
 
Research Article 

Vol. 15, No. 3, 2025, p. 275-289 

 

Investigating the Potential of the Innovative YOLOv8s Model for Detecting 

Bloomed Damask Roses in Open Fields 

 
F. Fatehi 1, H. Bagherpour 1*, J. Amiri Parian 1 

 

1- Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran 
(*- Corresponding Author Email: h.bagherpour@basu.ac.ir) 

 
How to cite this article: 
Fatehi, F., Bagherpour, H., & Amiri Parian, J. (2025). Investigating the Potential of the 
Innovative YOLOv8s Model for Detecting Bloomed Damask Roses in Open Fields. Journal 
of Agricultural Machinery, 15(3), 275-289. https://doi.org/10.22067/jam.2024.88066.1249 

Received: 14 May 2024 
Revised: 25 July 2024 

Accepted: 27 July 2024 
Available Online: 31 May 2025 

 
Abstract 

Manually picking the flowers of the Damask rose is significantly challenging due to the numerous thorns on 
its stems. Consequently, the accurate detection of bloomed Damask roses in open fields is crucial for designing a 
robot capable of automating the harvesting process. Considering the high speed and precise capabilities of deep 
convolutional neural networks (DCNN), the objective of this study is to investigate the effectiveness of the 
optimized YOLOv8s model in detecting bloomed Damask roses. To assess the impact of the YOLO model size 
on network performance, the precision and detection speed of other YOLO network versions, including v5s and 
v6s, were also examined. Images of Damask roses were taken under two lighting conditions: normal light 
conditions (from civil twilight to sunrise) and intense light conditions (from sunrise to 10 AM). The outcomes 
demonstrated that YOLOv8s exhibited the highest performance, with a mean average precision (mAP50) of 98% 
and a detection speed of 243.9 fps. This outperformed the mAP50 and detection speed of YOLOv5s and 
YOLOv6s networks by margins of 0.3%, 6.1%, 169.3 fps and 198.6 fps, respectively. Experimental results show 
that YOLOv8s performs better on images taken in normal lighting than on those taken in intense lighting. A 
decline of 5.2% in mAP50 and 2.4% in detection speed signifies the adverse influence of intense ambient light 
on the model's effectiveness. This research indicates that the real-time detector YOLOv8s provides a feasible 
solution for the identification of Damask rose and provides guidance for the detection of other similar plants. 
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Introduction1 

Damask rose (Rosa damascena mill.) is a 
precious species of rose and has been 
extensively used in various cosmetic, health, 
and pharmaceutical industries. Bulgaria, 
Turkey, India, and Iran are ranked first 
through fourth in the cultivation area dedicated 
to this crop. Furthermore, Bulgaria, Turkey, 
and Iran hold this plant's top three positions in 
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oil and essential oil production. (Ucar, Kazaz, 
Eraslan, & Baydar, 2017; Yousefi & Jaimand, 
2018). 

Harvesting Damask rose is the most labor-
intensive aspect of this flower’s production. 
This is due to the rapid emergence of rose 
blooms, which occur only once a year for a 
short period of 15 to 20 days. These plants 
produce numerous bloomed and fully-opened 
flowers each day, necessitating harvesting 
from 4:00 AM to 7:00 AM to obtain the 
highest-quality Damask rose oil in quantity 
and quality. Most Damask rose buds fully 
bloom early in the morning and should be 
harvested on the same day, as withered flowers 
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that had fully bloomed the previous day are 
not harvested (Rusanov, Kovacheva, 
Rusanova, & Atanassov, 2011). In addition to 
the requirement to harvest fully-bloomed 
flowers in a narrow window, the harvesting of 
this crop is inherently difficult and has not yet 
been fully mastered technologically, so manual 
harvesting remains the traditional approach. 
While harvesting the buds, workers may 
sustain injuries from the thorns on the stems. 
As such, it is imperative to provide adequate 
training for these workers. The challenges 
related to labor, along with the costs and time 
required for worker training, significantly 
contribute to the total expense of harvesting 
this crop (Manikanta, Rao, & Venkatesh, 
2017). Consequently, the real-time 
identification of bloomed Damask rose in open 
fields is crucial for developing a machine or 
robot capable of autonomously harvesting 
Damask roses. One approach to achieving high 
efficiency in this field involves the utilization 
of machine vision techniques. 

In recent years, convolutional neural 
networks (CNN) have emerged as novel 
machine learning methods garnering 
substantial attention from researchers for 
flower classification and qualitative 
evaluations. (Guru, Kumar, & Manjunath, 
2011; Wang, Underwood, & Walsh, 2018; 
Sun, Wang, Liu, & Liu, 2021; Zhang, Su, & 
Wen, 2021; Bataduwaarachchi et al., 2023). 
CNN model was designed to detect apple 
blossoms, which was able to identify apple 
tree blossoms with an accuracy of over 79%. 
This model, without the need for retraining, 
could identify apple, peach, and pear blossoms 
on the trees with an accuracy of over 67%, 
86%, and 94%, respectively (Dias, Tabb, & 
Medeiros, 2018). Wu, Lv, Jiang, and Song 
(2020) developed a channel pruning-based 
YOLOv4 that facilitates the acquisition of 
apple blossom thinning robots. This model can 
identify apple blossoms with a mean average 
precision (mAP) of 97.31% and a detection 
speed of 72.33 fps, which compared to the 
base model YOLOv4, reduces the mAP, 
detection speed, and size by 0.24%, 39.47%, 
and 231.51 MB, respectively. By pruning low-

load weights of model in apple blossom 
detection using the channel pruning method, 
they achieved a lighter model. Wang et al. 
(2022) used the developed YOLOv4, called 
YOLO-PEFL, to estimate the performance of 
pear orchards through detecting and counting 
flowers. ShuffleNetv2, embedded by the 
SENet (Squeeze-and-Excitation Networks) 
module replacing the original backbone 
network of the YOLOv4 model, formed the 
backbone of the YOLO-PEFL model. The 
empirical findings indicated that the mean 
accuracy of the YOLO-PEFL framework was 
96.71%, the framework's dimensions were 
decreased by approximately 80%, and the 
mean recognition velocity was 0.027 s. In 
comparison to the YOLOv4 framework and 
the YOLOv4-tiny framework, the YOLO-
PEFL framework exhibited superior 
performance in framework dimensions, 
recognition precision, and recognition speed, 
thereby effectively decreasing framework 
deployment expenditure and enhancing 
framework effectiveness. YOLO network 
training using drone-captured images was 
employed to create a map depicting pumpkin 
flower distribution in the field. In this 
research, the mAP50 was 91% (Mithra & 
Nagamalleswari, 2023). To aid the marketing 
of roses, Anjani, Pratiwi, and Nurhuda (2021) 
developed a Convolutional Neural Network 
(CNN) model capable of categorizing the 
variety of roses without manual categorization. 
In this study, the accuracy achieved on the 
evaluation dataset was 96.33%. Shinoda et al. 
(2023) recognized that strategic planning for 
cut flower production is pivotal, as demand 
varies throughout the year. Nevertheless, 
manual enumeration of all rose blossoms in 
the greenhouse is time-intensive and arduous. 
They used YOLOv5 to identify small rose 
blossoms from various angles during camera 
motion, diminishing detection inaccuracies 
and attaining an F1 score of 0.950. 

By reviewing the research literature, it has 
become apparent that there is a gap in the 
existing literature regarding a thorough 
examination of the precise and real-time 
identification of bloomed Damask rose flowers 
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in agricultural fields for the purpose of 
automating the harvesting process. As a result, 
the present study aims to address this 
deficiency by leveraging the potential of deep 
learning models, specifically focusing on the 
compact YOLO models, known for their 
adeptness in accurately and swiftly identifying 
various types of flowers. In this investigation, 
upon completion of training the models and 
fine-tuning their weights, the performance of 
each individual model was assessed using a 
collection of images captured during harvest 
time. To carefully examine the effect of 
ambient lighting on the detection proficiency 
of the chosen model, the model underwent 
training and evaluation using images captured 
under two distinct lighting conditions: normal 
light and intense light. 

 
Materials and Methods 

Data collection and preparation 

In order to extract the optimal essence from 
high-quality Damask rose petals, it is 
imperative to harvest these blooms during the 
early hours of the morning (Kumar, Sharma, 
Sood, Agnihotri, & Singh, 2013; Thakur, 
Sharma, & Kumar, 2019). To train models, 
two distinct sets of videos were acquired from 
Damascus rose fields situated in the village of 
Sarab, Dehgolan, Kurdistan Province, Iran.  
These videos were obtained using a Samsung 
Galaxy Note 9 smartphone camera during 
May–June 2022. The first collection of videos, 
which were labeled "Normal Light Condition," 
was obtained in the morning from twilight 
until sunrise. Conversely, the second set, 
labeled "Intense Light Condition," was 
acquired from sunrise to 10 AM to assess the 
impact of intense illumination on the efficacy 
of the chosen model trained using the 
aforementioned images (Fig. 1). 

In the study conducted by Sharma and 
Kumar (2018), the six distinct flowering stages 
of Damask rose were explored. These stages 
that affect the yield and quality of the essence 
are: 1) Sepals intact with dark immature petals, 

2) Sepals separated from petals, petals whorl 
closed, 3) Petals whorl loosened, 4) Petal 
whorl opened, 5) Fully opened flower, and 6) 
Flower opened the previous day. The 
outcomes of their study indicated that the early 
harvest stages of flowers (1, 2, and 3) 
exhibited variations in scent characteristics 
when compared to fully bloomed flowers. 
Moreover, the maximum essential oil content 
exhibited notable differences across various 
harvest stages and the duration of 
hydrodistillation. Notably, at the fourth stage 
of flowering (fully open petal whorl), along 
with a hydrodistillation duration of 5 hours, 
yielded the highest quality of essential oil. 
Additionally, immature or overly mature 
flowers not only diminish essential oil yield 
but also compromise oil quality. 
Consequently, stages 4 and 5 were identified 
as the target harvesting stages for rose flowers, 
classified as bloomed flowers in this study. 
Fig. 2 depicts different flower opening stages 
from 1 to 6, as described earlier. 
Labeling 

The LabelImg v1.8.0 software was utilized 
for the purpose of annotating images of 
damask roses. Utilizing this software resulted 
in the generation of output files saved in the 
TXT format specifically tailored for YOLO 
networks. As depicted in Fig. 3, a visual 
representation is provided, illustrating the 
contents of the output file pertaining to two 
individual flowers. Within this illustration, 
various symbols such as NO, Nc, Xc, Yc, W, 
and H are utilized to represent specific 
parameters including the number of objects in 
the image, the object class, longitudinal and 
transverse coordinates of the frame's center, 
width, and height of bounding boxes, 
respectively. All these values are normalized 
within a range of zero to one. Given that the 
main focus of the present study was the 
identification of bloomed Damask roses, a 
single class was considered, denoted as 
"Ripe=0". 
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Fig.1. Schematic diagram of the image acquisition process: (a) Geographical coordinates of the garden, (b) The garden, 

(c) Video capture method, and (d) Example images 

 

  

Fig.2. Different stages of development of damask rose: (1) sepals intact with dark immature petals, (2) sepals separated 

from petals, petals whorl closed, (3) petals whorl loosened, (4) petal whorl opened, (5) fully opened flower, and (6) 

flower opened the day before 
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In this study, five hundred images were 

extracted from collected videos. Extracting 
consecutive frames from the video is essential 
for the stability of YOLO detection (Tung et 
al., 2019). To reduce the computational cost 
and increase the image processing speed and 
speed up the model training, all images were 

512 x 512 pixels. To check the robustness of 
the model and issues like overfitting and 
underfitting, a technique called K-fold cross 
validation was used. We created 10 folds of 
the dataset, and each fold was executed 5 
times. In this study, 10% of images were 
allocated for testing purposes.  

 

 

Fig.3. The process of creating the annotation: (a) original Damask rose, (b) labeled desired flowers, and (c) annotation 

results in .txt format 

 

YOLO Model 

The YOLO model 
has had a notable development in the field of 
real-time object detection. By employing a 
convolutional network that evaluates images in 
a single step, YOLO can detect objects directly 
and calculate the precise object coordinates. 
The utilization of this methodological 
approach has resulted in a substantial 
enhancement in detection speed (Redmon, 
Divvala, Girshick, & Farhadi, 2016; Silva, 
Monteiro, Ferreira, Carvalho, & Corte-Real, 
2019). 

In January 2023, Ultralytics unveiled the 
YOLOv8 model, building upon their prior 
launch of the YOLOv5 model. This latest 
version represents the pinnacle of 
advancements in comparison to its 
predecessors. The YOLOv8 model, which 
underwent training on ImageNet, 
demonstrated heightened accuracy and speed 
of detection in contrast to the YOLOv5 and 
YOLOv6 models that had undergone similar 
training (Jocher, Chaurasia, & Qiu, 2023). A 
comprehensive schematic depiction of the 
YOLOv8 model can be observed in Fig. 4. 
This model retains the primary network of 

YOLOv5, but features a notable modification 
in its CSP layer, now referred to as the C2f 
module. The C2f module improves detection 
accuracy by combining high-level features 
with contextual information. YOLOv8 is an 
anchor-free model that employs a distinct head 
for the autonomous processing of object 
detection, classification, and regression tasks. 
This design facilitates each branch's 
concentration on its respective task, thus 
enhancing the overall precision of the model. 
In the output layer of YOLOv8, the sigmoid 
function serves as the activation function for 
abjectness, while the softmax function is 
employed for class probabilities (Terven & 
Cordova-Esparza, 2023).  

Among the different scales of each 
architecture in the YOLO family, only those 
meeting the following criteria were chosen: 1- 
Having a parameter count below 2 million, and 
2- Achieving a detection speed of less than 1.5 
ms per image on the COCO dataset using a 
GPU A100. Ultimately, the scale with the 
highest mAP50-95 value was selected for each 
architecture, in the YOLO family, only 
YOLOv8s, YOLOv6s, and YOLOv5s met 
these criteria (Ultralytics, n.d.).  



280     Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025 

 

 

 
Fig.4. The architecture of YOLOv8 used in the detection of Damask rose 
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Evaluation Parameters of YOLOv8s 

Adjustable parameters of the YOLOv8s 
model, pre-trained on the COCO val2017 
dataset, primarily include changes in input 
size, batch size, number of classes, learning 
rate, and number of iterations (Table 1). 
Additionally, to generalize the model's 
detection to other farm-like conditions close to 

the flower harvest timeframe, data 
augmentation techniques were utilized during 
training. By adjusting hyperparameters related 
to these techniques, changes were made in the 
color values (HSV color space), image 
brightness, clarity, and images were rotated 
and flipped in different directions. 

 
Table 1- Parameters of YOLOv8s for Rosa damascena mill flower detection 

Value Parameter 
512×512 Input size 
1×10-3 Learning rate 

32 Batch size 
1 Classes 

75 Epochs 
 
A loss function is a mathematical function 

that quantifies the difference between 
predicted and actual values in a machine 
learning model. According to Equations 1 to 8, 
the loss function in the training of YOLO 
models mainly comprised three sections: the 
bounding box location loss (LCIoU), the 
confidence loss (Lconfidence), and the class loss 
(Lclass) (Wu et al., 2020): 

(1) Loss = L CIoU + L confidence + L class                                                      

(2) Loss CIoU = 1 - IoU + 
d2

c2   + αν 

(3) L confidence = ∑ ∑ K[− log(p) + BCE(n̂ , n)]B
j=0

S2

i=0  

(4) Lclass = ∑ ∑ 1
noobi

i, j
[− log(1 − pC)]B

j=0
S2

i=0  

(5) BCE(n̂ , n) = - n̂log(n)-(1-n̂)log(1-n) 

(6) α = 
ν

(1−IoU)+ν
 

(7) ν = 
4

π2 (tan−1 wgt

hgt − tan−1 w

h
)2 

(8) K=1
obj
i, j

 

IoU is defined as the ratio of the 
intersection and union of the predicted 
bounding box and the ground truth bounding 
box, with c and d denoting the distances 
between the centers of the two bounding boxes 
and the diagonal distance of their union, 
respectively. The parameters wgt and hgt 
represent the width and height of the ground 
truth bounding box, while w and h correspond 
to the width and height of the predicted 
bounding box. The variable S stands for the 
number of grids, while B signifies the anchor 

number associated with each grid. K is a 
symbol for weight, taking the value of 1 in 
case there is an object in the j-th anchor of the 
i-th grid; otherwise, it is 0. Moreover, �̂� and n 
indicate the actual and predicted classes of the 
j-th anchor in the i-th grid, and p represents the 
probability of the object being a Damask rose 
flower. The mean average precision (mAP), 
precision, recall, F1 score, F2 score, and 
detection speed were employed to assess the 
efficacy of the models: 

(9) mAP =
∑ AP(C)c

c=1

C
 

(10) Precision=
TP

TP+FP
×100% 

(11) Recall=
TP

TP+FN
×100% 

(12) F1= 2 ×
Precision×Recall

Precision+Recall
×100% 

(13) F2= 5 ×
Precision×Recall

4×Precision+Recall
×100% 

where c refers to the number of classes 
(here, c = 1), and TP, FP, FN, and TN are true 
positive (the bloomed flowers that are 
correctly classified as bloomed flower), false 
positive (a region of background that is 
classified as a bloomed flower), false negative 
(the bloomed flowers that are considered as 
background), and true negative (defined as all 
background areas in the image except for 
regions where bloomed flowers are present), 
respectively. 

 
Results and Discussion 

Comparison of different detection algorithms 
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Fig. 5 depicts the training mAP50 of four 
models on images captured under normal light 
conditions. The training curve for the four 
models indicated that the YOLOv8s model 
reached saturation faster than the other 
models, exhibited lower fluctuations, and 
maintained a more uniform curve. Table 2 
presents the performance results of the 
YOLOv8s model compared with the 
YOLOv5s and YOLOv6s models regarding 
detecting bloomed Damask roses. Based on 
the results, the mAP50 scores for the three 
object detection models were as follows: 

0.98%, 93.9%, and 97.7%, respectively. 
According to these results, YOLOv8s 
demonstrated the highest mAP50 among the 
three models. A preliminary analysis 
suggested that the CSPDarknet53 feature 
extractor, as a backbone of the YOLOv8-Seg 
model, which is followed by a novel C2f 
module instead of the traditional YOLO neck 
architecture, is more competent in extracting 
diverse and complex features of targets, 
playing a fundamental role in the detection 
accuracy improvement of YOLOv8. 

 

 
Fig.5. Comparing mAP50 of different YOLO models obtained from the training dataset 

 

Table 2- Performance results of various models in the detection of Damask roses 
Model size 

(MB) 
F2 

(%) 

F1 

(%) 

Detection speed 

(fps) 
mAP50 

(%) 
Precision 

(%) 
Recall 

(%) Algorithm 

21.5 94.4 95.5 243.9 98.0 97.3 93.7 YOLOv8s 

41.3 85.4 86.4 45.3 93.9 88.2 84.7 YOLOv6s 
14.1 94.3 94.6 74.6 97.7 95.1 94.1 YOLOv5s 

 
The analysis of the results indicates that all 

models demonstrated high precision in 
detecting the bloomed Damask roses. Notably, 
the YOLOv8s model exhibited superior 
precision at 98% and a remarkable detection 
speed of 243.9 fps, outperforming the other 
models. In contrast, the YOLOv5s model, 
while achieving a close precision rate of 
97.7% compared to the YOLOv8s model and 
having a smaller size of 14.1 MB, exhibited a 
significantly lower detection speed, being 3.27 
times slower. This underscores the YOLOv8s 
model's exceptional suitability for real-time 

detection tasks. Worth noting is that the 
YOLOv6s model achieved a detection 
precision of 88.2%. Nevertheless, its 
applicability for real-time and robotic tasks 
was limited due to its low detection speed of 
45.3 fps and a substantial size of 41.3 MB (Wu 
et al., 2020). This limitation is especially 
significant considering that the frame rate of 
most videos is 30 fps, and economic robot 
controllers typically possess limited memory 
capacity. The YOLOv5s model was explicitly 
designed for real-time detection tasks like 
apple thinning and crop yield estimation 
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before thinning. Its parameters and size were 
optimized through channel pruning and weight 
adjustments. Consequently, boasting a size of 
1.4 MB and a detection speed of 125 fps, this 
model performed well (Wang & He, 2021).  

Furthermore, the YOLOv8s model, with its 
enhanced attributes of precision, speed (198.6 
fps), and smaller size (19.8 MB), surpassed the 
YOLOv6s model in all aspects. This positions 
the proposed model as an ideal choice for real-
time detection of bloomed Damask rose, 
effectively addressing the challenges 
associated with precision, size, and speed. 
Consequently, it can be seamlessly integrated 
into mobile phone applications or employed in 
Damask rose harvesting robots.  

The efficacy of various versions of the 
YOLO model is impacted by their scale 

(quantified by the number of parameters), as 
well as the dataset employed for both training 
and evaluation. Hence, it is essential to assess 
the performance of the intended models. 
Apeinans et al. (2024) created a cherry dataset 
(CherryBBCH81) for training neural networks. 
They aimed to find the best YOLO model for 
fruit detection. YOLOv5m performed better 
with the CherryBBCH81, achieving a mAP50 
of 0.886, compared to YOLOv8m with 0.870. 
However, YOLOv8m showed better results 
with the Pear640 dataset, reaching 0.951 
compared to 0.943 for YOLOv5m. Estrada, 
Vasconez, Fu, and Cheein (2024) tested 
YOLO models 5, 7, and 8 of various sizes (n, 
s, m, l, and x) for peach fruit detection. The 
findings indicated that YOLO version 7 X 
model exhibited the highest performance. 

 

 
Fig.6. Loss of training YOLOv8s  

 
Fig.7. mAP50 of training YOLOv8s 

 

Ambient light effect on YOLOv8s performance Figs. 6 and 7 display the model's loss 
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curves and mAP50 during training, based on 
two images taken under normal and intense 
light conditions. The visual data from these 
figures reveals that when Damask rose bushes 
were blooming, the model showed increased 
learning efficiency and faster convergence in 
the early stages of object detection training. 
However, as time passed, the learning curve 
gradually flattened, indicating a slower rate of 
improvement until the model's learning 
efficiency reached a saturation point through 
deep learning processes. It is also important to 
note that the loss function stabilized at a 
constant value after the 64th epoch for normal 
light and the 71st training epoch for intense 
light. This indicates that the training process 
has been completed, resulting in a stable and 
well-optimized detection model. 

The Fig. 8 illustrates the confusion matrix 

obtained from the YOLOv8s results related to 
the data of normal and intense light conditions. 
The confusion matrix of this model highlights 
the potential of this method in the detection of 
bloomed flowers under normal light 
conditions. As this confusion matrix shows, 
just fifteen flowers (6.6%) were classified 
incorrectly as background, whereas under 
intense light conditions, 31 (13%) samples 
were incorrectly classified as background. The 
results of these matrices indicated the negative 
impact of intense lighting conditions on model 
performance. 

To analyze and compare the performance of 
DCNN models, four important metrics, such as 
precision, recall, F1, and F2, were extracted 
from these figures based on equations 10 to 
13, respectively. 

 

 
a                                                                         b   

Fig.8. Confusion matrix of YOLOv8s for: (a) normal, and (b) intense light conditions 

 
Table 3 presents the YOLOv8s model 

training results on two images on normal and 
intense light conditions. In this table, the 
performance metrics for images captured 
under normal light conditions were as follows: 
mAP50 at 98%, precision at 97.3%, recall at 
93.7%, F1 at 95.5%, and F2 at 94.4%. For 
images taken under intense light conditions, 
the corresponding metrics were mAP50 at 
92.8%, precision at 88.1%, recall at 86.8%, F1 
at 93%, and F2 at 87.1%. Additionally, the 
detection speed reached 243.9 and 238.1 fps, 
respectively The data presented in this table 

suggests that the model performed 
significantly better under normal lighting 
conditions, indicating that sunlight adversely 
impacts its effectiveness.  In general, the 
results of this research can be used in the open 
field. However, we cannot infer that other 
object detection tasks will exhibit similar mAP 
to the present study. 

Tung et al. (2019) have pinpointed that 
Ultralytics utilizes images sourced from 
COCO, ImageNet, and various datasets, with a 
primary focus on solitary objects positioned at 
the center of the image, for the purpose of 
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training and assessing YOLO models. These 
images have been acquired through the 
utilization of diverse cameras featuring distinct 
configurations, positioned at varying distances 
and under different lighting conditions. The 
findings presented by this company are unable 

to comprehensively capture the potential 
influence of environmental variables, such as 
lighting conditions, on the efficacy of the 
models. Consequently, they have demonstrated 
the impact of ambient light on the performance 
of YOLO models. 

 

Table 3- Detection results of Damask roses by YOLOv8s 

Evaluation index 

Light condition F2 

(%) 

F1 

(%) 

Detection speed 

(fps) 
mAP50 

(%) 
Precision 

(%) 
Recall 

(%) 
94.4 95.5 243.9 98.0 97.3 93.7 Normal (twilight to sunrise) 
87.1 93 238.1 92.8 88.1 86.8 Intense (sunrise to 10 AM) 

 

 
Fig.9. (a, b) Original images, and (c, d) the results of YOLOv8s in detecting desired Damask rose flowers  

 

Fig. 9 visually illustrates the output of the 
YOLOv8s for two input images. In addition to 
ambient lighting conditions, which can impact 
the precision and speed of bloomed Damask 
rose detection, various other factors must also 
be considered. These factors include the 
meticulous care of flowers, variations in 
background, deployment, orientation, flower 

size, distance from the camera, potential 
obstructions by factors like foliage and other 
flowers, and the presence of only a few 
flowers in specific frames. These complexities 
can sometimes confuse researchers and experts 
when labeling the flowers, as depicted in Fig. 
10. In this figure, flower number 2 was 
wrongly detected as fully bloomed, whereas 
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flower number 1 was not identified due to being blocked by leaves. 

 
Fig.10. (a) Original image, and (b) result of target detection by YOLOv8s; a flower that (1) could not be detected or (2) 

was wrongly detected 

 

Conclusion 

In this study, the YOLOv8s detection 
model was introduced for the real-time 
identification of bloomed Damask rose plants 
in natural field settings. The principal findings 
of the investigation were highlighted, 
revealing the model's remarkable capabilities 
in achieving high precision and real-time 
detection of bloomed Damask rose plants. 
Specifically, when data collected under normal 
light conditions were applied, an impressive 
precision rate of 98% was exhibited by the 
model, underscoring the influence of ambient 
lighting conditions, which can introduce noise 
during the detection process. The YOLOv8s 
model was found to outperform YOLOv5s and 
YOLOv6s models in terms of both size and 
detection performance, presenting a more 
compact footprint while superior detection 
speed and precision were maintained. 
Consequently, the YOLOv8s model is well-
suited for integration into mobile applications, 
such as crop yield estimation and the operation 

of Damask rose harvesting robots, by which it 
can be utilized. This study highlights the 
efficacy and practicality of the YOLOv8s 
detection model for real-time detection tasks in 
agriculture, particularly for the precise 
identification of bloomed Damask rose 
flowers, and it is positioned as a valuable tool 
for enhancing the efficiency of crop 
management and automation tasks in Damask 
rose harvesting. 

 
Conflict of Interest: The authors declare 

no competing interests. 
 

Authors Contribution 

F. Fatehi: Conceptualization, Methodology, 
Software services, Validation, Data 
acquisition, Writing original draft preparation.  

H. Bagherpour: Supervision, 
Conceptualization, methodology, Technical 
advice, Validation, Text mining, Review and 
editing. 

J. Amiri Parian: Review and editing.  
 

References 

1. Anjani, I. A., Pratiwi, Y. R., & Nurhuda, S. N. B. (2021, March). Implementation of deep 
learning using convolutional neural network algorithm for classification rose flower. In Journal 
of Physics: Conference Series (Vol. 1842, No. 1, p. 012002). IOP Publishing. 
https://doi.org/10.1088/1742-6596/1842/1/012002 

2. Apeinans, I., Sondors, M., Litavniece, L., Kodors, S., Zarembo, I., & Feldmane, D. (2024, 

https://doi.org/10.1088/1742-6596/1842/1/012002


Fatehi et al., Investigating the Potential of the Innovative YOLOv8s Model for Detecting …     287 

 

June). Cherry Fruitlet Detection using YOLOv5 or YOLOv8? In ENVIRONMENT. 
TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical 
Conference (Vol. 2, pp. 29-33). https://doi.org/10.17770/etr2024vol2.8013 

3. Bataduwaarachchi, S. D., Sattarzadeh, A. R., Stewart, M., Ashcroft, B., Morrison, A., & North, 
S. (2023). Towards autonomous cross-pollination: Portable multi-classification system for in 
situ growth monitoring of tomato flowers. Smart Agricultural Technology, 4, 100205. 
https://doi.org/10.1016/j.atech.2023.100205 

4. Dias, P. A., Tabb, A., & Medeiros, H. (2018). Apple flower detection using deep convolutional 
networks. Computers in Industry, 99, 17-28. https://doi.org/10.1016/j.compind.2018.03.010 

5. Estrada, J. S., Vasconez, J. P., Fu, L., & Cheein, F. A. (2024). Deep Learning based flower 
detection and counting in highly populated images: A peach grove case study. Journal of 
Agriculture and Food Research, 15, 100930. https://doi.org/10.1016/j.jafr.2023.100930 

6. Guru, D. S., Kumar, Y. S., & Manjunath, S. (2011). Textural features in flower classification. 
Mathematical and Computer Modelling, 54(3-4), 1030-1036. 
https://doi.org/10.1016/j.mcm.2010.11.032 

7. Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by 
Ultralytics. https://github.com/ultralytics/ultralytics 

8. Kumar, R., Sharma, S., Sood, S., Agnihotri, V. K., & Singh, B. (2013). Effect of diurnal 
variability and storage conditions on essential oil content and quality of damask rose (Rosa 
damascena Mill.) flowers in north western Himalayas. Scientia Horticulturae, 154, 102-108. 
https://doi.org/10.1016/j.scienta.2013.02.002 

9. Manikanta, Y. E. R. R. A. P. O. T. H. U., Rao, S. S., & Venkatesh, R. (2017). The design and 
simulation of rose harvesting robot. International Journal of Mechanical and Production 
Engineering Research and Development, 9(1), 191-200. 

10. Mithra, S., & Nagamalleswari, T. Y. J. (2023). Cucurbitaceous family flower inferencing using 
deep transfer learning approaches: CuCuFlower UAV imagery data. Soft Computing, 27(12), 
8345-8356. https://doi.org/10.1007/s00500-023-08186-w 

11. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-
time object detection. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 779-788). 

12. Rusanov, K., Kovacheva, N., Rusanova, M., & Atanassov, I. (2011). Traditional Rosa 
damascena flower harvesting practices evaluated through GC/MS metabolite profiling of 
flower volatiles. Food Chemistry, 129(4), 1851-1859. 
https://doi.org/10.1016/j.foodchem.2011.05.132 

13. Sharma, S., & Kumar, R. (2018). Influence of Harvesting Stage and Distillation Time of 
Damask Rose (Rosa damascena Mill.) Flowers on Essential Oil Content and Composition in 
the Western Himalayas. Journal of Essential Oil-Bearing Plants, 21(1), 92-102. 
https://doi.org/10.1080/0972060X.2017.1399089 

14. Shinoda, R., Motoki, K., Hara, K., Kataoka, H., Nakano, R., Nakazaki, T., & Noguchi, R. 
(2023). RoseTracker: a system for automated rose growth monitoring. Smart Agricultural 
Technology, 100271. https://doi.org/10.1016/j.atech.2023.100271 

15. Silva, G., Monteiro, R., Ferreira, A., Carvalho, P., & Corte-Real, L. (2019). Face detection in 
thermal images with YOLOv3. In Advances in Visual Computing: 14th International 
Symposium on Visual Computing, ISVC 2019, Lake Tahoe, NV, USA, October 7–9, 2019, 
Proceedings, Part II 14 (pp. 89-99). Springer International Publishing. 
https://doi.org/10.1007/978-3-030-33723-0_8 

16. Sun, K., Wang, X., Liu, S., & Liu, C. (2021). Apple, peach, and pear flower detection using 
semantic segmentation network and shape constraint level set. Computers and Electronics in 
Agriculture, 185, 106150. https://doi.org/10.1016/j.compag.2021.106150 

https://doi.org/10.17770/etr2024vol2.8013
https://doi.org/10.1016/j.atech.2023.100205
https://doi.org/10.1016/j.compind.2018.03.010
https://doi.org/10.1016/j.jafr.2023.100930
https://doi.org/10.1016/j.mcm.2010.11.032
https://github.com/ultralytics/ultralytics
https://doi.org/10.1016/j.scienta.2013.02.002
https://doi.org/10.1007/s00500-023-08186-w
https://doi.org/10.1016/j.foodchem.2011.05.132
https://doi.org/10.1080/0972060X.2017.1399089
https://doi.org/10.1016/j.atech.2023.100271
https://doi.org/10.1007/978-3-030-33723-0_8
https://doi.org/10.1016/j.compag.2021.106150


288     Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025 

 

17. Terven, J., & Cordova-Esparza, D. (2023). A comprehensive review of YOLO: From YOLOv1 
to YOLOv8 and beyond. arXiv preprint arXiv:2304.00501. 
https://doi.org/10.3390/make5040083 

18. Thakur, M., Sharma, S., Sharma, U., & Kumar, R. (2019). Study on effect of pruning time on 
growth, yield and quality of scented rose (Rosa damascena Mill.) varieties under acidic 
conditions of western Himalayas. Journal of Applied Research on Medicinal and Aromatic 
Plants, 13, 100202. https://doi.org/10.1016/j.jarmap.2019.100202 

19. Tung, C., Kelleher, M. R., Schlueter, R. J., Xu, B., Lu, Y. H., Thiruvathukal, G. K., ... & Lu, Y. 
(2019, March). Large-scale object detection of images from network cameras in variable 
ambient lighting conditions. In 2019 IEEE Conference on Multimedia Information Processing 
and Retrieval (MIPR) (pp. 393-398). IEEE. https://doi.org/10.1109/MIPR.2019.00080 

20. Ucar, Y., Kazaz, S., Eraslan, F., & Baydar, H. (2017). Effects of different irrigation water and 
nitrogen levels on the water use, rose flower yield and oil yield of Rosa damascena. 
Agricultural Water Management, 182, 94-102. https://doi.org/10.1016/j.agwat.2016.12.004 

21. Ultralytics. (n.d.). YOLOv8: Model architecture. Retrieved 
from https://docs.ultralytics.com/models/yolov8/ 

22. Wang, C., Wang, Y., Liu, S., Lin, G., He, P., Zhang, Z., & Zhou, Y. (2022). Study on pear 
flowers detection performance of YOLO-PEFL model trained with synthetic target 
images. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.911473 

23. Wang, Z., Underwood, J., & Walsh, K. B. (2018). Machine vision assessment of mango 
orchard flowering. Computers and Electronics in Agriculture, 151, 501-511. 
https://doi.org/10.1016/j.compag.2018.06.040 

24. Wang, D., & He, D. (2021). Channel pruned YOLO V5s-based deep learning approach for 
rapid and accurate apple fruitlet detection before fruit thinning. Biosystems Engineering, 210, 
271-281. https://doi.org/10.1016/j.biosystemseng.2021.08.015 

25. Wu, D., Lv, S., Jiang, M., & Song, H. (2020). Using channel pruning-based YOLO v4 deep 
learning algorithm for the real-time and accurate detection of apple flowers in natural 
environments. Computers and Electronics in Agriculture, 178, 105742. 
https://doi.org/10.1016/j.compag.2020.105742 

26. Yousefi, B., & Jaimand, K. (2018). Chemical variation in the essential oil of Iranian Rosa 
damascena landraces under semi-arid and cool conditions. International Journal of 
Horticultural Science and Technology, 5(1), 81-92. 
https://doi.org/10.22059/ijhst.2018.256329.234 

27. Zhang, M., Su, H., & Wen, J. (2021). Classification of flower image based on attention 
mechanism and multi-loss attention network. Computer Communications, 179, 307-317. 
https://doi.org/10.1016/j.comcom.2021.09.001 

  

https://doi.org/10.3390/make5040083
https://doi.org/10.1016/j.jarmap.2019.100202
https://doi.org/10.1109/MIPR.2019.00080
https://doi.org/10.1016/j.agwat.2016.12.004
https://docs.ultralytics.com/models/yolov8/
https://doi.org/10.3389/fpls.2022.911473
https://doi.org/10.1016/j.compag.2018.06.040
https://doi.org/10.1016/j.biosystemseng.2021.08.015
https://doi.org/10.1016/j.compag.2020.105742
https://doi.org/10.22059/ijhst.2018.256329.234
https://doi.org/10.1016/j.comcom.2021.09.001


Fatehi et al., Investigating the Potential of the Innovative YOLOv8s Model for Detecting …     289 

 

 

 قاله پژوهشیم

 275-289، ص 1404 پاییز، 3، شماره 15جلد 
 

 در مزرعه روباز  فتههای محمدی شکدر شناسایی گل YOLOv8s بررسی پتانسیل مدل نوآورانه

 
 1، جعفر امیری پریان *1، حسین باقرپور 1فرهاد فاتحی

 25/02/1403تاریخ دریافت:  
 05/1403/ 06تاریخ پذیرش: 

 چکیده

در  شکفته یدرنگ گل محمدیب صیتشخ نیدشوار است. بنابرا اریآن بس  یهاساقه  یرو   ادیز  یوجود خارها  لیبه دل  یمحمد  یهاگل  دستی  دنیچ
 نولوشببنکا یعصببب یهااست. با توجه به سرعت بالا و دقت مناسب شبکه یضرور این گلمنظور برداشت خودکار ربات به کی یطراح یمزارع روباز برا

 یابیبب منظور ارزاسببت. بببه شببکفته یمحمببد یهاگل صیدر تشخ YOLOv8s شدهنهیمدل به لیپتانس یمطالعه بررس نی، هدف از ا(DCNN) قیعم
 ی. بببراتقرار گرفبب  یمورد بررس زین v6s و  v5s ازجمله YOLO مدل ی دیگرهانسخه صیدقت و سرعت تشخ ،بر عملکرد مدل YOLOاندازه مدل 

تهیببه  صبح( 10)از طلوع آفتاب تا  دینور شد طیتا طلوع آفتاب( و شرا دمدهی)از سپ ینور عادشرایط تحت   یمحمد  یهاگل  ریهدف، تصاو   نیبه ا  دنیرس
 هیبب در ثان میفببر 9/243و  98% ترتیبیی بببهسرعت شناسبباو   (mAP50)متوسط دقت نیانگیمبا  YOLOv8s مدل نشان داد کهارزیابی  جی. نتاشدند

(fps)  یهاو در مقایسه با مببدل  گذاشت  شیعملکرد را به نما  بهترین  YOLOv5s   وYOLOv6s  مقببدارmAP50  و % 1/6و %  3/0 بیترتبببهآن ، 
شببده در نببور گرفته ریدر تصبباو  YOLOv8sکببه    دهدینشان م  یج تجربیبود. نتا  بیشتر  fps  6/198  و   fps  3/169ترتیب  مقدار سرعت تشخیص آن به

 ریدهنده تبب ثنشببان تشخیصدر سرعت %  4/2و  mAP50 مقدار در%  2/5دارد. کاهش  دیشده در نور شدگرفته  رینسبت به تصاو   یعملکرد بهتر  یعاد
گببل  درنببگبی صیتشخ یقبول براحل قابلراه  کی  YOLOv8s  مدلکه    دهدینشان م  قیتحق  نیمدل است. ا  یبخش  بر اثر  یطیمح  دینور شد  یمنف

 .استمشابه  اهانیگ ریسا تشخیص یبرا ی خوبیو راهنما کندیفراهم م یمحمد
 

  YOLOیادگیری عمیق،  ،تشخیص اشیا، گل رز، نور محیطی های کلیدی: واژه
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