تاثیر افزودن نانو صفحات دی سولفید تنگستن بر ریزساختار و خواص مکانیکی نانوکامپوزیت ریختگی Al-10Zn-3.5Mg-2.5Cu
مهندسی متالورژی و مواد
مقاله 2 ، دوره 36، شماره 1 - شماره پیاپی 37 ، فروردین 1404، صفحه 15-28 اصل مقاله (2.02 M )
نوع مقاله: علمی و پژوهشی
شناسه دیجیتال (DOI): 10.22067/jmme.2025.85986.1136
نویسنده
محمد علی پور*
گروه مهندسی مواد- دانشکده مکانیک-دانشگاه تبریز- تبریز-ایران
چکیده
در این تحقیق تاثیر افزودن نانوصفحات دی سولفید تنگستن بر ریزساختار و خواص مکانیکی نانو کامپوزیت آلیاژ آلومینیوم Al-10Zn-3.5Mg-2.5Cu تولید شده به روش متالورژی پودر و ریخته گری بررسی شده است. در این تحقیق ابتدا پیش سازه حاوی نانوصفحات دی سولفید تنگستن و پودر خالص آلومینیم ساخته شده و در ادامه این پیش سازه به مذاب اضافه می شود. وجود نانوصفحات دی سولفید تنگستن پراکنده با سطح ویژه بالا به طور قابل توجهی استحکام نانوکامپوزیت را افزایش می دهد. مطالعات ریزساختاری آلیاژ نشان داد که افزودن نانوصفحات دی سولفید تنگستن باعث کاهش اندازه دانه می شود. بررسیهای بیشتر روی آزمایش کششی نشان داد که افزودن نانوصفحات استحکام کششی نهایی را افزایش میدهد. عملیات حرارتی T6 استحکام نهایی نمونه های نانوکامپوزیت را بطور چمگیری افزایش می دهد. با افزودن مقدار نانوصفحات بالاتر از 0.7 درصد وزنی، وجود کلوخه نانوصفحه دی سولفید تنگستن در مرزهای دانه به عنوان مسیر مطلوب برای رشد ترک ایجاد می شود. نانوکامپوزیت حاوی 0.7 درصد نانوصفحات دی سولفید تنگستن بعد از عملیات حرارتی پیرسختی استحکام کششی 535 Mpa را نشان می دهد.
کلیدواژهها
کامپوزیت های زمینه فلزی (MMCs) ؛ خواص مکانیکی ؛ ریزساختارها ؛ فرآیند پودی ؛ عملیات آلتراسونیک
مراجع
[1] M. Raturi, and A. Bhattacharya, “Electrochemical corrosion of AA6061-AA7075 double sided FSW joints prepared with and without secondary heating,” CIRP Journal of Manufacturing Science and Technology , vol. 38, pp. 590-612, 2022. https://doi.org/10.1016/j.cirpj.2022.06.002
[2] D. G. Andrade, C. Leitão, N. Dialami, M. Chiumenti, and D. M. Rodrigues, “Modelling torque and temperature in friction stir welding of aluminium alloys,” International Journal of Mechanical Sciences , vol. 182, pp. 105725, 2020. https://doi.org/10.1016/j.ijmecsci.2020.105725
[3] R. Prasad Mahto, and S. Kanta Pal, “Friction Stir Welding of Dissimilar Materials: An Investigation of Microstructure and Nano-Indentation Study,” Journal of Manufacturing Processes , vol. 55, pp. 103-118, 2020. https://doi.org/10.1016/j.jmapro.2020.03.050
[4] M. Raturi, and A. Bhattacharya, “Temperature variation and influence on local mechanical properties assessed by nanoindentation in AA6061-AA7075 dissimilar FSW,” International Communications in Heat and Mass Transfer , vol. 148, pp. 107079, 2023. https://doi.org/10.1016/j.icheatmasstransfer.2023.107079
[5] X. Yibin, T. Yoshita, “Thermal Conductivity of SiC Fine Particles
Reinforced Al Alloy Matrix Composite with Dispersed Particle Size,” Journal of Applied Physics , vol. 95, no. 2, pp. 722-726, 2004. https://doi.org/10.1063/1.1632022
[6] C. Borgonovo, D. Apelian, “Manufacture of aluminum nanocomposites: a critical review,” Materials Science Forum , vol. 678, pp. 1–22, 2011. https://doi.org/10.4028/www.scientific.net/MSF.678.1
[7] L. M. Tham, M. Gupta and L. Cheng, “Effect of Limited Ma-trix-Reinforcement Interfacial Reaction on Enhancing the Me-chanical Properties of Aluminium-Silicon Carbide Composites,” Acta Materialia , vol. 49, no. 16, pp. 3243-3253, 2001. https://doi.org/10.1016/S1359-6454(01)00221-X
[8] M. T. Khorshid, S. A. J. Jahromi, M. M. Moshksar, “Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion,” Materials and Design , vol. 31, no. 8, pp. 3880-3884, 2010. https://doi.org/10.1016/j.matdes.2010.02.047
[9] R. D. Haghighi, S. A. J. Jahromi, A. Moresedgh, M. Tabandeh Khorshid, “A Comparison Between ECAP and Conventional Extrusion for Consolidation of Aluminum Metal Matrix Composite,” Journal of Materials Engineering and Performance , vol. 21, pp. 1885-92, 2012. https://doi.org/10.1007/s11665-011-0108-9
[10] J. Schiotz, F. D. Tolla, K. W. Jacobsen, “Softening of nanocrystalline metals at very small grain sizes,” Nature , vol. 391, no. 6667, pp. 561-563, 1998. https://doi.org/10.1038/35328
[11] T. Varol, A. Canakci, “Synthesis and characterization of nanocrystalline Al 2024–B4C composite powders by mechanical alloying,” Philosophical Magazine Letters , vol. 93, no. 6, pp. 339-345, 2013. https://doi.org/10.1080/09500839.2013.779758
[12] K.U. Kainer, Basics of Metal Matrix Composites , Metal Matrix Composites: Custom‐made Materials for Automotive and Aerospace Engineering, pp. 1-54, 2006. https://doi.org/10.1002/3527608117
[13] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, “Particulate reinforced metal matrix composites—a review,” Journal of materials science, vol. 26, pp. 1137–1156, 1991. https://doi.org/10.1007/BF00544448
[14] J.C. Lee, J.P. Ahn, “Control of the interface in SiC/Al composites,” Scripta Materialia , vol. 41, no. 8, pp. 895–900, 1999. https://doi.org/10.1016/S1359-6462(99)00227-4
[15] Y. Yang, J. Lan, X. Li, “Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy,” Materials Science and Engineering: A , vol. 380, no. 1-2, pp. 378–383, 2004. https://doi.org/10.1016/j.msea.2004.03.073
[16] X. Li, Y. Yang, “Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast Aluminum Alloy A356,” Metallurgical Science and Tecnology , vol. 26, no. 2, pp. 12–20, 2008.
[17] A. Dorri-Moghadam, B. F. Schultz, J. Ferguson, E. Omrani, P. K. Rohatgi, N. Gupta, “Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites,” JOM , vol. 66, pp. 872-81, 2014. https://doi.org/10.1007/s11837-014-0948-5
[18] J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, “Reinforcement with Tungsten disulfide nanosheets in aluminum matrix composites,” Scripta Mater , vol. 66, no. 8, pp. 594‒597, 2012. https://doi.org/10.1016/j.scriptamat.2012.01.012
[19] S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, “Tungsten disulfide/aluminum nanocomposites,” Materials Science and Engineering: A , vol. 528, no. 27, pp. 7933‒7937, 2011. https://doi.org/10.1016/j.msea.2011.07.043
[20] G. Qian, Y. Feng, Y. Chen, F. Mo, Y. Wang, W. Liu, “Effect of WS2 addition on electrical sliding wear behaviors of Cu–graphite–WS2 composites,” Transactions of Nonferrous Metals Society of China , vol. 25, no. 6, pp. 1986-1994, 2015. https://doi.org/10.1016/S1003-6326(15)63807-9
[21] A. Abbas, S. Huang, “Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites,” Materials Science and Engineering: A , vol. 780, p. 139211, 2020. https://doi.org/10.1016/j.msea.2020.139211
[22] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, “Tungsten disulfide-based ultracapacitors,” Nano Lett, vol. 8, pp. 3498‒3502, 2008. https://doi.org/10.1021/nl802558y
[23] J. Lazaro-Nebreda , J. B. Patel , Z. Fan, “Improved degassing efficiency and mechanical properties of A356 aluminium alloy castings by high shear melt conditioning (HSMC) technology,” Journal of Materials Processing Technology , vol. 294, p. 117146, 2021. https://doi.org/10.1016/j.jmatprotec.2021.117146
[24] S. N. Omenyi, A. W. Neumann, “Thermodynamic aspects of particle engulfment by solidifying melts,” Journal of Applied Physics , vol. 47, no. 9, pp. 3956-3962, 1976. https://doi.org/10.1063/1.323217
[25] M. K. Surappa, P. K. Rohatgi, “Heat diffusivity criterion for the entrapment of particles by a moving solid-liquid interface,” Journal of Materials Science , vol. 16, pp. 562-564, 1981. https://doi.org/10.1007/BF00738658
[26] M Alipour, S Mirjavadi, MK Besharati Givi, H Razmi, M Emamy, “Effects of Al-5TI-1B master alloy and heat treatment on the microstructure and dry sliding wear behavior of an Al-12Zn-3Mg-2.5 Cu alloy,” Iranian Journal of Materials Science and Engineering , vol. 9, no. 4, pp. 8-16, 2012.
[27] E. M. Agaliotis, M. R. Rosenberger, A. E. Ares, C. E. Schvezov, “Influence of the Shape of the Particles in the Solidification of Composite Materials,” Procedia Materials Science , vol. 1, pp. 58-63, 2012. https://doi.org/10.1016/j.mspro.2012.06.008
[28] M. A. Khan, P. k. Rohatgi, “A numerical study of thermal interaction of solidification fronts with spherical particles during solidification of metal-matrix composite materials,” Composites Engineering , vol. 3, no. 10, pp. 995-1006, 1993. https://doi.org/10.1016/0961-9526(93)90007-7
[29] J. S. Zabinski, M. S. Donley, S. V. Prasad & N. T. McDevitt, “Synthesis and characterization of tungsten disulphide films grown by pulsed-laser deposition,” Journal of Materials Science , vol. 29, pp. 4834−4839, 1994. https://doi.org/10.1007/BF00356530
[30] J. R. Fleming , N. P. Suh, “The relationship between crack propagation rates and wear rates,” Wear , vol. 44, no. 1, pp. 57−64, 1977.
[31] J Zhang, AT Alpas, “Delamination wear in ductile materials containing second phase particles,” Materials Science and Engineering A , vol. 160, no. 1, pp. 25−35, 1993. https://doi.org/10.1016/0921-5093(93)90494-Y
[32] W. Chen,Y. Gao,Y. Wang, H. Li, “Tribological behavior of Si3N4-hBN ceramic materials without lubrication under different test modes,” Tribology Transactions , vol. 53, no. 6, pp. 787−798, 2010. https://doi.org/10.1080/10402004.2010.486522
[33] M. A. Wen-lin, L. U. Jin-jun, “Effect of surface texture on transfer layer formation and tribological behaviour of copper–graphite composite,” Wear , vol. 270, no. 3-4, pp. 218−229, 2011.
[34] C. Wu, Y. Wang, L. Zhang, C. Feng, K. Zhou, “The effect of hot extrusion on mechanical and tribological behavior of Ag−Cu/MoS2 composites,” Tribology Transactions , vol. 59, no. 2, pp. 1−36, 2015. https://doi.org/10.1080/10402004.2015.1087077
[35] C. Fan-yan, F. Yi, S. Hao, Z. Xue-bin, C. Jie, C. Nan-nan, “Friction and wear behaviors of Ag/MoS2 /G composite in different atmospheres and at different temperatures,” Tribology Letters , vol. 47, pp. 139−148, 2012. https://doi.org/10.1007/s11249-012-9970-3
آمار
تعداد مشاهده مقاله: 206
تعداد دریافت فایل اصل مقاله: 149