The effect of adding tungsten disulfide nanoplates on the microstructure and mechanical properties of cast Al-10Zn-3.5Mg-2.5Cu nanocomposite
مهندسی متالورژی و مواد
Article 2 , Volume 36, Issue 1 - Serial Number 37 , April 2025, Pages 15-28 PDF (2.02 M )
Document Type: Original Articles
DOI: 10.22067/jmme.2025.85986.1136
Author
Mohammad Alipour*
Faculty of Mechanical engineering, Department of Materials Engineering, University of Tabriz, Iran
Abstract
In this research, the effect of adding tungsten disulfide nanosheets on the microstructure and mechanical properties of Al-10Zn-3.5Mg-2.5Cu aluminum alloy nanocomposite produced by powder metallurgy and casting method has been investigated. In this research, first, a pre-structure containing tungsten disulfide nanoplates and pure aluminum powder is made, and then this pre-structure is added to the melt. The presence of dispersed tungsten disulfide nanosheets with high specific surface area significantly increases the strength of the nanocomposite. Microstructural studies of the alloy showed that the addition of tungsten disulfide nanosheets reduces the grain size. Further investigations on the tensile test showed that the addition of nanosheets increased the ultimate tensile strength. T6 heat treatment increases the final strength of nanocomposite samples. By adding nanoplates above 0.7% by weight, the presence of tungsten disulfide nanoplate clumps in the grain boundaries is created as a favorable path for crack growth. The nanocomposite containing 0.7% of tungsten disulfide nanoplates shows a tensile strength of 535 Mpa after heat treatment.
Keywords
Metal matrix composites (MMCs) ; Mechanical properties ; Microstructures ; Powder processing ; Ultrasonic treatment
References
[1] M. Raturi, and A. Bhattacharya, “Electrochemical corrosion of AA6061-AA7075 double sided FSW joints prepared with and without secondary heating,” CIRP Journal of Manufacturing Science and Technology , vol. 38, pp. 590-612, 2022. https://doi.org/10.1016/j.cirpj.2022.06.002
[2] D. G. Andrade, C. Leitão, N. Dialami, M. Chiumenti, and D. M. Rodrigues, “Modelling torque and temperature in friction stir welding of aluminium alloys,” International Journal of Mechanical Sciences , vol. 182, pp. 105725, 2020. https://doi.org/10.1016/j.ijmecsci.2020.105725
[3] R. Prasad Mahto, and S. Kanta Pal, “Friction Stir Welding of Dissimilar Materials: An Investigation of Microstructure and Nano-Indentation Study,” Journal of Manufacturing Processes , vol. 55, pp. 103-118, 2020. https://doi.org/10.1016/j.jmapro.2020.03.050
[4] M. Raturi, and A. Bhattacharya, “Temperature variation and influence on local mechanical properties assessed by nanoindentation in AA6061-AA7075 dissimilar FSW,” International Communications in Heat and Mass Transfer , vol. 148, pp. 107079, 2023. https://doi.org/10.1016/j.icheatmasstransfer.2023.107079
[5] X. Yibin, T. Yoshita, “Thermal Conductivity of SiC Fine Particles
Reinforced Al Alloy Matrix Composite with Dispersed Particle Size,” Journal of Applied Physics , vol. 95, no. 2, pp. 722-726, 2004. https://doi.org/10.1063/1.1632022
[6] C. Borgonovo, D. Apelian, “Manufacture of aluminum nanocomposites: a critical review,” Materials Science Forum , vol. 678, pp. 1–22, 2011. https://doi.org/10.4028/www.scientific.net/MSF.678.1
[7] L. M. Tham, M. Gupta and L. Cheng, “Effect of Limited Ma-trix-Reinforcement Interfacial Reaction on Enhancing the Me-chanical Properties of Aluminium-Silicon Carbide Composites,” Acta Materialia , vol. 49, no. 16, pp. 3243-3253, 2001. https://doi.org/10.1016/S1359-6454(01)00221-X
[8] M. T. Khorshid, S. A. J. Jahromi, M. M. Moshksar, “Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion,” Materials and Design , vol. 31, no. 8, pp. 3880-3884, 2010. https://doi.org/10.1016/j.matdes.2010.02.047
[9] R. D. Haghighi, S. A. J. Jahromi, A. Moresedgh, M. Tabandeh Khorshid, “A Comparison Between ECAP and Conventional Extrusion for Consolidation of Aluminum Metal Matrix Composite,” Journal of Materials Engineering and Performance , vol. 21, pp. 1885-92, 2012. https://doi.org/10.1007/s11665-011-0108-9
[10] J. Schiotz, F. D. Tolla, K. W. Jacobsen, “Softening of nanocrystalline metals at very small grain sizes,” Nature , vol. 391, no. 6667, pp. 561-563, 1998. https://doi.org/10.1038/35328
[11] T. Varol, A. Canakci, “Synthesis and characterization of nanocrystalline Al 2024–B4C composite powders by mechanical alloying,” Philosophical Magazine Letters , vol. 93, no. 6, pp. 339-345, 2013. https://doi.org/10.1080/09500839.2013.779758
[12] K.U. Kainer, Basics of Metal Matrix Composites , Metal Matrix Composites: Custom‐made Materials for Automotive and Aerospace Engineering, pp. 1-54, 2006. https://doi.org/10.1002/3527608117
[13] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, “Particulate reinforced metal matrix composites—a review,” Journal of materials science, vol. 26, pp. 1137–1156, 1991. https://doi.org/10.1007/BF00544448
[14] J.C. Lee, J.P. Ahn, “Control of the interface in SiC/Al composites,” Scripta Materialia , vol. 41, no. 8, pp. 895–900, 1999. https://doi.org/10.1016/S1359-6462(99)00227-4
[15] Y. Yang, J. Lan, X. Li, “Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy,” Materials Science and Engineering: A , vol. 380, no. 1-2, pp. 378–383, 2004. https://doi.org/10.1016/j.msea.2004.03.073
[16] X. Li, Y. Yang, “Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast Aluminum Alloy A356,” Metallurgical Science and Tecnology , vol. 26, no. 2, pp. 12–20, 2008.
[17] A. Dorri-Moghadam, B. F. Schultz, J. Ferguson, E. Omrani, P. K. Rohatgi, N. Gupta, “Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites,” JOM , vol. 66, pp. 872-81, 2014. https://doi.org/10.1007/s11837-014-0948-5
[18] J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, “Reinforcement with Tungsten disulfide nanosheets in aluminum matrix composites,” Scripta Mater , vol. 66, no. 8, pp. 594‒597, 2012. https://doi.org/10.1016/j.scriptamat.2012.01.012
[19] S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, “Tungsten disulfide/aluminum nanocomposites,” Materials Science and Engineering: A , vol. 528, no. 27, pp. 7933‒7937, 2011. https://doi.org/10.1016/j.msea.2011.07.043
[20] G. Qian, Y. Feng, Y. Chen, F. Mo, Y. Wang, W. Liu, “Effect of WS2 addition on electrical sliding wear behaviors of Cu–graphite–WS2 composites,” Transactions of Nonferrous Metals Society of China , vol. 25, no. 6, pp. 1986-1994, 2015. https://doi.org/10.1016/S1003-6326(15)63807-9
[21] A. Abbas, S. Huang, “Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites,” Materials Science and Engineering: A , vol. 780, p. 139211, 2020. https://doi.org/10.1016/j.msea.2020.139211
[22] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, “Tungsten disulfide-based ultracapacitors,” Nano Lett, vol. 8, pp. 3498‒3502, 2008. https://doi.org/10.1021/nl802558y
[23] J. Lazaro-Nebreda , J. B. Patel , Z. Fan, “Improved degassing efficiency and mechanical properties of A356 aluminium alloy castings by high shear melt conditioning (HSMC) technology,” Journal of Materials Processing Technology , vol. 294, p. 117146, 2021. https://doi.org/10.1016/j.jmatprotec.2021.117146
[24] S. N. Omenyi, A. W. Neumann, “Thermodynamic aspects of particle engulfment by solidifying melts,” Journal of Applied Physics , vol. 47, no. 9, pp. 3956-3962, 1976. https://doi.org/10.1063/1.323217
[25] M. K. Surappa, P. K. Rohatgi, “Heat diffusivity criterion for the entrapment of particles by a moving solid-liquid interface,” Journal of Materials Science , vol. 16, pp. 562-564, 1981. https://doi.org/10.1007/BF00738658
[26] M Alipour, S Mirjavadi, MK Besharati Givi, H Razmi, M Emamy, “Effects of Al-5TI-1B master alloy and heat treatment on the microstructure and dry sliding wear behavior of an Al-12Zn-3Mg-2.5 Cu alloy,” Iranian Journal of Materials Science and Engineering , vol. 9, no. 4, pp. 8-16, 2012.
[27] E. M. Agaliotis, M. R. Rosenberger, A. E. Ares, C. E. Schvezov, “Influence of the Shape of the Particles in the Solidification of Composite Materials,” Procedia Materials Science , vol. 1, pp. 58-63, 2012. https://doi.org/10.1016/j.mspro.2012.06.008
[28] M. A. Khan, P. k. Rohatgi, “A numerical study of thermal interaction of solidification fronts with spherical particles during solidification of metal-matrix composite materials,” Composites Engineering , vol. 3, no. 10, pp. 995-1006, 1993. https://doi.org/10.1016/0961-9526(93)90007-7
[29] J. S. Zabinski, M. S. Donley, S. V. Prasad & N. T. McDevitt, “Synthesis and characterization of tungsten disulphide films grown by pulsed-laser deposition,” Journal of Materials Science , vol. 29, pp. 4834−4839, 1994. https://doi.org/10.1007/BF00356530
[30] J. R. Fleming , N. P. Suh, “The relationship between crack propagation rates and wear rates,” Wear , vol. 44, no. 1, pp. 57−64, 1977.
[31] J Zhang, AT Alpas, “Delamination wear in ductile materials containing second phase particles,” Materials Science and Engineering A , vol. 160, no. 1, pp. 25−35, 1993. https://doi.org/10.1016/0921-5093(93)90494-Y
[32] W. Chen,Y. Gao,Y. Wang, H. Li, “Tribological behavior of Si3N4-hBN ceramic materials without lubrication under different test modes,” Tribology Transactions , vol. 53, no. 6, pp. 787−798, 2010. https://doi.org/10.1080/10402004.2010.486522
[33] M. A. Wen-lin, L. U. Jin-jun, “Effect of surface texture on transfer layer formation and tribological behaviour of copper–graphite composite,” Wear , vol. 270, no. 3-4, pp. 218−229, 2011.
[34] C. Wu, Y. Wang, L. Zhang, C. Feng, K. Zhou, “The effect of hot extrusion on mechanical and tribological behavior of Ag−Cu/MoS2 composites,” Tribology Transactions , vol. 59, no. 2, pp. 1−36, 2015. https://doi.org/10.1080/10402004.2015.1087077
[35] C. Fan-yan, F. Yi, S. Hao, Z. Xue-bin, C. Jie, C. Nan-nan, “Friction and wear behaviors of Ag/MoS2 /G composite in different atmospheres and at different temperatures,” Tribology Letters , vol. 47, pp. 139−148, 2012. https://doi.org/10.1007/s11249-012-9970-3
Statistics
Article View: 680
PDF Download: 431