[1] Alimirzaei, I. Malek, A. and Owolabi, K.M. Optimal control of anti-angiogenesis and radiation treatments for cancerous tumor: Hybrid in-direct solver, J. Math. 2023 (2023), 5554420.
[2] Arnold, V.I. Ordinary differential equations, Springer-Verlag, 1992.
[3] Bodzioch, M., Belmonte–Beitia, J., and Foryś, U. Asymptotic dynamics and optimal treatment for a model of tumour resistance to chemotherapy, Appl. Math. Model. 135 (2024), 620–639.
[4] Clarke, F.H. Functional analysis, calculus of variations and optimal control, Springer, 2013.
[5] Cohen, A.D. and Shapiro, H. Optimal control of drug delivery in cancer therapy: A review, Appl. Math. Comput. 392, (2021), 125697.
[6] Feng, Z. and Liu, W. Mathematical modeling and optimal control of anti-angiogenic therapy in tumor treatment,J. Theor. Biol. 540, (2022), 110166.
[7] Ghosh, P. and Mukherjee, D. Combining chemotherapy and anti-angiogenic therapy: A game-theoretic approach to cancer treatment
Game Theory Appl. 9(2) (2023), 45–62.
[8] Hahnfeldt, P., Panigrahy, D., Folkman, J. and Hlatky, L. Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res. 59 (1999), 4770–4775.
[9] Hale, J.K. Ordinary differential equations, Krieger, 1980.
[10] Hanfeld, J., Carash, C. and Spanish, E. Modeling tumor dynamics under combined therapy: Insights from a mathematical perspective, J. Theor. Biol. 370 (2015), 203–215.
[11] Huang, Y. and Zhou, H. Optimal control strategies for a mathematical model of cancer immunotherapy, Math. Biosci. 319 (2020), 108309.
[12] Jarrett, A.M., Faghihi, D., Hormuth II, D.A., Lima, E.A.B.F., Virostko, J., Biros, G., Patt, D., Yankeelov, T.E. Optimal Control Theory for Personalized Therapeutic Regimens in Oncology: Background, History,
Challenges, and Opportunities, J. Clin. Med. 9(5) (2020), 1314.
[13] Joorsara, Z. Hosseini, S.M, Esmaili, S. Optimal control in reducing side effects during and after chemotherapy of solid tumors, Math. Methods Appl. Sci. 47(8) (2024), e10049.
[14] Katz, S.C. and Henson, M. Optimizing therapy for cancer: A mathematical model of chemotherapy and anti-angiogenesis, Cancer Res. 72(10) (2012), 2541–2550.
[15] Krebs, R.M. and Lichtenstein, H. Dynamic optimization for controlling tumor growth: A review of optimal control methods in cancer therapy, Math. Med. Biol. 36(1) (2019), 1–27.
[16] Lecca, P. Control theory and cancer chemotherapy: how they interact. Front. bioeng. biotechnol. 8 (2021), 621269.
[17] Ledzewicz, U., Schättler, H. and Friedman, A. Optimal control for combination therapy in cancer, Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, (2008), 3783–3788.
[18] Li, M., Grigas, P. and Atamtürk, A. On the softplus penalty for large-scale convex optimization, Oper. Res. Lett. 51(6) (2023), 666–672.
[19] Liberzon, D. Calculus of Variations and Optimal Control Theory, Princeton University Press, 2011.
[20] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. and Mishchenko, E.F. The Mathematical Theory of Optimal Processes, Interscience Publishers, 1962.
[21] Rosen, J.B. The gradient projection method for nonlinear programming, J. Soc. Ind. Appl. Math. 8(1) (1960), 181–217.
[22] Sharp, J.A., Burrage, K., Simpson, M.J. Implementation and acceleration of optimal control for systems biology, J. R. Soc. Interface. 18(181) (2021), 20210241.
[23] Wang, L., Xu, Y. and Chen, J. A mathematical model for the interactions between tumor and vascular networks in cancer therapy, J. Math. Biol. 77(3) (2018), 761–795.