- Aallam, Y., Dhiba, D., Lemriss, S., Souiri, A., Karray, F., Rasafi, T.E., & Hamdali, H. (2021). Isolation and characterization of phosphate solubilizing Streptomyces endemic from sugar beet fields of the Beni-Mellal region in Morocco. Microorganisms, 9, 914. https://doi.org/10.3390/microorganisms9050914
- Afzal, I., Shinwari, Z.K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36-49. https://doi.org/10.1016/ j.micres.2019.02.001
- Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry.
- Bashan, Y., de-Bashan, L.E., Prabhu, S.R., & Hernandez, J.P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 378, 1-33. https://doi.org/10.1007/s11104-013-1956-x
- Bechtaoui, N., Raklami, A., Benidire, L., Tahiri, A.I., Göttfert, M., & Oufdou, K. (2020). Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Polish Journal of Environmental Studies,29(2), 1557-1565. https://doi.org/ 10.15244/pjoes/110345
- Chabot, R., Antoun, H., & Cescas, M.P. (1996). Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant and Soil, 184, 311-321. https://doi.org/10.1007/ BF00010460
- Chapman, H.D., & Pratt, P.F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93, 68. https://doi.org/10.1097/00010694-196201000-00015
- Chauhan, A., Guleria, S., Balgir, P.P., Walia, A., Mahajan, R., Mehta, P., & Shirkot, C.K. (2017). Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurini bacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Brazilian Journal of Microbiology, 48, 294-304. https://doi.org/10.1016/j.bjm.2016.12.001
- Chouyia, F.E., Romano, I., Fechtali, T., Fagnano, M., Fiorentino, N., Visconti, D., & Pepe, O. (2020). P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population. Frontiers in Plant Science, 11, 1137. https://doi. org/10.3389/fpls.2020.01137
- Cozzolino, V., Monda, H., Savy, D., Di Meo, V., Vinci, G., & Smalla, K. (2021). Cooperation among phosphate solubilizing bacteria, humic acids and Arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Journal of Chemical and Biological Technologies in Agriculture, 8(1), 1-18. https:// doi.org/10.1186/s40538-021-00230-x
- Da Costa, E.M., de Lima, W., Oliveira-Longatti, S.M., & de Souza, F.M. (2015). Phosphate-solubilising bacteria enhance Oryza sativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate. Ecological Engineering, 83, 380-385. https://doi.org/10.1016/j.ecoleng.2015.06.045
- Dehsheikh, A.B., Sourestani, M.M., Zolfaghari, M., & Enayatizamir, N. (2020). Changes in soil microbial activity, essential oil quantity, and quality of Thai basil as response to biofertilizers and humic acid. Journal of Cleaner Production, 256, 120439. https://doi.org/10.1016/j.jclepro.2020.120439
- Divjot, K., Rana, K.L., Tanvir, K., Yadav, N., Yadav, A.N., & Kumar, M. (2021). Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and-mobilizing microbes: a review. Pedosphere, 31, 43–75. https://doi.org/10.1016/S1002-0160(20)60057-1
- Dong, Z., Liu, Y., Li, M., Ci, B., Lu, X., Feng, X., & Ma, F. (2023). Effect of different NPK fertilization timing sequences management on soil-petiole system nutrient uptake and fertilizer utilization efficiency of drip irrigation cotton. Scientific Reports, 13, 14287. https://doi.org/10.1038/s41598-023-40620-9
- Ekin, Z. (2019). Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Journal of Sustainability, 11, 123-417. https://doi.org/10.3390/ su11123417
- Esringü, A., Kaynar, D., Turan, M., & Ercisli, S. (2016). Ameliorative effect of humic acid and plant growth-promoting rhizobacteria (PGPR) on Hungarian vetch plants under salinity stress. Communications in Soil Science and Plant Analysis, 47, 602-618. https://doi.org/10.1080/00103624.2016.1141922
- Farhat, M.B., Boukhris, I., & Chouayekh, H. (2015). Mineral phosphate solubilization by Streptomyces CTM396 involves the excretion of gluconic acid and is stimulated by humic acids. FEMS Microbiology Letters, 362, 5. https://doi.org/10.1093/femsle/fnv008
- Ghorbani Nasrabadi, R., Greiner, R., Mayer-miebach, E., & Menezes-Blackburn, D. (2023). Phosphate solubilizing and phytate degrading Streptomyces isolates stimulate the growth and P accumulation of maize (Zea mays) fertilized with different phosphorus sources. Geomicrobiology Journal, 40, 325-336. https://doi.org/ 10.1080/01490451.2023.2168799
- Hedley, M.J., Stewart, J.W.B., & Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laaoratory incubations. Soil Science Society of America Journal, 46, 970-976. https://doi.org/10.2136/sssaj1982.03615995004600050017x
- Hoseini, S.S., Zalaghi, R., Enayatizamir, N., & Feizian, M. (2023). The effect of sewage sludge application on soil phosphatase activity and nutrients uptake by maize plant inoculated with symbiotic fungi. Journal of Soil Management and Sustainable Production, 13(4), 45-62. (In Persian with English abstract)
- Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 4917256. https://doi.org/10.1155/2019/4917256
- Karami, Y., Samadi, A., fallah Nosratabad, A., Sepehr, E., & Barin, M. (2021). Quantitative evaluation of dissolved and microbial biomass phosphorus released from insoluble phosphates by some strains in order to select efficient bacteria. Journal of Soil Management and Sustainable Production, 11(4), 55-75. (In Persian with English abstract).
- Khalid, R., Khalid, A., Shabaan, M., Asghar, H.N., & Zahir, Z.A. (2023). Phosphorous (P)-solubilizing Rhizobacteria improve P availability to Mung bean via enhanced soil phosphatase activity and improve its growth. Journal of Soil Science and Plant Nutrition, 23(4), 6155-6166. https://doi.org/10.1007/s42729-023-01473-3
- khalili, N., Ghorbani Nasrabadi, R., Baranimotlagh, M., & Khodadadi, R. (2023). The effect of humic acid and inoculation of actinomycetes isolates on phosphorus solubilization in laboratory condition and phosphorus content in maize (Zea mays). Journal of Soil Management and Sustainable Production, 13(2), 75-94. (In Persian with English abstract).
- Khan, N., Siddiqui, M.H., Ahmad, S., Ahmad, M.M., & Siddiqui, S. (2024). New insights in enhancing the phosphorus use efficiency using phosphate-solubilizing microorganisms and their role in cropping system. Geomicrobiology Journal, 1-11. https://doi.org/10.1080/01490451.2024.2331111
- Liu, F., Qian, J., Zhu, Y., Wang, P., Hu, J., Lu, B., & Li, F. (2024). Phosphate solubilizing microorganisms increase soil phosphorus availability: a review. Geomicrobiology Journal, 41(1), 1-16. https://doi.org/10.1080/ 01490451.2023.2272620
- Margalef, O., Sardans, J., FernandezMartínez, M., Molowny-Horas, R., Janssens, I.A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., & Penuelas, J. (2017). Global patterns of phosphatase activity in natural soils. Scientific Reports, 7(1), 1-13. https://doi.org/10.1038/s41598-017-01418-8
- Mehta, S., & Nautiyal, C.S. (2001). An efficient method for qualitative screening of phosphate solubilizing bacteria. Journal of Current Microbiology, 43, 51-56. https://doi.org/10.1007/s002840010259
- Nahidan, S., & Ghasmzadeh, M. (2022). Biochemical phosphorus transformations in a calcareous soil as affected by earthworm, cow manure and its biochar additions. Applied Soil Ecology, 170, 104310. https://doi.org/10.1016/j.apsoil.2021.104310
- Olivares, F.L., Aguiar, N.O., Rosa, R.C.C., & Canellas, L.P. (2015). Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Scientia Horticulturae, 183, 100-108. https://doi.org/10.1016/j.scienta.2014.11.012
- Olivares, F.L., Busato, J.G., de Paula, A.M., da Silva Lima, L., Aguiar, N.O., & Canellas, L.P. (2017). Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 4, 1-13. https://doi.org/10.1186/s40538-017-0112-x
- Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture.
- Orsi, M. (2014). Molecular dynamics simulation of humic substances. Chemical and Biological Technologies in Agriculture, 1, 1-14. https://doi.org/10.1186/s40538-014-0010-4
- Pande, A., Pandey, P., Mehra, S., Singh, M., & Kaushik, S. (2017). Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. Journal of Genetic Engineering Biotechnology, 15(2), 379–391. https://doi.org/10.1016/j.jgeb.2017.06.005
- Pang, F., Li, Q., Solanki, M. K., Wang, Z., Xing, Y. X., & Dong, D. F. (2024). Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Frontiers in Microbiology, 15, 1383813. https://doi.org/10.3389/fmicb.2024.1383813
- Peng, Y., Duan, Y., Huo, W., Xu, M., Yang, X., Wang, X., & Feng, G. (2021). Soil microbial biomass phosphorus can serve as an index to reflect soil phosphorus fertility. Biology and Fertility of Soils, 57, 657-669. https://doi.org/10.1007/s00374-021-01563-3
- Pishchik, V.N., Vorobyov, N.I., Walsh, O.S., Surin, V.G., & Khomyakov, Y.V. (2016). Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by reflectance measurements. Journal of Plant Nutrition, 39, 1074-1086. https://doi.org/10.1080/01904167.2015.1061551
- Raiesi, T., & Hosseinpur, A. (2013). The Rhizospheric Effects of Wheat (Triticum aestivum L.) on Phosphorus Release Kinetics. Water and Soil, 27(4), 780-791. (In Persian with English abstract)
- Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, SC. (2021). Phosphate solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutritions, 21(1), 49–68. https://doi.org/10.1007/s42729-020-00342-7
- Rosa, P.A.L., Galindo, F.S., Oliveira, C.E.D.S., Jalal, A., Mortinho, E.S., Fernandes, G.C., Marega, E.M.R., Buzetti, S., & Teixeira Filho, M.C.M. (2022). Inoculation with plant growth-promoting bacteria to reduce phosphate fertilization requirement and enhance technological quality and yield of sugarcane. Microorganisms, 10(1), 192. https://doi.org/10.3390/microorganisms10010192
- Sadeghi, E., Ghorbani Nasrabadi, R., Movahedi Naeini, S.A.R., Baranimotlagh, M., Khoshhal Sarmast, M., & Pahlevan-Rad, M.R. (2023) Using compost and triple superphosphate fertilizer to promote soil microbial and enzymatic properties and maize (Zea mays) growth in loess soil. Agricultural Engineering, 46(2), 121-139. (In Persian with English abstract). https://doi.org/10.1007/s42729-024-01940-5
- Sarmah, R., & Sarma, A.K. (2023). Phosphate solubilizing microorganisms: A review. Communications in Soil Science and Plant Analysis, 54, 1306-1315. https://doi.org/10.1080/00103624.2022.2142238
- Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11, 1485. https://doi.org/10.3390/su11051485
- Shams El-Deen, R.O., El-Azeem, A., Samy, A.M., Abd Elwahab, A.F., & Mabrouk, S.S. (2020). Effects of phosphate solubilizing microorganisms on wheat yield and phosphatase activity. Egyptian Journal of Microbiology, 55 (The 14th Conference of Applied Microbiology), 71-86. https://doi.org/21608/ejm.2020.20675.1137
- Sheikhloo, F., & Rasouli Sadaghiani, M. (2016). Effects of different agronomic and forest land uses on soil enzyme activity. Iranian Journal of Soil and Water Research, 47(1), 205-216. (In Persian with English abstract).
- Silva, L.I.D., Pereira, M.C., Carvalho, A.M.X.D., Buttrós, V.H., Pasqual, M., & Dória, J. (2023). Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture, 13(2), 462. https://doi.org/10.3390/ agriculture13020462
- Smith, S. (1994). Effect of soil pH on availability to crops of metals in sewage sludge-treated soils. I. Nickel, copper and zinc uptake and toxicity to ryegrass. Environmental Pollution, 85(3), 321-327. https://doi.org/ 10.1016/0269-7491(94)90054-X
- Sparling, G.P., Feltham, C.W., Reynolds, J., West, A.W., & Singleton, P. (1990). Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the kEC-factor. Soil Biology and Biochemistry, 22(3), 301-307. https://doi.org/10.1016/0038-0717(90)90104-8
- Spohn, M., & Kuzyakov, Y. (2013). Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology and Biochemistry, 61, 69-75. https://doi.org/10.1016/j.soilbio.2013.02.013
- Tabatabai, M.A., & Bremner, J.M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301-307. https://doi.org/10.1016/0038-0717(69)90012-1
- Wahid, F., Sharif, M., Steinkellner, S., Khan, M.A., Marwat, K.B., & Khan, S.A. (2016). Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pakistan Journal of Botany, 48, 739-747.
- Wu, W., Wang, F., Xia, A., Zhang, Z., Wang, Z., Wang, K., & Cui, X. (2022). Meta-analysis of the impacts of phosphorus addition on soil microbes. Agriculture, Ecosystems & Environment, 340, 108180. https://doi.org /10.1016/j.agee.2022.108180
- Yadav, H., Fatima, R., Sharma, A., & Mathur, S. (2017). Enhancement of applicability of rock phosphate in alkaline soils by organic compost. Applied Soil Ecology, 113, 80-85. https://doi.org/10.1016/j.apsoil. 2017.02.004
- Yang, J., Kloepper, J.W., & Ryu, C.M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14, 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
- Yuan, Y., Gai, S., Tang, C., Jin, Y., Cheng, K., Antonietti, M., & Yang, F. (2022). Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Journal of Applied Soil Ecology, 179, 104-587. https://doi.org/10.1016/j.apsoil.2022.104587
- Zhang, J., Li, Y., Wang, J., Chen, W., Tian, D., & Niu, S. (2021). Different responses of soil respiration and its components to nitrogen and phosphorus addition in a subtropical secondary forest. Forest Ecosystems, 8, 1-13. https://doi.org/10.1186/s40663-021-00313-z
|