- Albornoz, R. I., & Allen, M. S. (2018). Highly fermentable starch at different diet starch concentrations decreased feed intake and milk yield of cows in the early postpartum period. Journal of Dairy Science, 101(10), 8902-8915. https://doi.org/10.3168/jds.2018-14843
- Belanche, A., Martín‐García, I., Jiménez, E., Jonsson, N. N., & Yañez‐Ruiz, D. R. (2021). A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep. Journal of the Science of Food and Agriculture, 101(13), 5541-5549. https://doi.org/10.1002/jsfa.11205
- Bertoni, G., Trevisi, E., Han, X., & Bionaz, M. (2008). Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. Journal of Dairy Science, 91(9), 3300-3310. https://doi.org/10.3168/jds.2008-0995
- Brzóska, F. (2005). Effect of soybean meal protected with Ca salts of fatty acids on cows’ yield, protein and fat components in milk and blood. Annals of Animal Science, 5, 111-123.
- Chen, X., Shao, S., Chen, M., Hou, C., Yu, X., & Xiong, F. (2020). Morphology and physicochemical properties of starch from waxy and non‐waxy barley. Starch‐Stärke, 72(5-6), 1900206. https://doi.org/10.1002/star.201900206
- Dabestani, M., Yeganehzad, S., & Miller, R. (2021). A natural source of saponin: Comprehensive study on interfacial properties of Chubak (Acanthophyllum Glandulosum) root extract and related saponins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 630, 127594. https://doi.org/10.1016/j.colsurfa.2021.127594
- Deckardt, K., Khiaosa‐ard, R., Grausgruber, H., & Zebeli, Q. (2014). Evaluation of various chemical and thermal feed processing methods for their potential to enhance resistant starch content in barley grain. Starch‐Stärke, 66(5-6), 558-565.https://doi.org/10.1002/star.201300200
- Dehghan-Banadaky, M., Corbett, R., & Oba, M. (2007). Effects of barley grain processing on productivity of cattle. Animal Feed Science and Technology, 137(1-2), 1-24. https://doi.org/10.1016/j.anifeedsci.2006.11.021
- Dijkstra, J., Van Gastelen, S., Dieho, K., Nichols, K., & Bannink, A. (2020). Rumen sensors: Data and interpretation for key rumen metabolic processes. Animal, 14(S1), s176-s186. https://doi.org/10.1017/s1751731119003112
- Erdman, R. A. 2011. Monitoring feed efficiency in dairy cows using fat-corrected milk per unit dry matter intake. Pages 69–79 in Proc. Mid-Atlantic Nutrition Conference, University of Maryland, Col[1]lege Park. Mid-Atlantic Feed Industry Council.
- Ebrahimi, S. H. (2020). Feeding complete concentrate pellets containing ground grains or blend of steam-flaked grains and other concentrate ingredients in ruminant nutrition–A review. Annals of Animal Science, 20(1), 11-28. https://doi.org/10.2478/aoas-2019-0055
- Friedman, N., Shriker, E., Gold, B., Durman, T., Zarecki, R., Ruppin, E., & Mizrahi, I. (2017). Diet‐induced changes of redox potential underlie compositional shifts in the rumen archaeal community. Environmental Microbiology, 19(1), 174-184. https://doi.org/10.1111/1462-2920.13551
- Gruber, L., Khol-Parisini, A., Humer, E., Abdel-Raheem, S. M., & Zebeli, Q. (2017). Long-term influence of feeding barley treated with lactic acid and heat on performance and energy balance in dairy cows. Archives of Animal Nutrition, 71(1), 54-66. https://doi.org/10.1080/1745039X.2016.1253226
- Harder, H., Khol‐Parisini, A., & Zebeli, Q. (2015). Modulation of resistant starch and nutrient composition of barley grain using organic acids and thermal cycling treatments. Starch‐Stärke, 67(7-8), 654-662. https://doi.org/10.1002/star.201500040
- Hart, K., Yáñez-Ruiz, D. R., Duval, S., McEwan, N., & Newbold, C. (2008). Plant extracts to manipulate rumen fermentation. Animal Feed Science and Technology, 147(1-3), 8-35. https://doi.org/10.1016/j.anifeedsci.2007.09.007
- Hristov, A., Zaman, S., VanderPol, M., Szasz, P., Huber, K., & Greer, D. (2007). Effect of a saponin-based surfactant and aging time on ruminal degradability of flaked corn grain dry matter and starch. Journal of Animal Science, 85(6), 1459-1466. https://doi.org/10.2527/jas.2006-467
- Huang, Y., Jones, R., Compiani, R., Grossi, S., Johnson, P., Eckersall, P., Rossi, C. S., & Jonsson, N. (2022). Effects of ammonia-treated maize on growth performance of beef cattle. Animal Feed Science and Technology, 290, 115350. https://doi.org/10.1016/j.anifeedsci.2022.115350
- Huang, Y., Marden, J., Julien, C., & Bayourthe, C. (2018). Redox potential: An intrinsic parameter of the rumen environment. Journal of Animal Physiology and Animal Nutrition, 102(2), 393-402.. https://doi.org/10.1111/jpn.12855
- Humer, E., Khol-Parisini, A., Gruber, L., Gasteiner, J., Abdel-Raheem, S. M., & Zebeli, Q. (2015). Long-term reticuloruminal pH dynamics and markers of liver health in early-lactating cows of various parities fed diets differing in grain processing. Journal of Dairy Science, 98(9), 6433-6448. https://doi.org/10.3168/jds.2015-9522
- Humer, E., & Zebeli, Q. (2017). Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Animal Feed Science and Technology, 226, 133-151. https://doi.org/10.1016/j.anifeedsci.2017.02.005
- Iqbal, S., Terrill, S., Zebeli, Q., Mazzolari, A., Dunn, S., Yang, W., & Ametaj, (2012). Treating barley grain with lactic acid and heat prevented sub-acute ruminal acidosis and increased milk fat content in dairy cows. Animal Feed Science and Technology, 172(3-4), 141-149. https://doi.org/10.1016/j.anifeedsci.2011.12.024
- Iqbal, S., Zebeli, Q., Mazzolari, A., Bertoni, G., Dunn, , Yang, W., & Ametaj, B. (2009). Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows. Journal of Dairy Science, 92(12), 6023-6032. https://doi.org/10.3168/jds.2009-2380
- Jacob, J., & Pescatore, A. (2012). Using barley in poultry diets—A review. Journal of Applied Poultry Research, 21(4), 915-940. https://doi.org/10.3382/japr.2012-00557
- Kheirandish, P., Mesgaran, M. D., Javadmanesh, A., Mohri, M., Khafipour, E., & Vakili, S. A. (2022). Effect of processed barley grain on in vitro rumen fermentation and fate of nitrogen metabolism. https://ijas.rasht.iau.ir/article_697486_46aff2394cff507ae15ef4141bab1c7.pdf
- Khosrow Shahi, S., Didar, Z., Hesarinejad, M. A., & Vazifedoost, M. (2021). Optimized pulsed electric field‐assisted extraction of biosurfactants from Chubak (Acanthophyllum squarrosum) root and application in ice cream. Journal of the Science of Food and Agriculture, 101(9), 3693-3706. https://doi.org/10.1002/jsfa.11000
- Kohn, R., Dinneen, M., & Russek-Cohen, E. (2005). Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. Journal of Animal Science, 83(4), 879-889. https://doi.org/10.2527/2005.834879x
- Malekjahani, F., Mesgaran, M. D., Vakili, A., Sadeghi, M., & Yu, P. (2017). A novel approach to determine synchronization index of lactating dairy cow diets with minimal sensitivity to random variations. Animal Feed Science and Technology, 225, 143-156. https://doi.org/10.1016/j.anifeedsci.2016.11.010
- Malekkhahi, M., Naserian, A. A., Rahimi, A., Bazgir, A., Vyas, D., & Razzaghi, A. (2021). Effects of ground, steam-flaked, and super-conditioned corn grain on production performance and total-tract digestibility in dairy cows. Journal of Dairy Science, 104(6), 6756-6767. https://doi.org/10.3168/jds.2020-19202
- Mao, S., Zhang, G., & Zhu, W. (2008). Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Animal Feed Science and Technology, 140(3-4), 293-306. https://doi.org/10.1016/j.anifeedsci.2007.04.001
- Naseroleslami, R., Danesh Mesgaran, M., Tahmasbi, A., Vakili, A., & Danesh Mesgaran, S. (2022). Diets containing processed barley grain as a potential rumen bypass starch source enhance productive responses of lactating Holstein dairy cows. Journal of Animal Physiology and Animal Nutrition, 106(3), 506-516. https://doi.org/10.1111/jpn.13635
- Naseroleslami, R., Mesgaran, M. D., Tahmasbi, A., Vakili, S. A., & Ebrahimi, S. H. (2018). Influence of barley grain treated with alkaline compounds or organic extracts on ex vivo site and extent of digestion of starch. Asian-Australasian Journal of Animal Sciences, 31(2), 230. https://doi.org/5713/ajas.17.0212
- Nocek, J. E., & Tamminga, S. (1991). Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. Journal of Dairy Science, 74(10), 3598-3629. https://doi.org/10.3168/jds.S0022-0302(91)78552-4
- Orth, R. 1992. Sample day and lactation report. DHIA 200 Fact Sheet A-2. Mid-states DRPC.
- Östman, E. M., Nilsson, M., Elmståhl, H. L., Molin, G., & Björck, I. (2002). On the effect of lactic acid on blood glucose and insulin responses to cereal products: mechanistic studies in healthy subjects and in vitro. Journal of Cereal Science, 36(3), 339-346. https://doi.org/10.1006/jcrs.2002.0469
- Piccioli-Cappelli, F., Loor, J., Seal, C., Minuti, A., & Trevisi, E. (2014). Effect of dietary starch level and high rumen-undegradable protein on endocrine-metabolic status, milk yield, and milk composition in dairy cows during early and late lactation. Journal of Dairy Science, 97(12), 7788-7803. https://doi.org/10.3168/jds.2014-8336
- Plascencia, A., González-Vizcarra, V. M., & Zinn, R. A. (2018). Comparative effects of grain source on digestion characteristics of finishing diets for feedlot cattle: Steam-flaked corn, barley, wheat, and oats. Canadian Journal of Animal Science, 98(4), 794-800. https://doi.org/10.1139/cjas-2018-0018
- Rietmann, S. J., Gäbel, G., & Dengler, F. (2023). The intraruminal redox potential is stabilised by opposing influences during fermentation. Journal of Animal Physiology and Animal Nutrition, 107(1), 53-61. https://doi.org/10.1111/jpn.13697
- Røjen, B. A., & Kristensen, N. B. (2012). Effect of time duration of ruminal urea infusions on ruminal ammonia concentrations and portal-drained visceral extraction of arterial urea-N in lactating Holstein cows. Journal of Dairy Science, 95(3), 1395-1409. https://doi.org/10.3168/jds.2011-4475
- Rose, R., Rose, C. L., Omi, S. K., Forry, K. R., Durall, D. M., & Bigg, W. L. (1991). Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. Journal of Agricultural and Food Chemistry, 39(1), 2-11. https://doi.org/10.1021/jf00001a001
- Safaei, K., Ghorbani, G., Alikhani, M., Sadeghi‐Sefidmazgi, A., & Yang, W. (2017). Response of lactating dairy cows to degree of steam‐flaked barley grain in low‐forage diets. Journal of Animal Physiology and Animal Nutrition, 101(5), e87-e97. https://doi.org/10.1111/jpn.12565
- Shahri, A. K., Mesgaran, M. D., & Zahmatkesh, D. (2019). Effect of feeding of various types of soybean meal and differently processed barley grain on performance of high producing lactating Holstein dairy cows.
- Shen, J., Chai, Z., Song, L., Liu, J., & Wu, Y. (2012). Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. Journal of Dairy Science, 95(10), 5978-5984. https://doi.org/10.3168/jds.2012-5499
- Tang, S. X., Dang, T., Tan, Z. L., Wu, D. Q., Yan, Q. X., & Kang, J. H. (2021). Effects of nonionic surfactant source and surface tension on in vitro fermentation characteristics of cereal straws. Animal Feed Science and Technology, 276, 114912. https://doi.org/10.1016/j.anifeedsci.2021.114912
- Thorsteinsson, M., Maigaard, M., Lund, P., Weisbjerg, M. R., & Nielsen, M. O. (2023). Effect of fumaric acid in combination with Asparagopsis taxiformis or nitrate on in vitro gas production, pH, and redox potential. JDS Communications, 4(5), 335-339. https://doi.org/10.3168/jdsc.2022-0259
- Van Keulen, J., & Young, B. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44(2), 282-287. https://doi.org/10.2527/jas1977.442282x
- Van Soest, P. v., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Wanapat, M., Cherdthong, A., Pakdee, P., & Wanapat, S. (2008). Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus) powder supplementation. Journal of Animal Science, 86(12), 3497-3503. https://doi.org/10.2527/jas.2008-0885
- Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39(8), 971-974. https://doi.org/10.1021/ac60252a045
- Zebeli, Q., Dijkstra, J., Tafaj, M., Steingass, H., Ametaj, B., & Drochner, W. (2008). Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. Journal of Dairy Science, 91(5), 2046-2066. https://doi.org/10.3168/jds.2007-0572
- Zhong, R., Li, J., Gao, Y., Tan, Z., & Ren, G. (2008). Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows. Journal of Dairy Science, 91(10), 3931-3937. https://daoi.org/10.3168/jds.2007-0957
|