +1) fractional operational matrix of integration and
is defined by

P(ν) =


θ(0, 0) θ(0, 1) . . . θ(0, N)

θ(1, 0) θ(1, 1) . . . θ(1, N)
...

...
. . .

...

θ(N, 0) θ(N, 1) . . . θ(N,N)

 ,

where

θ(i, j) =

i∑
k=0

ω′
ijk, i = 0, 1, . . . , N, j = 1, 2, . . . , N, (12)

and ω′
ijk are given by
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ω
′
ijk =

(−1)i−k Γ(j + β + 1) Γ(i + β + 1) Γ(i + k + α + β + 1) Γ(α + 1)

hj Γ(j + α + β + 1) Γ(k + β + 1) Γ(i + α + β + 1) Γ(k + ν + 1) (i − k)!

×
j∑

l=0

(−1)j−l Γ(j + l + α + β + 1) Γ(l + k + ν + β + 1)

Γ(l + β + 1) Γ(l + k + ν + α + β + 2) l!(j − l)!
, i, j = 0, 1, . . . , N.

Proof. Applying fractional integral operator (1) to relation (7) leads to

IνP
(α,β)
i (t) =

i∑
k=0

(−1)i−k Γ(i+ β + 1) Γ(i+ k + α+ β + 1) tk+ν

Γ(k + β + 1) Γ(i+ α+ β + 1) Γ(k + ν + 1) (i− k)!
.

(13)
Moreover, tk+ν can be approximated in terms of the shifted Jacobi polyno-
mials as the following form:

tk+ν ≈
N∑
j=0

ak,j P
(α,β)
j (t),

where
ak,j =

1

hj

∫ 1

0

tk+ν P
(α,β)
j (t) w(α,β)(t) dt.

According to Lemma 2, (13) can be rewritten as

IνP
(α,β)
i (t)

≈
N∑

j=0

{ i∑
k=0

(−1)i−k Γ(j + β + 1) Γ(i+ β + 1) Γ(i+ k + α+ β + 1) Γ(α+ 1)

hj Γ(j + α+ β + 1) Γ(k + β + 1) Γ(i+ α+ β + 1) Γ(k + ν + 1) (i− k)!

×
j∑

l=0

(−1)j−l Γ(j + l + α+ β + 1) Γ(l + k + ν + β + 1)

Γ(l + β + 1) Γ(l + k + ν + α+ β + 2) l!(j − l)!

}
P

(α,β)
j (t)

=

N∑
j=0

θ(i, j) P
(α,β)
j (t),

where θ(i, j) are given in (12). Rewriting the last relation as a vector form
gives

IνP
(α,β)
i (t) = [θ(i, 0), θ(i, 1), . . . , θ(i,N)] Φ(t), i = 0, 1, . . . , N.

This leads to the desired result.

Theorem 3. Let Φ(t) be the Jacobi vector in (10). Then,∫ t

0

Φ(t′) dt′ ≈ P Φ(t),
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where P is the (N +1)× (N +1) operational matrix of integration (of integer
order) and is defined by

P =


π(0, 0) π(0, 1) . . . π(0, N)

π(1, 0) π(1, 1) . . . π(1, N)
...

...
. . .

...

π(N, 0) π(N, 1) . . . π(N,N)

 ,

where

π(i, j) =

i∑
k=0

ωijk, i, j = 0, 1, . . . , N, (14)

and ωijk are given by

ωijk =
(−1)i−k Γ(j + β + 1) Γ(i+ β + 1) Γ(i+ k + α+ β + 1) Γ(α+ 1)

hj Γ(j + α+ β + 1) Γ(k + β + 1) Γ(i+ α+ β + 1) (k + 1)! (i− k)!

×
j∑

l=0

(−1)j−l Γ(j + l + α+ β + 1) Γ(l + k + β + 2)

Γ(l + β + 1) Γ(l + k + α+ β + 3) l!(j − l)!
, i, j = 0, 1, . . . , N.

Proof. The proof is almost the same as that presented in Theorem 2. By
setting ν = 1, in the proof of Theorem 2, the matrix P will be obtained.

In the following, some useful and applicable lemmas are presented to
obtain the Jacobi operational matrix of the product.

Lemma 3. If P (α,β)
j (t) and P

(α,β)
k (t) are, respectively, jth and kth shifted

Jacobi polynomials, then the product of P (α,β)
j (t) and P

(α,β)
k (t) can be writ-

ten as

Q
(α,β)
j+k (t) = P

(α,β)
j (t)P

(α,β)
k (t) =

j+k∑
r=0

λ(j,k)
r tr,

where the coefficients λ(j,k)
r are determined as follows:

The quantities γ
(k)
l and γ

(j)
r−l are introduced, respectively, for P

(α,β)
k (t)

and P
(α,β)
j (t) based on Lemma 1.

Proof. See [45, p. 496, Lemma 3] .

Lemma 4. If P (α,β)
i (t), P (α,β)

j (t), and P
(α,β)
k (t) are, respectively, ith, jth,

and kth shifted Jacobi polynomials, then

qijk =

∫ 1

0

P
(α,β)
i (t) P

(α,β)
j (t) P

(α,β)
k (t) w(α,β)(t) dt
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If j ≥ k:
r = 0, 1, . . . , j + k,
if r > j then

λ
(j,k)
r =

k∑
l=r−j

γ
(j)
r−l γ

(k)
l ,

else
r1 = min{r, k},
λ
(j,k)
r =

r1∑
l=0

γ
(j)
r−l γ

(k)
l ,

end.
If j < k:
r = 0, 1, . . . , j + k,
if r ≤ j then
r1 = min{r, j},
λ
(j,k)
r =

r1∑
l=0

γ
(j)
r−l γ

(k)
l ,

else
r2 = min{r, k},
λ
(j,k)
r =

r2∑
l=r−j

γ
(j)
r−l γ

(k)
l ,

end.

=

j+k∑
l=0

i∑
m=0

(−1)i−mλ
(j,k)
l Γ(i+ β + 1) Γ(i+m+ α+ β + 1) Γ(l +m+ β + 1) Γ(α+ 1)

Γ(m+ β + 1) Γ(i+ α+ β + 1) Γ(l +m+ α+ β + 2) (i−m)! m!
,

where λ
(j,k)
l is computed by Lemma 3.

Proof. See [46, p. 12, Lemma 5].

The following theorem presents a general formula for finding the (N +

1)× (N + 1) operational matrix of product Ṽ whenever

Φ(t) ΦT (t) V ≈ Ṽ Φ(t), (15)

and V is a given (N + 1) vector.

Theorem 4. The entries of the matrix Ṽ in (15) are computed as follows:

Ṽjk =
1

hk

N∑
i=0

Vi qijk, j, k = 0, 1, . . . , N,
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where qijk is introduced by Lemma 4 and Vi is the components of the vector
V in (15).

Proof. See [46, p. 12, Theorem 2].

Remark 1. If u(t) ≈ UT Φ(t) = ΦT (t) U and v(t) ≈ V T Φ(t) = ΦT (t) V ,
where U and V are (N +1) vectors, using the operational matrix of product,
it is easily shown that

u2(t) ≈ UT Ũ Φ(t),

u3(t) ≈ FT Ũ Φ(t), F = ŨT U,

u(t) v(t) ≈ UT Ṽ Φ(t).

The following remark is useful to approximate the integral parts of equa-
tions under study.

Remark 2. Let the vector Φ(t) be the shifted Jacobi vector in (10). Then

M =

∫ 1

0

Φ(t) ΦT (t) dt,

where

Mi,j =

i+j∑
r=0

λ
(i,j)
r

r + 1
, i, j = 0, 1, . . . , N,

and λ
(j,k)
r is introduced by Lemma 3.

4.2 Methodology

To continue with the implementation of the proposed method, consider the
following cases.

4.2.1 Case I

Dνy(t) + h(t) y(t) +

∫ t

0

k(t, s) y(s) ds

+

∫ t

0

k̃(t, s) Dγy(s) ds = f(t), 0 ⩽ t ⩽ 1, 0 < γ < ν ⩽ m,(16)
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with initial conditions,

y(j)(0) = dj , j = 0, 1, . . . ,m− 1,

h(t), k(t, s), and k̃(t, s) are known continuous functions. Since Dνy(t) has
the highest order of derivative in (16), it can be approximated as

Dνy(t) ≈ ΦT (t) C, (17)

where the vectors Φ(t) is defined by (10) and C = [c0, c1, . . . , cN ] is the vector
of unknown coefficients. By applying the fractional integral operator of order
ν to (17), an approximation of unknown function y(t) is resulted as follows:

y(t) ≈ ΦT (t) P(ν)T C +

m−1∑
j=0

dj tj

j!

≈ ΦT (t) P(ν)T C +ΦT (t) F1,

(18)

where F1 is a known (N + 1) vector and computed as

m−1∑
j=0

dj tj

j!
≈ ΦT (t)F1,

(F1)k =
1

hk

m−1∑
j=0

dj
j!

∫ 1

0

tj P
(α,β)
k (t)w(α,β)(t)dt, k = 0, 1, . . . , N.

Now, using approximation (17), the following steps can be pursued to ap-
proximate the term Dγy(t), γ < ν:

Dνy(t) = Dν−γDγ y(t) ≈ ΦT (t) C.

Applying the fractional integral operator of order ν − γ on both sides of the
last approximation yields the following approximation:

Dγ y(t) ≈ ΦT (t) P(ν−γ)T C +

m−1∑
j=⌈γ⌉

dj tj−γ

Γ(j − γ + 1)

≈ ΦT (t) P(ν−γ)T C +ΦT (t) F2,

(19)

where
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m−1∑
j=⌈γ⌉

dj tj−γ

Γ(j − γ + 1)
≈ ΦT (t)F2,

(F2)k =
1

hk

m−1∑
j=⌈γ⌉

dj
Γ(j − γ + 1)

∫ 1

0

tj−γ P
(α,β)
k (t)w(α,β)(t)dt, k = 0, 1, . . . , N.

The kernels of integral parts, k(t, s) and k̃(t, s), are approximated as follows
by means of (11):

k(t, s) ≈ ΦT (t) K Φ(s), k̃(t, s) ≈ ΦT (t) K̃ Φ(s),

where K and K̃ are the known (N + 1) × (N + 1) matrices. Using the
introduced matrices, the integral parts of (16) are approximated as follows:∫ t

0

k(t, s) y(s) ds ≈
∫ t

0

ΦT (t) K Φ(s) ΦT (s) U1 ds

≈ ΦT (t) K

∫ t

0

Φ(s) ΦT (s) U1 ds

= ΦT (t) K Ũ1 P Φ(t), U1 = P(ν)T C + F1,∫ t

0

k̃(t, s) Dγ y(s) ds ≈ ΦT (t) K̃ Ũ2 P Φ(t), U2 = P(ν−γ)T C + F2,

(20)
where Ũ1, Ũ2 are operational matrices of product, corresponding to the vec-
tors U1, U2, respectively. In this way, the unknown function and its deriva-
tives are approximated after substituting approximations (17)–(20) into (16),
the main equation is converted into the following algebraic equation:

ΦT (t) C+h(t) ΦT (t) U1+ΦT (t) K Ũ1 P Φ(t)+ΦT (t) K̃ Ũ2 P Φ(t)−f(t) ≈ 0.

(21)

Lemma 5. Let yN (t) be the approximate solution obtained from the pro-
posed scheme, and let y(t) be the exact solution to (16). Suppose that
0 < ∥h∥Γ(ν + 1) + M+M̃

Γ(ν+2) < 1, where ỹ(t) represents the error of yN (t),
and HN (t) is the perturbation term. Then, the following equation holds:

∥ỹ∥ ≤ Λ∗ ∥Hn∥,

where Λ∗ is a positive constant.
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Proof. As can be seen, applying the Riemann–Liouville integral operator to
(16) results in (3). it is clear that yN (t) and yN (t)+ ỹ(t) satisfy the following
equations:

yN (t) = F (t) +HN (t)− 1

Γ(ν)

∫ t

0

(t− s)ν−1h(s)yN (s) ds

− 1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

k(s, r)yN (r) dr ds

− 1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

k̃(s, r)DγyN (r) dr ds,

(22)

yN (t) + ỹ(t) = F (t)− 1

Γ(ν)

∫ t

0

(t− s)ν−1h(s)(yN (s) + ỹ(s)) ds

− 1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

k(s, r)(yN (r) + ỹ(r)) dr ds

− 1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

k̃(s, r)Dγ(yN (r) + ỹ(r)) dr ds,

(23)
where

F (t) =

m−1∑
i=0

di t
i

Γ(i+ 1)
+

1

Γ(ν)

∫ t

0

(t− s)ν−1 f(s) ds.

Subtracting (22) from (23) leads to the following equation:

ỹ(t) = − 1

Γ(ν)

∫ t

0

(t− s)ν−1h(s)(yN (s) + ỹ(s)) ds

− 1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

k(s, r)(yN (r) + ỹ(r)) dr ds

− 1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

k̃(s, r)Dγ(yN (r) + ỹ(r)) dr ds.

(24)

Taking the norm from (24) yields the following inequality:

∥ỹ∥ ≤ ∥HN∥ +
∥h∥ ∥ỹ∥
Γ(ν)

∫ t

0

(t − s)
ν−1

ds +
M ∥ỹ∥
Γ(ν)

∫ t

0

(t − s)
ν−1

ds +
M̃ L ∥ỹ∥
Γ(ν)

∫ t

0

(t − s)
ν−1

ds

≤ HN∥ +
∥h∥ ∥ỹ∥
Γ(ν + 1)

+ fracM ∥ỹ∥Γ(ν + 2) +
M̃ L ∥ỹ∥
Γ(ν + 2)

.

Since 0 < ∥h∥Γ(ν + 1) + (M + M̃)/Γ(ν + 2) < 1, so one has

∥ỹ∥ ≤ 1

1− ∥h∥
Γ(ν+1) −

M+M̃
Γ(ν+2)

∥HN∥,
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and the desired result is acquired.

Thus, the variation of the approximate solution is bounded. Since the
existence and uniqueness of the given equation have already been established
in section 3, it follows that (16) is well-posed.

4.2.2 Case II

y′′(t) + h(t) y′(t) + g(t) Dνy(t) +

∫ t

0

k(t, s) y(s) ds = f(t), 0 ⩽ t ⩽ 1, 0 < ν < 2, (25)

subject to initial conditions

y(j)(0) = dj , j = 0, 1,

where h(t), g(t), k(t, s), and k̃(t, s) are known continuous functions. Since
y′′(t) has the highest order of derivative in (25), successive integrating leads
to the following approximations:

y′′(t) ≈ ΦT (t) C,

y′(t) ≈ ΦT (t) PT C +ΦT (t) F1, d1 ≈ ΦT (t) F1,

y(t) ≈ ΦT (t) (PT )2 C +ΦT (t) PT F1 +ΦT (t) F2, d0 ≈ ΦT (t) F2,

(26)

where P is the operational matrix of integration of integer order, as intro-
duced in Theorem 3. To approximate Dνy(t), where ν ∈ R is a noninteger
value, the first approximation in (26) can be used as follows:

D2y(t) = D2−νDνy(t) ≈ ΦT (t) C.

So,

Dνy(t) ≈ ΦT (t) P(2−ν)T C +

m−1∑
i=⌈ν⌉

di t
i−ν

Γ(i− ν + 1)

≈ ΦT (t) P(2−ν)T C +ΦT (t) F3, m− 1 < ν ⩽ m,

(27)

where P(2−ν) is the operational matrix of fractional integration related to
the fractional integral operator of order 2 − ν. The integral part of (25) is
converted to the following algebraic approximation:
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0

k(t, s) y(s) ds ≈ ΦT (t) K Ũ P Φ(t), U = (PT )2 C + PT F1 + F2,

(28)
where Ũ is the operational matrix of product, corresponding to the vector
U . Substituting the approximations (26)–(28) into (25) yields the following
algebraic equation:

Φ
T
(t) C+h(t) Φ

T
(t){PT

C+F1}+g(t) Φ
T
(t){P(2−ν)

T C+F3}+Φ
T
(t) K Ũ P Φ(t)−f(t) ≈ 0.

(29)

4.2.3 Case III

D
ν
y(t) + h(t) y(t) + λ1

∫ t

0

k(t, s) y
2
(s) ds + λ2

∫ 1

0

k̃(t, s) y
2
(s) ds = f(t), 0 ⩽ t ⩽ 1, ν ∈ R,

(30)

subject to initial conditions

y(j)(0) = dj , j = 0, 1, . . . ,m− 1,

where λ1, λ2 ∈ R and h(t), k(t, s), and k̃(t, s) are known continuous func-
tions. Following the process the same as for the last two cases, leads to the
approximations below:

Dνy(t) ≈ ΦT (t) C, y(t) ≈ ΦT (t) P(ν)T C +ΦT (t) F1 = ΦT (t) U,

y2(t) ≈ UT Ũ Φ(t) = ΦT (t) F2,

∫ t

0

k(t, s) y2(s) ds ≈ ΦT (t) K F̃2 P Φ(t),∫ 1

0

k̃(t, s) y2(s) ds ≈ ΦT (t) K̃ M F̃2,

(31)
where M is the matrix introduced by Remark 2. Substituting the approxi-
mations (31) into (30) yields the following algebraic equation:

ΦT (t) C+h(t) ΦT (t) U+λ1Φ
T (t) K F̃2 P Φ(t)+λ2Φ

T (t) K̃ M F2−f(t) ≈ 0.

(32)
The resulting algebraic equations (21), (29), and (32) are collocated at the
(N + 1) roots of the (N + 1)th shifted Jacobi polynomials on the interval
[0, 1]. By solving the systems of generated algebraic equations, the unknown
vector C can be determined. Thus, by selecting appropriate values for the
parameters α and β, an approximate solution can be obtained using the
approximation in (18), the third approximation in (26), and the second ap-
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proximation in (31). The resulting nonlinear systems can be solved using the
Newton iteration method.

Remark 3. Based on the discussions in this section and the statement made
in Remark 2, the nonlinear terms and integral components in the equations
under study are approximated in vector form. Therefore, the initial condi-
tions of the equations must be approximated in terms of the Jacobi basis.

5 Convergence analysis and error bounds

In this section, some upper bounds are presented for the residual function
and the proposed algorithm. It can be seen that the upper bounds decrease
when the number of terms in the series solution increases. For this purpose,
some useful definitions and theorems are stated.

The set of all algebraic polynomials of degree at most N is denoted by PN .
The orthogonal projection PN,α,β : L2

w(α,β)(J) → PN , J = [0, 1], is considered
for u(t) ∈ L2

w(α,β)(J) and defined by

(PN,α,βu− u, v) = 0, for all v ∈ PN .

The Jacobi-weighted Sobolev space is introduced as

J r
w(α,β)(J) = {u| u is measurable and ∥u∥r,w(α,β) < ∞}, r ∈ N,

equipped with the following norm and semi-norm:

∥u∥r,w(α,β) =

( r∑
k=0

∥ dku

dtk
∥2w(α+k,β+k)

) 1
2

, |u|r,w(α,β) = ||d
ru

dtr
||w(α+r,β+r) .

Theorem 5. For any u ∈ J r
w(α,β)(J), r ∈ N, 0 ⩽ µ ⩽ r, one has

∥u− PN,α,βu∥µ,w(α,β) ⩽ c(N(N + α+ β))
µ−r
2 |u|r,w(α,β) ,

where c is a positive constant independent of N , α, and β.

Proof. See [17, p. 5, Theorem 2.1] .

Corollary 1. If k(t, s) is a continuous function on J × J and kN (t, s) =

PN,α,βk(t, s) is an approximation to k(t, s) in the Jacobi-weighted Sobolev
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space, then the error can be bounded as follows:

∥k(t, s)− kN (t, s)∥µ,W (α,β) ⩽ c0(N(N + α+ β))µ−r|k(t, s)|r,W (α,β) , (33)

where W (α,β)(t, s) = w(α,β)(t)w(α,β)(s). For more details, the interested
reader is referred to . 502-5041[45].

Lemma 6. If n ∈ N, u ∈ J r
w(α,β)(J), and Dnu(t) is the nth derivative of

u(t), then

∥Dnu−DnPN,α,βu∥µ,w(α+n,β+n)

⩽ c∗
(
(N + n)(N + n+ α+ β)

)µ−r
2

|u(n)|r,w(α+n,β+n) , 0 ⩽ µ ⩽ r. (34)

Proof. By differentiating the Jacobi series solution and applying Theorem 5,
the desired result is acquired.

Lemma 7. [Generalized Hardy’s inequality [8, p. 679, Lemma 3.8] ] For all
measurable functions u ⩾ 0, the following generalized Hardy’s inequality:(∫ b

a

|(Tu)(t)|q w1(t) dt

)1/q

⩽ ρ

(∫ b

a

|u(t)|p w2(t) dt

)1/p

,

holds if and only if

sup
a<t<b

(∫ b

t

w1(t) dt

)1/q(∫ t

a

w1−p′

2 (t) dt

)1/p′

< ∞,

where p′ = p
p−1 , 1 < p ⩽ q < ∞, w1, w2 are weight functions, and T is an

integral operator of the following form:

(Tu)(t) =

∫ t

a

k̄(t, s) u(s) ds,

where k̄(t, s) is a given kernel.

Theorem 6. If ν, µ ∈ R, ν > 0, 0 ⩽ µ ⩽ r, and Dνu(t) denotes the Caputo
fractional derivative of u(t) ∈ J r

w(α,β)(J) of order ν, then

∥Dνu−DνPN,α,βu∥µ,w(α+m,β+m)

⩽ ρ c′

Γ(m− ν)

(
(N +m)(N +m+ α+ β)

)µ−r
2

|u(m)|r,w(α+m,β+m) ,
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where m− 1 < ν ⩽ m.

Proof. Using the properties of the Riemann–Liouville fractional integral op-
erator leads to

Dνu(t) = Im−νDmu(t) =
1

Γ(m− ν)

∫ t

0

(t− s)m−ν−1Dmu(s)ds.

So, by means of Lemma 7 and then Lemma 6, respectively, one has

∥Dνu−DνPN,α,βu∥µ,w(α+m,β+m)

= ∥Im−ν(Dmu−DmPN,α,βu)∥µ,w(α+m,β+m)

=
1

Γ(m− ν)

∥∥∥∥ ∫ t

0

(t− s)m−ν−1(Dmu(s)−DmPN,α,βu(s)) ds

∥∥∥∥
µ,w(α+m,β+m)

⩽ ρ

Γ(m− ν)
∥Dmu−DmPN,α,βu∥µ,w(α+m,β+m)

⩽ ρ c′

Γ(m− ν)

(
(N +m)(N +m+ α+ β)

)µ−r
2

|u(m)|r,w(α+m,β+m) .

Now, consider (16) again. If yN (t) is an approximate solution to y(t),
then the residual function is as follows:

HN (t) = DνyN (t) + h(t) yN (t) +

∫ t

0

kN (t, s) yN (s) ds+

∫ t

0

k̃N (t, s) DγyN (s) ds− f(t).

(35)

The next lemma estimates a bound for residual function (35), which tends
to zero when N tends to infinity.

Lemma 8. Let r ∈ N, µ ∈ R, and 0 ⩽ µ ⩽ r. Let us consider the residual
function given in (35). When N → ∞ one has HN (t) → 0.

Proof. Subtracting (35) from (16) and setting eN (t) = y(t)− yN (t), as error
function, leads to the following equation:

HN (t) = −Dν(y(t)− yN (t))− h(t) eN (t)

+

∫ t

0

k(t, s) y(s) ds−
∫ t

0

kN (t, s) yN (s) ds

+

∫ t

0

k̃(t, s) Dγy(s) ds−
∫ t

0

k̃N (t, s) DγyN (s) ds.

(36)

After some manipulation, (36) leads to the following equation:
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HN (t) = −Dν(y(t)− yN (t))− h(t) eN (t)

+

∫ t

0

k(t, s) eN (s) ds+

∫ t

0

(k(t, s)− kN (t, s)) yN (s) ds

+

∫ t

0

k̃(t, s)Dγ(y(s)− yN (s)) ds+

∫ t

0

(k̃(t, s)− k̃N (t, s))DγyN (s) ds.

(37)
Now, a bound is computed for residual function (37) so that

∥HN∥µ,w(α,β) ⩽ G1 +G2 +G3 +G4 +G5 +G6, (38)

∥HN∥µ,w(α,β) ⩽ G1 +G2 +G3 +G4 +G5 +G6, (39)

where

G1 = ∥Dν(y − yN )∥µ,w(α,β) , G2 = ∥h(t) eN (t)∥µ,w(α,β) ,

G3 =

∥∥∥∥ ∫ t

0

k(t, s) eN (s) ds

∥∥∥∥
µ,w(α,β)

,

G4 =

∥∥∥∥ ∫ t

0

(k(t, s)− kN (t, s)) yN (s) ds

∥∥∥∥
µ,w(α,β)

,

G5 =

∥∥∥∥ ∫ t

0

k̃(t, s)Dγ(y(s)− yN (s)) ds

∥∥∥∥
µ,w(α,β)

,

G6 =

∥∥∥∥ ∫ t

0

(k̃(t, s)− k̃N (t, s))DγyN (s) ds

∥∥∥∥
µ,w(α,β)

.

Using Theorem 6 leads to the following bound for G1:

G1 = ∥Dν
(y−yN )∥

µ,w(α,β) ⩽ c0

Γ(m − ν)

(
(N +m)(N +m+α+β)

)µ−r
2

|y(m)|
r,w(α+m,β+m) ,

where m = ⌈ν⌉. According to continuity of function h(t) over [0, 1], there
exists Mh > 0 such that ||h|| ⩽ Mh. So, using Theorem 5 one has

G2 = ∥h(t) eN (t)∥µ,w(α,β) ⩽ c1 Mh

(
N(N + α+ β)

)µ−r
2

|y|r,w(α,β) .

By applying Lemma 7 and Theorem 5, a bound can be computed for G3 as
follows:

G3 =

∥∥∥∥ ∫ t

0

k(t, s) eN (s) ds

∥∥∥∥
µ,w(α,β)

⩽ ρ1 ∥eN (t)∥µ,w(α,β)
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⩽ ρ1 c1

(
N(N + α+ β)

)µ−r
2

|y|r,w(α,β) .

Now, define e(kN ) = k(t, s) − kN (t, s). Employing Lemma 7 and Corollary
1, respectively, provide the following bound for G4:

G4 =

∥∥∥∥ ∫ t

0

(k(t, s)− kN (t, s)) yN (s) ds

∥∥∥∥
µ,w(α,β)

⩽ ρ2∥e(kN )∥µ,w(α,β)

⩽ ρ2 c2

(
N(N + α+ β)

)µ−r

|k(t, s)|r,W (α,β) .

Again, based on Lemma 7 and Theorem 6, the following bound is obtained
for G5:

G5 =

∥∥∥∥ ∫ t

0

k̃(t, s)Dγ(y(s)− yN (s)) ds

∥∥∥∥
µ,w(α,β)

⩽ ρ3 ∥DγeN (s)

∥∥∥∥
µ,w(α,β)

⩽ ρ3 c3
Γ(m1 − γ)

(
(N +m1)(N +m1 + α+ β)

)µ−r
2

|y(m1)|r,w(α+m1,β+m1) ,

where m1 = ⌈γ⌉. Defining e(k̃N ) = k̃(t, s)− k̃N (t, s) and using Lemma 7 and
Corollary 1 lead to a bound for G6 as follows:

G6 =

∥∥∥∥ ∫ t

0

DγyN (s)(k̃(t, s)− k̃N (t, s)) ds

∥∥∥∥
µ,w(α,β)

⩽ ρ4 ∥e(k̃N )∥µ,w(α,β)

⩽ ρ4 c4

(
N(N + α+ β)

)µ−r

|k̃(t, s)|r,W (α,β) .

Therefore, using the above bounds, inequality (38) will be as follows:

∥HN∥
µ,w(α,β) ⩽ c0

Γ(m − ν)

(
(N + m)(N + m + α + β)

)µ−r
2

|y(m)|
r,w(α+m,β+m)

+ (Mh + ρ1) c1

(
N(N + α + β)

)µ−r
2

|y|
r,w(α,β)

+ (ρ2 c2|k(t, s)|r,W (α,β) + ρ4 c4|k̃(t, s)|r,W (α,β) )

(
N(N + α + β)

)µ−r

+
ρ3 c3

Γ(m1 − γ)

(
(N + m1)(N + m1 + α + β)

)µ−r
2

|y(m1)|
r,w(α+m1,β+m1) .

According to the continuity of the functions y(t) and its derivatives, k(t, s),
and k̃(t, s) over the compact intervals [0, 1] and [0, 1] × [0, 1], the residual
function HN (t) becomes smaller as N is sufficiently large. Hence, the desired
result is achieved.
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The following theorem presents an error bound for the proposed method.

Theorem 7. If yN (t) is the Jacobi approximate solution to y(t), eN (t) =

y(t)− yN (t), e(kN ) = k(t, s)−kN (t, s), and e(k̃N ) = k̃(t, s)− k̃N (t, s) are the
error functions, and 0 ⩽ µ ⩽ r, then ∥eN∥µ,w(α,β) → 0 as N → ∞.

Proof. It is clear that the function yN (t) is an approximate solution to prob-
lem (4), that is,

yN (t) = F (t) +HN (t)− 1

Γ(ν)

∫ t

0

(t− s)ν−1h(s) yN (s) ds

− 1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

kN (s, s′) yN (s′) ds′ ds

− 1

Γ(ν)

∫ t

0

(t− s)ν−1

∫ s

0

k̃N (s, s′) DγyN (s′) ds′ ds.

(40)

So, by subtracting (39) from (4) and after some manipulations, the following
error equation is obtained:

eN (t) = −HN (t) −
1

Γ(ν)

∫ t

0

(t − s)
ν−1

h(s) eN (s) ds

−
1

Γ(ν)

∫ t

0

(t − s)
ν−1

∫ s

0

kN (s, s
′
) eN (s

′
) ds

′
ds

−
1

Γ(ν)

∫ t

0

(t − s)
ν−1

∫ s

0

yN (s
′
)e(kN ) ds

′
ds

−
1

Γ(ν)

∫ t

0

(t − s)
ν−1

∫ s

0

k̃(s, s
′
)D

γ
eN (s

′
) ds

′
ds

−
1

Γ(ν)

∫ t

0

(t − s)
ν−1

∫ s

0

D
γ
yN (s

′
)e(k̃N ) ds

′
ds.

(41)

A bound for (40) is calculated as follows:

∥eN∥µ,w(α,β) ⩽ ∥HN∥µ,w(α,β) +Q1 +Q2 +Q3 +Q4 +Q5, (42)

where

Q1 =
1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1h(s) eN (s) ds

∥∥∥∥
µ,w(α,β)

,

Q2 =
1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1

∫ s

0

kN (s, s′) eN (s′) ds′ ds

∥∥∥∥
µ,w(α,β)

,

Q3 =
1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1

∫ s

0

yN (s′)e(kN ) ds′ ds

∥∥∥∥
µ,w(α,β)

,

Q4 =
1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1

∫ s

0

k̃(s, s′)DγeN (s′) ds′ ds

∥∥∥∥
µ,w(α,β)

,
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Q5 =
1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1

∫ s

0

DγyN (s′)e(k̃N ) ds′ ds

∥∥∥∥
µ,w(α,β)

.

According to the continuity of the function h(t), there exists Mh such that
||h|| ⩽ Mh. Using Lemma 7 and Theorem 5, the following bounds are ob-
tained for Q1 and Q2:

Q1 ⩽ 1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1h(s) eN (s) ds

∥∥∥∥
µ,w(α,β)

⩽ ρ1
Γ(ν)

∥h(t) eN (t)∥µ,w(α,β)

⩽ ρ1 Mh

Γ(ν)
∥eN (t)∥µ,w(α,β) ⩽ ρ1 Mh c0

Γ(ν)

(
N(N + α+ β)

)µ−r
2

|y|r,w(α,β) ,

Q2 ⩽ 1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1

∫ s

0

kN (s, s′) eN (s′) ds′ ds

∥∥∥∥
µ,w(α,β)

⩽ ρ2
Γ(ν)

∥∥∥∥ ∫ s

0

kN (s, s′) eN (s′) ds′
∥∥∥∥
µ,w(α,β)

⩽ ρ2 ρ′2
Γ(ν)

∥eN (t)∥µ,w(α,β)

⩽ ρ2 ρ′2 c0
Γ(ν)

(
N(N + α+ β)

)µ−r
2

|y|r,w(α,β) .

Applying Lemma 7 and Corollary 1 lead to the following bounds for Q3 and
Q5:

Q3 =
1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1

∫ s

0

yN (s′)e(kN ) ds′ ds

∥∥∥∥
µ,w(α,β)

⩽ ρ3
Γ(ν)

∥∥∥∥ ∫ s

0

yN (s′)e(kN ) ds′
∥∥∥∥
µ,w(α,β)

⩽ ρ3 ρ′3
Γ(ν)

∥e(kN )∥µ,w(α,β)

⩽ ρ3 ρ′3 c1
Γ(ν)

(
N(N + α+ β)

)µ−r

|k(t, s)|r,W (α,β) ,

Q5 =
1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1

∫ s

0

DγyN (s′)e(k̃N ) ds′ ds

∥∥∥∥
µ,w(α,β)

⩽ ρ5
Γ(ν)

∥∥∥∥ ∫ s

0

DγyN (s′)e(k̃N ) ds′ ds′
∥∥∥∥
µ,w(α,β)

⩽ ρ5 ρ′5
Γ(ν)

∥e(k̃N )∥µ,w(α,β)

⩽ ρ5 ρ′5 c3
Γ(ν)

(
N(N + α+ β)

)µ−r

|k̃(t, s)|r,W (α,β) .

In order to compute a bound for Q4, Lemma 7 and Theorem 6 are employed.
So, one has
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Q4 =
1

Γ(ν)

∥∥∥∥ ∫ t

0

(t− s)ν−1

∫ s

0

k̃(s, s′)DγeN (s′) ds′ ds

∥∥∥∥
µ,w(α,β)

⩽ ρ4
Γ(ν)

∥∥∥∥ ∫ s

0

k̃(s, s′)DγeN (s′) ds′
∥∥∥∥
µ,w(α,β)

⩽ ρ4 ρ′4
Γ(ν)

∥DγeN (t)∥µ,w(α,β)

⩽ ρ4 ρ′4 c2
Γ(m1 − γ) Γ(ν)

(
(N +m1)(N +m1 + α+ β)

)µ−r
2

|y(m1)|r,w(α+m1,β+m1) ,

where m1 = ⌈γ⌉. Therefore, a bound will be computed for ∥eN∥µ,w(α,β) as
follows:

∥eN (t)∥
µ,w(α,β) ⩽ ∥HN (t)∥

µ,w(α,β) +
1

Γ(ν)

{
(ρ1 Mh + ρ2 ρ

′
2) c0

(
N(N + α + β)

)µ−r
2

|y|
r,w(α,β)

+ (ρ3 ρ
′
3 c1 |k(t, s)|

r,W (α,β) + ρ5 ρ
′
5 c3 |k̃(t, s)|

r,W (α,β) )

(
N(N + α + β)

)µ−r

+
ρ4 ρ′

4 c2

Γ(m1 − γ)

(
(N + m1)(N + m1 + α + β)

)µ−r
2

|y(m1)|
r,w(α+m1,β+m1)

}
.

Hence, the desired result is acquired.

Remark 4. The convergence of methods for (25) and (30) can be proved
in a similar way. In order to approximate the nonlinear terms in (30), the
following way is proposed:

y2(t)− y2N (t) = (y(t)− yN (t))(y(t) + yN (t)) = eN (t)(eN (t) + 2yN (t)).

Remark 5. In practice, to evaluate the effectiveness of the proposed method,
the absolute errors of the approximate solutions obtained will be computed,
provided that the exact solutions are available. For problems where exact
solutions do not exist, the error equation, such as (40), will be solved using
the same procedure suggested for the main problem, and an estimate of the
absolute error will be obtained.

6 Numerical examples

In this section, the method presented in the previous section is applied to solve
several examples taken from [16, 15, 53, 30, 28, 50] for comparison purposes.
The proposed method is contrasted with the Homotopy Perturbation, Sinc-
Collocation, Adomian Decomposition, Jacobi-Gauss integration, and Legen-
dre and Bernoulli Wavelet methods, as discussed in [16, 15, 53, 30, 28, 50]. A
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comparison of the results is then provided. All computations were performed
using Maple 13 software on a laptop equipped with an Intel R processor
running at 2.20 GHz and 4.00 GB of RAM.

Example 1. As the first example, consider the following Volterra integro-
differential equation of an arbitrary fractional order ν [53]:

Dνy(t)− t(1 + 2t)

∫ t

0

es(t−s) y(s) ds− 1− 2t = 0, 0 ⩽ t ⩽ 1, 0 < ν ⩽ 1,

(43)
with initial condition y(0) = 1. If ν = 1, then the exact solution is
y(t) = exp(t2). According to what expressed in section 4, the following
approximations can be considered:

Dνy(t) ≈ ΦT (t) C, y(t) ≈ ΦT (t) P(ν)T C +ΦT (t) F = ΦT (t) U,

es(t−s) ≈ ΦT (t) K Φ(s),

∫ t

0

es(t−s) y(s) ds ≈ Φ(t) K Ũ P Φ(t),

where y(0) is approximated as ΦT (t) F and Ũ is the operational matrix of
product, corresponding to the vector U = P(ν)T C + F . Substituting the
above approximations into (42) leads to the following algebraic equation:

ΦT (t) C − t(1 + 2t)Φ(t) K Ũ P Φ(t)− 1− 2t ≈ 0. (44)

By choosing N = 10, (43) is collocated at the roots of P (α,β)
11 (t). By arbi-

trarily selecting the values of the parameters α and β, the unknown vector
C is determined by solving the resulting system. The maximum absolute
errors for various values of α, β, N = 10, and ν = 1 are listed in Table
1. Additionally, the estimated absolute errors, ErrorEst, are computed and
presented in Table 1. As shown, the estimated errors are in agreement with
the absolute errors. (42) is solved in [53] using the Jacobi–Gauss integration
method for N = 2 : 2 : 20 and ν = 1. By choosing N = 2 : 2 : 20 and
setting α = β = 0, (43) is collocated at the roots of P (0,0)

N+1 (t). By solving
the resulting algebraic systems, the unknown vector C is determined, and
the approximate solution can be obtained for any value of N . In Figure 1,
the maximum absolute errors are plotted against N for α = β = 0. It can
be observed that the absolute errors decrease as N increases from 2 to 18,
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but for N = 20, the absolute error increases, which agrees with the results
reported in [53]. The numerical results are shown in Figure 2 for values of
ν = 0.25, 0.5, 0.75, 1, α = 1/2, β = −1/2, and N = 10. The approximate
solutions for various values of ν and the exact solution are presented in part
(a) of Figure 2. It can be observed that the numerical solutions converge
to the analytic solution as ν approaches 1. Part (b) provides a graphical
comparison between the exact and approximate solutions for ν = 1.

Table 1: Maximum absolute and estimated errors for various values of α, β, N = 10, and
ν = 1 for Example 1

(α, β) ErrorAbs ErrorEst (α, β) ErrorAbs ErrorEst

(0, 0) 3.5146× 10−8 3.5187× 10−8 ( 1
2
, 1
2
) 7.1293× 10−8 7.0560× 10−8

(2,− 1
2
) 1.0013× 10−6 1.0012× 10−6 (1, 1) 1.1774× 10−7 1.1786× 10−7

(− 1
2
, 1
2
) 1.5371× 10−7 1.5389× 10−7 ( 1

2
,− 1

2
) 1.2362× 10−7 1.3083× 10−7

(− 1
3
, 1
4
) 8.1979× 10−8 8.2075× 10−8 (− 1

4
,− 1

5
) 2.5541× 10−8 2.5572× 10−8

Figure 1: Maximum absolute error for different numbers of collocation points and α =

β = 0 for Example 1

Example 2. Consider the following linear FIDE [30]:

Dνy(t)−y(t)+

∫ t

0

y(s) ds−t(1+et)−3et = 0, 0 ⩽ t ⩽ 1, 3 < ν ⩽ 4, (45)

with initial conditions y(0) = y′(0) = 1, y′′(0) = 2, and y′′′(0) = 3. If
ν = 4 the exact solution is y(t) = 1 + t exp(t). Substituting the approxima-
tions given in the previous example into (44) leads to the following algebraic
equation:
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Figure 2: (a) Approximation solutions with different orders, ν, and exact solution, (b)
Approximate and exact solutions for ν = 1, N = 10, α = 1

2
, and β = − 1

2
for Example 1

ΦT (t) C−
(
ΦT (t) P(ν)T C+ΦT (t) F

)
+Φ(t) K Ũ P Φ(t)−t(1+et)−3et ≈ 0,

(46)
where 1 + t+ t2 + t3/2 obtained from the initial conditions, is approximated
as ΦT (t) F . By choosing N = 10 and setting ν = 4 (the classical fourth-
order integro-differential equation), (45) is collocated at the roots of P (α,β)

11 (t).
By determining the values of the parameters α, β arbitrarily and solving the
resultant algebraic system, the unknown vector C can be determined. Table 2
displays the maximum absolute errors for various values of α, β, and N = 10.

In Table 3, the values of the approximate and exact solutions are com-
pared at the points ti = 0.2i, i = 0, 1, . . . , 5, for α = −1/4, β = −1/5, and
various values of ν. As shown in Table 3, the numerical values approach
the exact values as ν → 4. A graphical comparison between the exact and
approximate solutions is presented in Figure 3 for α = 1/3, β = 1/4, and
N = 10. It is evident from the figure that the numerical results converge to
the exact solution as ν approaches 4.

Example 3. Consider the following nonlinear integro-differential equation
with a fractional derivative of order ν [15]:

Dνy(t)+

∫ t

0

y2(s) ds+
t

2
−sinh(t)− 1

4
sinh(2t) = 0, 0 ⩽ t ⩽ 1, 0 < ν ⩽ 2,

(47)
with initial conditions y(0) = 0 and y′(0) = 1. If ν = 2 the exact solution is
y(t) = sinh(t). By substituting the approximations given in Example 1 into
(47), the following algebraic equation is obtained:
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Table 2: Maximum absolute errors for various values of α, β, N = 10, and ν = 4 for
Example 2

(α, β) ErrorAbs (α, β) ErrorAbs

(0, 0) 6.7806× 10−13 ( 12 ,
1
2 ) 1.3583× 10−12

(− 1
5 ,−

1
3 ) 1.5960× 10−12 (1, 1) 2.2981× 10−12

(− 1
2 ,

1
2 ) 2.6885× 10−12 ( 12 ,−

1
2 ) 2.5708× 10−12

( 13 ,
1
4 ) 1.1678× 10−12 (− 1

4 ,−
1
5 ) 4.8693× 10−13

Table 3: Approximate and exact solutions for different values of ν, α = − 1
4
, β = − 1

5
,

and N = 10 in Example 2

ti ν = 3.25 ν = 3.50 ν = 3.75 ν = 3.90 ν = 4 Exact values
0.0 0.999999 0.999999 0.999999 0.999999 1.000000 1.000000

0.2 1.246742 1.245301 1.244608 1.244383 1.244280 1.244280

0.4 1.619754 1.607612 1.600653 1.598032 1.596729 1.596729

0.6 2.178540 2.136546 2.109904 2.098986 2.093271 2.093271

0.8 2.996977 2.895698 2.826706 2.796715 2.780432 2.780432

1.0 4.166138 3.965176 3.820669 3.754964 3.718281 3.718281
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Figure 3: Approximation solutions with different values of ν and exact solution for
α = 1

3
, β = 1

4
, and N = 10 for Example 2

ΦT (t) C+

(
ΦT (t) P(ν)T C+ΦT (t) F

)
+Φ(t) K Ũ P Φ(t)+

t

2
− sinh(t)− 1

4
sinh(2t) ≈ 0,

(48)

where Ũ is the operational matrix of the product corresponding to the vector
U = P(ν)TC + F .

Table 4 displays the maximum absolute and estimated errors for various
values of α, β, ν = 2, and N = 10. The table shows that the numerical
results are in good agreement with the exact solution. From Table 4, it
can be observed that for cases where α = β, the absolute errors decrease
as the common values of α and β decrease. For α ̸= β, the absolute errors
are smaller when α > β. The estimated errors are also listed in Table 4.
(47) is solved in [15] using the Homotopy Perturbation Method (HPM) and
Variational Iteration Method (VIM) for N = 2. The results reported by [15]
are depicted in part (a) of Figure 4. The plot of the approximate solution
obtained by the Jacobi operational method is shown in part (b) of Figure 4
for α = β = 0, N = 2, and ν = 2. Based on Figure 4, it can be concluded
that the result obtained by the Jacobi operational method is more precise
than those obtained by VIM. In Table 5, the exact and approximate solutions
are computed at the points ti = 0.2i, i = 0, 1, . . . , 5, for α = 1, β = −1/2,
and various values of ν. From Table 5, it can be seen that the numerical
values approach the exact values as ν → 2. A graphical comparison between
the exact and approximate solutions is presented in part (a) of Figure 5 for
α = 1, β = −1/2, and N = 10. Part (b) of Figure 5 plots the absolute error
functions (i.e., the difference between the approximate results and the exact
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solution for ν = 2). It can be observed that the absolute errors decrease as
ν approaches 2.

Table 4: Maximum absolute and estimated errors for various values of α and β, N = 10,
and ν = 2 for Example 3

(α, β) ErrorAbs ErrorEst (α, β) ErrorAbs ErrorEst

(0, 0) 4.0258× 10−14 5.1161× 10−12 ( 1
2
, 1
2
) 2.3641× 10−13 7.2078× 10−12

(1, 1) 6.1463× 10−13 9.4707× 10−12 (2, 2) 1.9956× 10−12 1.4367× 10−11

(− 1
2
, 1
2
) 3.5233× 10−13 1.3004× 10−12 ( 1

2
,− 1

2
) 1.3970× 10−13 1.5617× 10−12

( 1
3
, 1
3
) 1.5246× 10−13 6.4781× 10−12 (− 1

4
,− 1

3
) 4.4786× 10−14 3.5623× 10−12

(− 1
2
, 1) 2.7671× 10−12 2.2636× 10−11 (1,− 1

2
) 2.1062× 10−13 1.3716× 10−12

Table 5: Approximate and exact solutions for various values of ν, α = 1, β = − 1
2
, and

N = 10 in Example 3

ti ν = 1.25 ν = 1.50 ν = 1.75 ν = 1.90 ν = 2 Exact values
0.0 1.8129× 10−6 8.7268× 10−7 2.1825× 10−7 5.1992× 10−8 4.6979× 10−15 0.000000

0.2 0.210520 0.205396 0.202710 0.201776 0.201336 0.201336

0.4 0.450364 0.430729 0.418353 0.413346 0.410752 0.410752

0.6 0.726395 0.685527 0.656555 0.643696 0.636653 0.636653

0.8 1.043130 0.977677 0.926485 0.902061 0.888105 0.888105

1.0 1.403192 1.314333 1.237566 1.198417 1.175201 1.175201

Figure 4: (a) Exact and approximate solutions obtained by VIM in Ref. [15], (b) Exact
and approximate solutions obtained by Jacobi operational method for α = β = 0, N = 2,
and ν = 2 for Example 3

Example 4. Consider the following mixed Volterra-Fredholm FIDE [28]:

Dν+1y(t)−
∫ t

0

(es+1) y2(s) ds−
∫ 1

0

ts y2(s) ds−g(t) = 0, 0 ⩽ t ⩽ 1, 0 < ν ⩽ 1, (49)
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Figure 5: (a) Approximation solutions for different values of ν and exact solution, (b)
Absolute error functions for α = 1, β = − 1

2
, and N = 10 in Example 3

where g(t) = exp(t)− ((exp(t)− t− 1)3/3)− t(exp(2)/4− 2 exp(1) + 11/3).
The initial conditions of problem are y(0) = y′(0) = 0 and its exact solution
is y(t) = exp(t) − t − 1 for ν = 1. By applying the fundamental matrices,
presented in section 4 for (49), the following algebraic equation is achieved:

ΦT (t) C − Φ(t) K1 F̃2 P Φ(t)− Φ(t) K2 M F2 − g(t) ≈ 0, (50)

where F̃2 is the operational matrix of product, corresponding to the vector
F2 = F̃T

1 F1 where F1 = P(ν+1)T C. Moreover, the matrix M is intro-
duced in Remark 2. By choosing N = 14, (50) is collocated at the roots of
P

(α,β)
15 (t). By solving the resulting algebraic systems, the unknown vector C

can be determined for α = β = 1. In Table 6, the values of the exact and
approximate solutions are compared at the points ti = 0.2i, i = 0, 1, . . . , 5,
for various values of ν = 0.7, 0.8, 0.9, 0.99, 1. It can be observed from Table
6 that the numerical values approach the exact values as ν approaches 1.
Moreover, (49) is solved in [28] using the Legendre Wavelet method (LWM),
and the numerical results are shown in part (a) of Figure 6. Additionally,
a graphical comparison between the exact solution and the Jacobi approxi-
mate solution is provided in part (b) of Figure 6 for α = β = 1, N = 14,
and ν = 0.7, 0.8, 0.9, 0.99, 1. Based on Figure 6, no significant difference is
observed between the approximate solutions obtained using the Jacobi oper-
ational method and the LWM.

Example 5. Consider the following fractional-order integro-differential equa-
tion:
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Table 6: Values of approximate and exact solutions at selected points for different values
of ν, α = β = 1, and N = 14 for Example 4

ti ν = 0.7 ν = 0.8 ν = 0.9 ν = 0.99 ν = 1 Exact values
0.0 −6.8186× 10−5 −2.3299× 10−5 −7.5562× 10−6 −4.9978× 10−7 7.1005× 10−13 0.000000

0.2 0.045519 0.035517 0.027619 0.021959 0.021403 0.021402

0.4 0.160712 0.133726 0.110976 0.093602 0.091834 0.091824

0.6 0.349039 0.300858 0.258855 0.225663 0.222222 0.222118

0.8 0.624058 0.550097 0.484580 0.431823 0.426292 0.425540

1.0 1.010148 0.902478 0.807252 0.730208 0.722096 0.718281

Figure 6: (a) Exact and approximate solutions obtained by LWM in Ref. [28], (b) Exact
and approximate solutions obtained by Jacobi operational method for different values
of ν, α = β = 1, and N = 14 for Example 4

D
1
2 y(t)+t

3
2

∫ t

0

(t+s) y(s) ds+

∫ t

0

ts D
3
8 y(s) ds−g(t) = 0, 0 ⩽ t ⩽ 1, (51)

where

g(t) = −
2871928019

3181474923
t
5
2 +

2850446155

1841978638
t
7
2 +

3

4
t
11
2 −

1

2
t
9
2 +

11

40
t6 −

9

40
x5 −

1500440031

8846634281
t
45
8

+
759388855

3289964417
t
53
8 ,

with initial condition y(0) = 0 and exact solution y(t) = 3/4t4 − 1/2t3.
By applying the fundamental matrices, presented in section 4 for (50),

the following algebraic equation is resulted:

ΦT (t) C + t
3
2Φ(t) K1 F̃1 P Φ(t) + Φ(t) K2 F̃2 P Φ(t)− g(t) ≈ 0, (52)

where the matrices F̃1 and F̃2 are the operational matrices of the product cor-
responding to the vectors F1 = P( 1

2 )TC and F2 = P( 1
8 )TC, respectively. Table
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7 presents the maximum absolute errors for various values of the parameters
α and β with N = 10. The data in this table shows good agreement between
the numerical results and the exact solution. In Table 8, the approximate
solutions are calculated at equally spaced points ti = 0.1i, i = 0, 1, . . . , 10,
for N = 10, α = −1/5, β = −1/4, as well as for α = β = 2. As observed,
the error values change slowly over the interval [0, 1], confirming the stabil-
ity of the proposed method. A graphical comparison between the exact and
approximate solutions, along with the plot of the absolute error function,
is shown in parts (a) and (b) of Figure 7 for α = 1, β = 3, and N = 10.
Figure 7 demonstrates that the exact and approximate solutions are in good
agreement. Additionally, the maximum absolute errors are plotted in Figure
8 for different numbers of collocation points, with α = 1/2, β = −1/2, and
various values of N (i.e., N = 8 : 2 : 18).

Table 7: Maximum absolute errors for various values of α and β and N = 10 for Example
5

(α, β) ErrorAbs (α, β) ErrorAbs

(0, 0) 7.8229× 10−7 ( 12 ,
1
2 ) 1.5760× 10−6

(1, 1) 2.5249× 10−6 (2, 2) 4.6806× 10−6

(− 1
2 ,

1
2 ) 1.9848× 10−6 ( 12 ,−

1
2 ) 1.9419× 10−6

(− 1
2 ,

3
4 ) 1.8039× 10−6 (1, 1

2 ) 1.5760× 10−6

(3, 1) 7.0270× 10−6 (1, 3) 6.4222× 10−6

(− 1
5 ,−

1
4 ) 3.9286× 10−7 ( 14 ,

1
5 ) 9.7123× 10−4

Example 6. Consider the following integro-differential equation with frac-
tional derivative:

y′′(t)+
1

t2
y′(t)+

1

t
D0.7y(t) =

∫ t

0

(6t2+1) cos(s) y(s) ds+g(t), 0 ⩽ t ⩽ 1,

(53)
where

g(t) = (6t6 − 71t4 − 6t7 + 132t2 − 120t− 700t3 + 24 + 119t5) sin(t)

+ (24t5 − 140t3 − 660t2 + 355t4 − 24t− 30t6 − 120) cos(t)
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Figure 7: (a) Exact and approximate solutions, (b) Absolute error function for α = 1,
β = 3, and N = 10 for Example 5

Table 8: Values of absolute errors at some selected points for N = 10 of Example 5

ti Exact solution (α, β) = (− 1
5
,− 1

4
) ErrorAbs (α, β) = (2, 2) ErrorAbs

0.0 0.000000000 −3.9286× 10−7 3.9286× 10−7 −4.6806× 10−6 4.6806× 10−6

0.1 −0.000425000 −0.000425109 1.0886× 10−7 −0.000425838 8.3841× 10−7

0.2 −0.002800000 −0.002799878 1.2197× 10−7 −0.002800614 6.1398× 10−7

0.3 −0.007425000 −0.007424974 2.6238× 10−8 −0.007425426 4.2625× 10−7

0.4 −0.012800000 −0.012800069 6.8770× 10−8 −0.012800338 3.3816× 10−7

0.5 −0.015625000 −0.015624900 1.0027× 10−7 −0.015625221 2.2117× 10−7

0.6 −0.010800000 −0.010800008 7.7315× 10−9 −0.010800155 1.5486× 10−7

0.7 0.008575000 0.008574946 5.4109× 10−8 0.008574919 8.0539× 10−8

0.8 0.051200000 0.051200089 8.8618× 10−8 0.051199977 2.2952× 10−8

0.9 0.127575000 0.127574902 9.7517× 10−8 0.127575027 2.6598× 10−8

1.0 0.250000000 0.249999746 2.5450× 10−7 0.249999155 8.4477× 10−7

Figure 8: Maximum absolute error for different numbers of collocation points, α = 1
2
,

and β = − 1
2
for Example 5
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+ 20t3 + 713t2 − 4t+
5995979123

1902622932
t
33
10 − 6662541851

2458295656
t
23
10 + 120.

The initial conditions are y(0) = y′(0) = 0 and the exact solution does not
exist. Following the process presented in case II in section 4 for (53) leads to
the following algebraic equation:

ΦT (t) C+
1

t2
Φ(t) P C+

1

t
Φ(t) P(1.3)T C−Φ(t) K F̃ P Φ(t)−g(t) ≈ 0, (54)

where the matrix F̃ is the operational matrix of the product corresponding to
the vector F = (PT)2C. By choosing N = 10, (54) is collocated at the roots
of P (α,β)

11 (t). By determining the values of the parameters α and β and solving
the resulting algebraic system, the unknown vector C is determined. Since
the exact solution of (53) is not available, the corresponding error equation
is solved to estimate the absolute errors. Table 9 presents the maximum
estimated errors for various values of the parameters α and β with N = 10.
The maximum estimated errors are plotted in Figure 9 for different numbers
of collocation points, where α = β = 0 and various values of N (i.e., N = 6 :

2 : 16). In Table 10, the values of the approximate solutions are computed at
the selected points ti = 0.2i, i = 1, 2, . . . , 5, for N = 6, 10, 14 and α = β = 0.
The maximum estimated errors decrease as N increases, and the values of the
approximate solutions at the points ti approach certain values with increasing
N .

Table 9: Maximum estimated errors for various values of α and β and N = 10 for
Example 6

(α, β) ErrorEst (α, β) ErrorEst

(0, 0) 2.0157× 10−9 ( 12 ,
1
2 ) 2.3112× 10−9

(1, 1) 2.8243× 10−9 (1, 2) 1.9696× 10−9

(− 1
2 ,

1
2 ) 2.0820× 10−9 ( 12 ,−

1
2 ) 1.1915× 10−8

(− 1
3 ,−

1
4 ) 3.4068× 10−9 ( 14 ,

1
5 ) 1.5846× 10−3

( 15 ,−
1
3 ) 1.7922× 10−9 (2, 1) 3.0742× 10−8

Example 7. Consider the following nonlinear integro-differential equation
with fractional derivative of order ν [16]:
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Table 10: Values of approximate solutions for N = 6, 10, 14, α = β = 0 for Example 6

ti N = 6 N = 10 N = 14

0.2 −0.0012800925 −0.0012799986 −0.0012800001

0.4 −0.0153599943 −0.0153600011 −0.0153600000

0.6 −0.0518398699 −0.0518399999 −0.5184000000

0.8 −0.0819199727 −0.0819200001 −0.0819200000

1.0 6.3832× 10−8 1.4580× 10−10 3.4336× 10−11

ErrorEst 1.5511× 10−7 2.0157× 10−9 1.8897× 10−10

Figure 9: Maximum estimated error for various values of N and α = β = 0 for Example
6

Dνy(t) = 1 +

∫ t

0

y(s) Dνy(s) ds, 0 ⩽ t ⩽ 1, 0 < ν ⩽ 1. (55)

The initial condition for this example is y(0) = 0 and the exact solution is
y(t) =

√
2 tan(

√
2/2t) if ν = 1. Following the process presented for nonlin-

ear problems in section 4 for (55) leads to the following nonlinear algebraic
equation:

ΦT (t) C − Φ(t) K F̃2 P Φ(t)− 1 ≈ 0, (56)

where the matrix F̃2 is the operational matrix of the product corresponding
to the vector F2 = C̃TF1, where F1 = P(ν)TC. Table 11 displays the max-
imum absolute errors for different values of α, β, and N = 14. The table
demonstrates good consistency between the numerical results and the ana-
lytical solution. A graphical comparison between the exact and approximate
solutions is shown in Figure 10 for values of ν = 0.5, 0.6, 0.7, 0.8, 0.9, 1. (55)
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has been solved using the Homotopy perturbation method (HPM), with the
results reported in Ref. [16]. The absolute error functions of the approxi-
mate solutions can be seen in parts (a) (obtained by HPM) and (b) (obtained
by the Jacobi operational method for α = 1/3, β = −1/4) of Figure 11 for
N = 6. It is evident that the error obtained by HPM is smaller than that
obtained using the Jacobi operational method.

Table 11: Maximum absolute errors for various values of α and β, and N = 14 for
Example 7

(α, β) ErrorAbs (α, β) ErrorAbs

(0, 0) 3.2695× 10−12 ( 12 ,
1
2 ) 7.4506× 10−12

(1, 1) 1.3958× 10−11 (2, 2) 7.0196× 10−11

(− 1
2 ,

1
2 ) 1.2529× 10−12 ( 12 ,−

1
2 ) 1.2842× 10−11

( 13 ,−
1
4 ) 8.1919× 10−12 (2, 1) 5.5847× 10−11

(− 1
3 ,

1
4 ) 1.0624× 10−11 (1, 2) 7.3824× 10−11

Figure 10: Approximate solutions for various values of ν, N = 14, α = 1
3
, and β = − 1

4

for Example 7

Example 8. Consider the following nonlinear system of integro-differential
equations with fractional derivatives of order ν and γ [50]:{

Dνu(t) = u2(t) + v2(t)−
∫ t

0
u(s) ds,

Dγv(t) = − 1
2v

2(t)− u(t)−
∫ t

0
u(s) v(s) ds+ 1

2 ,
(57)
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Figure 11: Absolute error function of approximate solution by :(a) HPM, (b) Jacobi
operational method for α = 1

3
, β = − 1

4
, and N = 6 in Example 7

where 0 < ν, γ ⩽ 1. The initial conditions for this example are u(0) = 0,
v(0) = 1, and the exact solutions are u(t) = sin(t) and v(t) = cos(t) if ν =

γ = 1. Following the process presented for nonlinear problems in section 4 for
system (57) leads to the following nonlinear system of algebraic equations:{

ΦT (t) C1 − (ΦT (t) F1)
2 − (ΦT (t) F2)

2 +Φ(t) K F̃1 P Φ(t) ≈ 0,

ΦT (t) C2 +
1
2 (Φ

T (t) F2)
2 +ΦT (t) F1 +Φ(t) K Ũ P Φ(t)− 1

2 ≈ 0,
(58)

where

u(t) ≈ ΦT (t) P(ν)T C1 = ΦT (t) F1,

v(t) ≈ ΦT (t) P(γ)T C2 + 1 ≈ ΦT (t) P(γ)T C2 +ΦT (t) V = ΦT (t) F2,

U = F̃2 F1.

Table 12 displays the maximum absolute errors for different values of α, β,
ν = γ = 1, and N = 10. The table demonstrates good agreement between the
numerical results and the analytical solutions. System (57) is solved using the
Bernoulli wavelet method in [50]. The absolute errors of the approximate so-
lutions, obtained by both the Jacobi collocation and Bernoulli wavelet meth-
ods, are calculated at the points ti = (2i− 1)/16, for i = 1, 2, . . . , 16, and are
shown in Tables 13 and 14. As seen, the results from the proposed method
are more accurate (for α = −1/5, β = 1, ν = γ = 1, and N = 10). The
approximate solutions obtained for ν = γ = 0.65, 0.75, 0.85, 0.95, 1, N = 10,
α = −1/3, and β = −1/4 are depicted in Figure 12. It is evident that the
approximate solutions approach the exact solutions as ν and γ approach 1.
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Table 12: Maximum absolute errors of u10(t) and v10(t) for various values of α and β,
and ν = γ = 1 for Example 8

(α, β) Erroru Errorv (α, β) Erroru Errorv

(0, 0) 3.0826× 10−14 3.5991× 10−14 (1, 1) 4.7157× 10−13 1.8738× 10−13

(− 1
5
, 1) 1.6600× 10−12 1.7294× 10−12 (1,− 1

5
) 2.4327× 10−13 5.9886× 10−13

(− 1
3
,− 1

4
) 5.5345× 10−14 3.8509× 10−14 ( 1

2
,− 1

2
) 1.0828× 10−13 1.3202× 10−13

(− 1
2
, 1
2
) 2.3938× 10−13 1.3725× 10−13 ( 1

2
, 1
2
) 1.8085× 10−13 7.0934× 10−14

Table 13: Values of absolute errors of u10(t) at some points for α = − 1
5
, β = 1 in

Example 8

ti Erroru Erroru in [50] ti Erroru Erroru in [50]
0.03125 8.7968× 10−14 4.51× 10−5 0.53125 8.1234× 10−13 6.87× 10−4

0.15625 2.3332× 10−13 2.20× 10−4 0.65625 1.0164× 10−13 8.24× 10−4

0.28125 4.2781× 10−13 3.68× 10−4 0.78125 1.2319× 10−13 9.55× 10−4

0.40625 6.1337× 10−13 5.41× 10−4 0.90625 1.4680× 10−13 1.08× 10−3

Table 14: Absolute errors of the approximate solution v10(t) for α = − 1
5
and β = 1 at

selected points in Example 8

ti Errorv Errorv in [50] ti Errorv Errorv in [50]
0.03125 7.8345× 10−13 4.77× 10−4 0.53125 5.8795× 10−13 1.05× 10−4

0.15625 7.3162× 10−13 4.19× 10−4 0.65625 4.7715× 10−13 4.59× 10−5

0.28125 6.7339× 10−13 3.38× 10−4 0.78125 3.5498× 10−13 2.18× 10−4

0.40625 6.3567× 10−13 2.33× 10−4 0.90625 2.1013× 10−13 4.11× 10−4

Figure 12: Appeoximate solutions for various values of ν and γ, α = − 1
3
, β = − 1

4
, and

N = 10 for Example 8
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7 Conclusion

In this study, the Jacobi operational method has been successfully applied to
solve both linear and nonlinear integro-differential equations involving frac-
tional derivatives of arbitrary order ν. This method utilized shifted Jacobi
polynomials defined on the interval [0, 1], transforming the given problem,
whether linear or nonlinear, into a set of more manageable algebraic equa-
tions. The resulting algebraic system is easier to solve compared to the
original problem, highlighting a significant advantage of this approach. An
additional strength of the proposed method is the straightforward determi-
nation of coefficients for the Jacobi series solution through the algorithms
provided. Operational matrices for fractional integration and product are
efficiently constructed using these algorithms. The study also investigated
the existence and uniqueness of solutions for the equations and analyzed the
convergence of the numerical approach. Illustrative examples provided in
Examples 1–4, 7, and 8 showed that exact solutions exist only for integer
values of ν. However, the numerical solutions obtained demonstrated strong
agreement with the analytic solutions in these cases. For fractional values of
ν within the range m − 1 < ν < m, where m ∈ N, the numerical solutions
gradually converge to the exact solutions as ν approaches m. In Example
5, where an exact solution is provided, the resulting absolute errors demon-
strate the effectiveness of the proposed algorithm in solving such equations.
Remarkably, Remark 5 offered a reliable method to estimate the absolute
errors for the presented examples, which is particularly useful in scenarios
like Example 6, where an exact solution is unavailable. The precision of the
Jacobi operational method is further demonstrated by the consistently small
and nearly uniform errors across the analyzed interval, affirming the validity
of the Jacobi collocation method. A comparative analysis with other es-
tablished methods, such as HPM, VIM, Sinc-collocation, Legendre wavelets,
and Bernoulli wavelet methods, showed that the proposed technique produces
more accurate results. Additionally, this method avoided the computational
complexities of existing methods, such as Homotopy perturbation and Ado-
mian decomposition, especially in determining Adomian polynomials. Based
on the promising results obtained, it is expected that the Jacobi colloca-
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tion method will become a robust tool for solving both linear and nonlinear
functional equations. Future work aims to extend this method to address sin-
gular integro-differential equations with variable-order derivatives, although
some modifications will be required. However, the method can be extended
to higher-dimensional fractional equations, such as fractional integro-partial
differential equations and partial differential equations with fractional orders.
While the operational collocation method with Jacobi polynomials is effec-
tive for solving FIDEs in one dimension, applying it to higher dimensions
presents challenges such as handling fractional derivatives in multiple dimen-
sions, managing complex boundary conditions, ensuring numerical stability,
and controlling computational costs. These challenges can be addressed by
adopting a pseudo-operational approach.
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