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Abstract

This paper introduces a direct quadrature method for the numerical
solution of Volterra integral equations of the first kind, utilizing a com-
posite quadrature scheme based on the Floater–Hormann family of linear
barycentric rational interpolants. The convergence of the proposed method
is rigorously proved, and the order of convergence is explicitly derived in
terms of the parameters of the method, thereby providing a clear theo-
retical framework for its performance. Several numerical experiments are
provided to demonstrate both the efficiency and accuracy of the method,
as well as to verify the excellent agreement between the implementation
results and the theoretically predicted convergence rates.
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1 Introduction

This paper is concerned with the numerical solution of the classical Volterra
integral equations (VIEs) of the first kind∫ t

t0

k(t, s, y(s)) ds = g(t), t ∈ I = [t0, T ], (1)

where y : I → R is an unknown function, and k : S × R → R with S =

{(t, s) : t0 ≤ s ≤ t ≤ T}, represents the kernel of the equation. In practice,
the functions g and k (except for its third variable) are typically used only at
equispaced values of the variables. In what follows, we assume that g(t0) = 0,
and the functions g and k are smooth enough such that VIE (1) has a unique
solution [21].

Volterra-type equations play a crucial role in modeling various dynamic
systems where the current state of the system depends not only on its current
conditions, but also on the accumulated effects of past interactions. In these
equations, the related quantity varies in time and simultaneously depends
on its past values. VIEs appear in various scientific and engineering disci-
plines, including physics, biology, engineering, and finance. For example, in
viscoelasticity, they can describe how materials respond to stress over time,
considering past deformations. In population dynamics, they help model
species interactions by incorporating the influence of previous population
levels. One of the notable applications of the first kind VIEs is in the field
of epidemiology, particularly in the modeling of population dynamics during
the spread of infectious diseases. Using VIEs in this context helps capture
more realistically the interaction between susceptible, infected, and recovered
individuals over time, incorporating the history of infection events and their
cumulative effect on the population.

Most real-world problems are so complicated that there is no hope of
finding an analytical solution. As a result, numerical methods are often
needed to obtain solutions. Specifically, Volterra-type equations also neces-
sitate numerical methods that yield approximations to the exact solutions.
The development of a numerical solver for VIEs is a wide and mature area
of research; see for instance [9, 10, 21] and the references therein.
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1591 A quadrature method for Volterra integral equations of the first kind

A broad range of numerical methods across various classes has been de-
veloped for VIEs of the first kind (see, e.g., [13, 15, 26]). For smooth kernels,
first-kind VIEs can be transformed into equivalent second-kind equations.
Where the kernels are explicitly defined and differentiable, suitable numeri-
cal techniques tailored for second-kind VIEs can be applied, ensuring more
efficient and accurate solutions.

Direct quadrature methods are among the simplest and most traditional
schemes for solving VIEs. These methods commonly employ composite
Newton–Cotes formulas, Gregory’s rules, and hybrid schemes, providing a
clear and efficient strategy for the numerical solution of VIEs. Nevertheless,
their effectiveness diminishes when higher accuracy is required. They also
often exhibit instability and loss of precision, particularly when applied to
problems with smooth kernels over long intervals or under conditions of in-
creasing mesh density. Moreover, it is important to note that, as the degree
of the method increases, these schemes can suffer from Runge’s phenomenon,
wherein oscillations lead to significant numerical errors, and making them
impractical [12].

A more robust alternative is to replace polynomial interpolation, which
forms the foundation of many traditional numerical methods, with lin-
ear barycentric rational interpolation, which is characterized by barycen-
tric weights, one for every node. The weights are chosen in such a way
that bad properties of the polynomial such as ill-conditioning and Runge’s
phenomenon are avoided, and convergence, well-conditioning and absence
of poles are guaranteed. Berrut [5] presented a very simple choice of the
barycentric weights that successfully avoids poles in the interpolation in-
terval. However, despite the excellent conditioning of the resulting linear
barycentric rational interpolants (LBRIs), their convergence rate remains
slow for general node distributions. The situation changed significantly with
the introduction of a new family of LBRIs by Floater and Hormann in [11],
a family of barycentric rational interpolants based on a blend of the local
polynomial interpolants, which depends on a parameter d, and including
the previously introduced interpolants. This family of LBRIs presents a
favorable comparison to more classical polynomial interpolants, for inter-
polation of univariate data, especially in the equispaced setting. Indeed,
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the Lebesgue constant associated with these interpolants exhibits logarith-
mic growth in this situation, a stark contrast to the exponential growth
experienced by polynomials. This logarithmic growth implies that the er-
ror increases at a much slower rate, and making them more advantageous
for accurate interpolation in such settings compared to classical polynomial
interpolants [7, 8]. Moreover, the flexibility, robustness, and favorable con-
vergence rate, make these tools a state-of-the-art method for interpolation at
equispaced nodes. Due to these attractive features, this family of LBRIs has
recently gained popularity and has been used in the construction of various
numerical methods for solving different classes of time-dependent problems
[1, 2, 3, 4, 6, 18, 19, 20, 22, 23]. The spirit of this paper is that of deriving a
highly accurate and stable scheme based on the composite barycentric ratio-
nal quadrature (CBRQ) introduced in [6] for the numerical solution of VIEs
of the first kind (1).

After briefly reviewing the LBRIs in Section 2, a method for solving VIEs
(1) based on the CBRQ rule will be introduced in Section 3. This section
further provides a rigorous convergence analysis of the method and its order
of accuracy. The robustness and efficiency of the method and the theoretical
results on its order of convergence are illustrated by some numerical experi-
ments in Section 4.

2 Linear barycentric rational quadrature

Quadrature formulas constitute a fundamental component of simulation, data
analysis, and numerical modeling, playing a vital role in addressing practical
problems across many fields of computational sciences and engineering. A
natural and widely adopted approach for approximating the definite inte-
gral of a function over a bounded interval is to replace the integrand with
a suitable interpolant and apply the integration operator to the resulting
approximation. In particular, linear interpolation schemes trivially lead to
quadrature rules through this process. Prior to reviewing the idea underlying
the CBRQ rule, we first give a short introduction to the Floater–Hormann
family of LBRIs.
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1593 A quadrature method for Volterra integral equations of the first kind

Let f be a real-valued and continuously differentiable function over the
interval [a, b], and consider the n+ 1 distinct interpolation nodes

a = t0 < t1 < · · · < tn = b.

The Floater–Hormann family of the LBRIs to interpolate the given n+1 pairs
(tj , f(tj)), with distinct nodes tj , j = 0, 1, . . . , n, for every fixed nonnegative
integer d ≤ n, takes the barycentric form [11]

rn,d[f ](t) =

n∑
k=0

b
(n,d)
k (t)f(tk), b

(n,d)
k (t) =

β
(n,d)
k

t− tk/
n∑

j=0

β
(n,d)
j

t− tj
, (2)

with the barycentric weights

β
(n,d)
k =

min(k,n−d)∑
i=max(0,k−d)

(−1)
i

i+d∏
j=i, j ̸=k

1

tk − tj
, (3)

where 0 ≤ d ≤ n. We denote the function to be interpolated by f , to avoid
confusion with the functions y and g in VIE (1). The following theorem from
[11] gives the rate of convergence of this family of the LBRIs via a bound on
the interpolation error in the maximum norm.

Theorem 1. For any f ∈ Cd+2[a, b], we have

∥rn,d[f ]− f∥ ≤ Chd+1,

where h = max0≤k≤n−1(tk+1 − tk) is the global mesh size and the constant
C depends only on d, the derivatives of f , the interval length b−a, and, only
in the case d = 0, on the maximal local mesh ratio

ρ = max
1≤k≤n−2

min
{
tk+1 − tk
tk − tk−1

,
tk+1 − tk

tk+2 − tk+1

}
.

Moreover, according to [11, Theorem 2], in the case of odd n−d, the bound
on the interpolation error involves an additional factor, nh, so the order of
convergence is one unit larger than the stated above, that is, d+1+ δ, where
δ = 1 for odd n− d and δ = 0 for even n− d.
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Throughout this work, we are mainly interested in the case of uniformly
spaced nodes, when the weights in (3) can be replaced by

β̄
(n,d)
k = (−1)dd!hdβ

(n,d)
k = (−1)k

n∑
i=d

(
d

i− k

)
, k = 0, 1, . . . , n. (4)

The linearity of barycentric rational interpolation in data renders it well-
suited for applications. Klein and Berrut [17] introduced a global quadrature
formula based on integrating the LBRI (2) corresponding to the real inte-
grable function f over the integration interval [a, b] of the form

∫ b

a

f(t) dt ≈
∫ b

a

rn,d[f ](t) dt

= h

n∑
k=0

wn,kfk = QG
n , (5)

with quadrature weights

wn,k = h−1

∫ b

a

b
(n,d)
k (t) dt =

∫ n

0

ϕ
(n,d)
k (x) dx, (6)

where

ϕ
(n,d)
k (x) =

β̄
(n,d)
k

x− k

/ n∑
j=0

β̄
(n,d)
j

x− j
,

with β̄
(n,d)
k as in (4).

The integrands in (6) are rational functions that, in general, cannot be
integrated analytically without additional knowledge of their properties, such
as the locations of their poles. Furthermore, algebraic methods typically re-
quire the polynomials in the numerator and denominator of the integrand to
be in canonical form, a representation often impaired by stability issues. As
a result, these integrals must be computed numerically up to machine pre-
cision, using, for instance, the routines available in the Chebfun system [24]
or, alternatively, with Gauss–Legendre or Clenshaw–Curtis quadrature rules
[14, 25]. Notably, the barycentric form exhibits greater flexibility compared
to Gauss–Legendre quadrature, as it allows for arbitrary node distributions
rather than restricting nodes to the roots of Legendre polynomials. Moreover,
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1595 A quadrature method for Volterra integral equations of the first kind

barycentric rational quadrature is particularly effective at handling endpoint
singularities and functions with steep gradients, owing to its basis in rational
approximation.

The convergence and stability of the resulting quadrature rule directly
inherit the corresponding properties of the underlying interpolant. It was
proved in [17] that for nonnegative integers n and d, d ≤ n/2 − 1, and f ∈
Cd+3[a, b], the quadrature formula (5) with quadrature weights (6) converges
at the rate O(hd+2) as the global mesh size h tends to zero if the quadrature
weights given by (6) are approximated by a quadrature rule converging at
least at the rate O(hd+2).

Direct application of the quadrature formula in discretization schemes
for time-dependent problems, specifically VIEs, implies significant computa-
tional cost due to the necessity of computing quadrature weights at each time
step as the partition size grows. However, since the barycentric weights (6)
do not depend on the nodes and are translation invariant, it is possible to
develop a composite version of the quadrature rule that addresses this issue
efficiently.

Consider the interval [a, b] partitioned uniformly by points a = t0 < t1 <

· · · < tN = b with step size h = b−a
N , so that tk = a+ kh for k = 0, 1, . . . , N .

Let d and n satisfy 0 ≤ d ≤ n ≤ N/2, and define p =
⌊
N
n

⌋
− 1. Under these

conditions, the CBRQ rule can be formulated as

∫ tN

t0

f(t) dt =
p−1∑
j=0

∫ t(j+1)n

tjn

f(t) dt+
∫ tN

tpn

f(t) dt

≈ h

p−1∑
j=0

n∑
k=0

wn,k fjn+k + h

N−pn∑
k=0

wN−pn,k fpn+k = QC
N , (7)

where
wi,k = h−1

∫ ti

t0

b
(i,d)
k (t) dt =

∫ i

0

ϕ
(i,d)
k (x) dx, (8)

for i = n, n + 1, . . . , 2n − 1 and k = 0, . . . , i. Note that for n ≤ N ≤ 2n,
the only contributing term in (7) is the last one, which is precisely the global
quadrature formula given in (5).

Based on this construction, and noting that each local quadrature formula
converges at the rate of O(hd+2), and that n is fixed and there are p + 1 =
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O(n) = O(1/h) integrals to be computed, the order of the CBRQ rule (7)
behaves as follows.

Theorem 2. Suppose that N and n are positive integers with n ≤ N , that
d is a nonnegative integer with d ≤ n ≤ N/2, and that f ∈ Cd+2[a, b].
Then the absolute error in the approximation of the integral of f with the
composite quadrature rule (7) goes to zero as O(hd+1+δ), where δ = 0 if n−d

is even and δ = 1 if n− d is odd.

3 Description of the method for VIEs of the first kind

In this section, we utilize the favorable properties of the introduced CBRQ
rule, including smoothness, high accuracy, and an arbitrarily high rate of
convergence, to construct a direct quadrature-based scheme for numerically
solving the classical VIEs of the form (1). Differentiating (1) yields VIEs of
the second kind

k(t, t, y(t)) +

∫ t

t0

kt(t, s, y(s)) ds = g′(t), t ∈ I, (9)

where kt is the partial derivative of the kernel k with respect to t.

Let TN = {t0, t1, . . . , tN = T} be a uniform partition of the given interval
I with the fixed stepsize h = ti+1 − ti = (T − t0)/N , i = 0, 1, . . . , N − 1 and
assume that d and n are as introduced in section 2, and that p = ⌊m/n⌋− 1.
Applying the CBRQ rule (7) to the integral part of (9) at the mesh point tm
yields

k(tm, tm, ym) + h

p−1∑
j=0

n∑
k=0

wn,k kt(tm, tjn+k, yjn+k)

+ h

m−pn∑
k=0

wm−pn,k kt(tm, tpn+k, ypn+k) = g′(tm), (10)

for m = n + 1, . . . , N . The quadrature weights wi,k are given by (8) for
i = n, n+1, . . . , 2n− 1 and k = 0, . . . , i. Here ym denotes the approximation
to the exact solution y of (1) at t = tm. This approach will be referred to as
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1597 A quadrature method for Volterra integral equations of the first kind

the CBRQM, which stands for “composite barycentric rational quadrature
method”.

It is clear that a set of starting values ym, m = 1, 2, . . . , n, is necessary
to prevent deterioration in the order of convergence of the method, as any
loss of precision will be carried over through the whole interval of integration.
To supply them, we employ the quadrature formula (5) to approximate the
integral part of (9) over the interval [t0, tm], m = 1, 2, . . . , n, which gives

k(tm, tm, ym) + h

n∑
k=0

wm,k kt(tm, tk, yk) = g′(tm), (11)

where the quadrature weights required for the starting procedure are given
by

wm,k =

∫ m

0

β̄
(n,d)
k

x− k

/ n∑
j=0

β̄
(n,d)
j

x− j
dx, k = 0, 1, . . . , n,

wherein the barycentric weights β̄
(n,d)
j depend on n, not on m. This starting

procedure is fully implicit and specifically designed to provide sufficiently ac-
curate starting values. It is essential to emphasize that the nonlinear system
of equations represented by (11) contains n equations in the n unknowns
ym, m = 1, 2, . . . , n. This system must be solved simultaneously to ob-
tain the starting values required for the subsequent implementation of the
method. The following theorem rigorously establishes the convergence rate
of the starting values derived from (11) in terms of the parameters of the
method.

Theorem 3. Assume that f ∈ Cd+2(I) and k ∈ Cd+2(S × R), let yn =

(y1, y2, . . . , yn)
T be the approximate values obtained by the starting proce-

dure (11) with d ≤ n, and let en = (e1, e2, . . . , en)
T , where ei = y(ti) − yi,

i = 1, 2, . . . , n, are the starting errors. Then, ∥en∥∞ goes to zero as
O(hd+2+δ), where δ = 0 for even values of n − d and δ = 1 for odd val-
ues of n− d.

Proof. Substituting the exact values for y in the starting procedure (11) and
incorporating their consistency error Rm(h) gives
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Hosseini 1598

k(tm, tm, y(tm)) + h

n∑
k=0

wm,k kt(tm, tk, y(tk)) +Rm(h) = g′(tm). (12)

Subtracting equation (9), in which the variable t is replaced by tm, from (12)
for each m = 1, 2, . . . , n, yields

Rm(h) =

∫ tm

t0

kt(tm, s, y(s)) ds− h

n∑
k=0

wm,k kt(tm, tk, y(tk)).

Since m ≤ n, n is constant, and h shrinks, it readily follows from the con-
vergence rate of the global quadrature (5) that for each m = 1, 2, . . . , n,
Rm(h) = O(hd+2). Considering the arguments mentioned just after Theo-
rem 1, it can be deduced that when n − d is odd, the convergence order of
the starting values increases by one, yielding d + 2 + δ, where δ is the same
quantity as stated in Theorem 2.

Subtracting the starting values in (11) from (12) and using the mean value
theorem gives

ky(tm, tm, ξm)em + h

n∑
k=0

wm,k kty(tm, tk, ηk)ek = Rm(h), m = 1, 2, . . . , n,

where ky and kty denote the partial derivatives of k with respect to y and
t, y, respectively, and where ξm and ηk lie within the interior of the line
segments connecting the exact value of y and its approximations at the
corresponding functions. Introducing the matrix Dn as the diagonal ma-
trix with entries ky(tm, tm, ξm) for m = 1, 2, . . . , n, the matrix Wn with the
(m, k)th element given by wm,k kty(tm, tk, ηk), and the consistency error vec-
tor Rn(h) := [R1(h), R2(h), . . . , Rn(h)]

T , the last equation can be written in
matrix form as

(Dn + hWn)en = Rn(h).

Due to the differentiability assumption on the kernel k, the partial derivatives
involved in the matrices have a maximum absolute value, and since n is fixed
in the starting procedure (11) and only the stepsize h varies, the correspond-
ing starting quadrature weights remain bounded as well. Consequently, the
norm of the matrix Wn is bounded so that h ∥Wn∥∞ may be made as small
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1599 A quadrature method for Volterra integral equations of the first kind

as necessary by diminishing h. Therefore, with small enough stepsize h, there
exists a positive constant C such that

∥en∥∞ ≤
∥∥(Dn + hWn)

−1
∥∥
∞ ∥Rn(h)∥∞

≤ 1

∥Dn∥∞ − h ∥Wn∥∞
∥Rn(h)∥∞

≤ C ∥Rn(h)∥∞ ,

which implies ∥en∥∞ = O(hd+2+δ).

We are now in a position to state our main theorem about the order of
convergence of the method (10), which can easily be deduced with the same
ingredients as in [21, Theorem 7.2], and the help of Theorems 2 and 3.

Theorem 4. Let g ∈ Cd+2(I) and let k ∈ Cd+2(S × R), where the kernel
k satisfies a Lipschitz condition with respect to its third argument. Assume
further that n and d with d ≤ n are,respectively positive and nonnegative
integers, and let the nodes be equispaced. Then, the CBRQM (10) is con-
vergent of order d+ 1+ δ if the order of the utilized starting procedure is at
least d+ δ, where δ = 0 for even values of n− d, and δ = 1 for odd values of
n− d.

4 Numerical experiments

In this section, we apply the proposed method with various choices of n,
d, and ds (for the starting procedure), to several linear and nonlinear VIEs
of the first kind to illustrate the efficiency and accuracy of the method and
verify the theoretical convergence estimates established in section 3. To this
end, the approximation quality in each numerical experiment is measured by

eSh = max
1≤m≤n

∥y(tm)− ym∥∞,

the maximum norm of the starting errors, and

eh(T ) = ∥y(tN )− yN∥∞,
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the maximum norm of the error at the endpoint tN = T of the integration
interval. Additionally, to validate the theoretical convergence order, the ex-
perimental estimate of the order of accuracy for the starting procedure (11)
and the CBRQM (10) are computed by

OS = log2
(
eSh/e

S
h/2

)
,

and
OC = log2

(
eCh (T )/e

C
h/2(T )

)
.

As a first example, consider the linear convolution VIE of the first kind
[13] ∫ t

0

(c2 + 1) cos(t− s)y(s) ds = cect + sin t− c cos t, t ∈ [0, 4], (13)

where c = ±1, and the exact solution is given by y(t) = et. Tables 1 and 2 list
numerical results for the starting procedure and the CBRQM with various
choices of the parameters (n, d, ds) and different values of the stepsize h. For
both cases of the parameter c, the errors decrease with decreasing stepsize h.
As to be expected from Theorem 3, the error of the starting values decreases
at the rate of ds +2+ δ, with δ = 1 for odd n− ds and δ = 0 for even n− ds,
and the errors of the CBRQM (10) decrease at the rate of d + 1 + δ, with
δ = 1 for odd n− d and δ = 0 for even n− d, as established by Theorem 4.

Table 1: Numerical results of the CBRQM applied to the VIE in (13) with c = 1.

h 2−2 2−3 2−4 2−5 2−6 2−7 2−8

(n, d, ds) = (5, 2, 1)

Starting procedure eSh 5.90e−3 4.63e−4 4.76e−5 5.46e−6 6.54e−7 8.02e−8 9.92e−9

OS 3.67 3.28 3.12 3.06 3.03 3.02

CBRQM eCh (T ) 1.72e−2 1.26e−3 7.73e−5 4.69e−6 2.94e−7 1.84e−8 1.15e−9

OC 3.77 4.03 4.04 4.00 4.00 4.00
(n, d, ds) = (6, 3, 2)

Starting procedure eSh 8.28e−4 3.18e−5 1.48e−6 7.96e−8 4.60e−9 2.77e−10 1.70e−11

OS 4.70 4.43 4.22 4.11 4.05 4.03

CBRQM eCh (T ) 1.02e−3 2.39e−5 7.55e−7 2.78e−8 1.03e−9 3.52e−11 1.15e−12

OC 5.42 4.98 4.76 4.75 4.87 4.94

As the second test problem, consider the classical VIE of the form [16]

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1589–1606



1601 A quadrature method for Volterra integral equations of the first kind

Table 2: Numerical results of the CBRQM applied to the VIE in (13) with c = −1.

h 2−2 2−3 2−4 2−5 2−6 2−7 2−8

(n, d, ds) = (5, 2, 1)

Starting procedure eSh 1.50e−3 2.43e−4 3.48e−5 4.66e−6 6.05e−7 7.71e−8 9.73e−9

OS 2.63 2.80 2.90 2.95 2.97 2.99

CBRQM eCh (T ) 3.10e−3 2.91e−4 2.18e−5 1.49e−6 9.74e−8 6.22e−9 3.93e−10

OC 3.41 3.74 3.87 3.94 3.97 3.98
(n, d, ds) = (6, 3, 2)

Starting procedure eSh 1.75e−4 1.43e−5 1.00e−6 6.57e−8 4.19e−9 2.64e−10 1.66e−11

OS 3.61 3.84 3.93 3.97 3.99 3.99

CBRQM eCh (T ) 2.21e−4 1.91e−5 9.06e−7 3.39e−8 1.15e−9 3.75e−11 1.19e−12

OC 3.53 4.40 4.74 4.88 4.94 4.98

Figure 1: Log-log-plots of the approximation error of the starting procedure and the
CBRQM applied to the VIE in (14) with (n, ds) = (5, 1), (5, 2), (7, 4) (left) and (n, d) =

(5, 1), (5, 3), (7, 5) (right).

∫ t

0

e−tsy(s) ds = g(t), t ∈ [0, 1], (14)

where the function g is chosen such that the exact solution is y(t) = e−t cos t.
Figure 1 shows the logarithmic errors log10(eSh) and log10(eCh (T )) of the start-
ing procedure and the CBRQM (10) for this equation, plotted versus log10(h),
together with the slope lines corresponding to the expected convergence rates.
The numerical results confirm the expected orders of convergence for various
choices of (n, d, ds) as predicted by Theorems 3 and 4.

To demonstrate the efficiency and accuracy of the CBRQM (10), consider
the following nonlinear first-kind VIE∫ t

0

1

t+ s+ 9 + ey(s)
ds = 1

2
log

(3t+ 10

t+ 10

)
, t ∈ [0, 1], (15)
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with the exact solution y(t) = log(t + 1). The numerical results for this
equation are presented in Table 3 for the parameter (n, d, ds) = (3, 1, 1) and
(n, d, ds) = (8, 3, 2). These results clearly validate the theoretical convergence
order of the proposed method.

Table 3: Numerical results of the CBRQM applied to the VIE in (15).

h 2−3 2−4 2−5 2−6 2−7 2−8

(n, d, ds) = (3, 1, 1)

Starting procedure eSh 2.71e−5 3.97e−6 5.44e−7 7.13e−8 9.14e−9 1.16e−9

OS 2.77 2.87 2.93 2.96 2.98

CBRQM eCh (T ) 3.66e−5 9.51e−6 2.79e−6 7.02e−7 1.82e−7 4.55e−8

OC 1.94 1.77 1.99 1.95 2.00
(n, d, ds) = (8, 3, 2)

Starting procedure eSh 1.12e−6 8.42e−8 5.83e−9 3.85e−10 2.48e−11 1.57e−12

OS 3.73 3.85 3.92 3.96 3.98

CBRQM eCh (T ) 1.88e−7 4.57e−9 1.68e−10 5.74e−12 1.87e−13 5.33e−15

OC 5.36 4.77 4.87 4.94 5.13

Implementation of numerical methods becomes increasingly challenging
when dealing with VIEs over long integration intervals. To demonstrate the
efficiency of the CBRQM in such cases, consider the nonlinear VIE∫ t

0

sin(t− sy(s)) ds = 1− cos t, t ∈ [0, 100], (16)

where the exact solution is y(t) = 1. The numerical results for this equation
with parameters (n, d, ds) = (10, 3, 2) and (n, d, ds) = (12, 5, 4) are given in
Table 4 and confirm once more the theoretical results and the capability of
the method in solving VIEs over long intervals.

Finally, consider the highly oscillatory first-kind VIE∫ t

0

e−α(t−s) cos(ω(t− s))y(s) ds = g(t), t ∈ [0, 1], (17)

where the function g is chosen such that the exact solution is y(t) =

e−αt sin(ωt). For α > 0 and ω ≫ 1, the VIE in (17) becomes highly oscilla-
tory due to the cosine term. Figure 2 shows the logarithmic errors log10(eSh)
and log10(eCh (T )), corresponding to the starting procedure and the CBRQM
(10), applied to the VIE in (17) for α = 1 and ω = 100, plotted versus
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Table 4: Numerical results of the CBRQM applied to the VIE in (16).

h 2−2 2−3 2−4 2−5 2−6 2−7

(n, d, ds) = (10, 3, 2)

Starting procedure eSh 2.20e−4 2.18e−5 1.51e−6 9.67e−8 6.08e−9 3.80e−10

OS 3.34 3.85 3.96 3.99 4.00

CBRQM eCh (T ) 7.36e−5 1.48e−5 9.03e−7 3.32e−8 1.08e−9 3.41e−11

OC 2.31 4.03 4.77 4.94 4.99
(n, d, ds) = (12, 5, 4)

Starting procedure eSh 8.01e−6 2.26e−7 4.01e−9 6.46e−11 1.02e−12 1.55e−14

OS 5.15 5.82 5.96 5.98 6.04

CBRQM eCh (T ) 4.89e−6 1.01e−7 2.34e−9 2.44e−11 2.12e−13 1.55e−15

OC 5.60 5.43 6.58 6.85 7.10

Figure 2: Log-log-plots of the approximation error of the starting procedure and the
CBRQM applied to the VIE in (17) with (n, ds) = (7, 3), (11, 6) (left) and (n, d) =
(7, 4), (11, 7) (right).

log10(h), together with the expected convergence rates. As expected, the
experimental orders of convergence for both the starting procedure and the
CBRQM (10) exhibit excellent agreement with the theoretical results.
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