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Abstract

We formulate and analyze an optimal control problem for combined
chemotherapy and anti-angiogenic therapy. The model couples tumor bur-
den, vascular support, and a logistic surrogate for healthy tissue that en-
codes homeostasis and drug-induced depletion. The cost functional bal-
ances tumor reduction and drug sparing with toxicity mitigation: Beyond
terminal terms and quadratic control regularization, it includes a trajec-
tory reward for healthy tissue and a smooth, differentiable below-threshold
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1711 Mathematical modeling of an optimal control problem for combined ...

penalty based on a softplus construction. We establish local well-posedness
of the controlled dynamics on compact boxes and explain continuation to
the full horizon. Using Pontryagin’s maximum principle, we derive the
Hamiltonian system with an explicit pointwise characterization of the min-
imizing controls under dose bounds. For computation, we implement a
fourth-order Runge–Kutta integration of the states (forward) and adjoints
(backward), coupled with projected-gradient updates and relaxation. Nu-
merically, optimal schedules de-escalate as the system improves, rapidly
suppress vascular support, drive the tumor down monotonically, and keep
the healthy-tissue nadir above a prescribed threshold.

Keywords: Optimal control problem; Cancer treatment strategies; Tumor
growth model with healthy cell dynamics; Pontryagin’s Maximum Principle.

AMS subject classifications (2020): [2020]Primary 49K15, 92C50; Secondary
49M05, 65L06, 92C37, 37N25, 93C10.

1 Introduction

Cancer remains a major public health issue, and research is focused on im-
proving treatment efficacy while minimizing side effects [1, 2, 3, 5, 6, 7, 9,
10, 12, 13, 16]. Modern therapeutic strategies often combine chemotherapy,
which directly targets cancer cells, with anti-angiogenic therapy, which at-
tacks the vascular networks that nourish the tumor [14, 15, 22]. While this
dual approach holds promise for slowing tumor progression, it presents com-
plex challenges in optimizing drug dosages and administration schedules.

Mathematical modeling has emerged as an essential tool for addressing
these issues [11]. Foundational work on tumor growth models, such as that
by Hahnfeldt et al. [8], has been extended through the use of optimal con-
trol theory [4, 19] to design treatment protocols. Models, such as those from
Ledzewicz, Schättler, and Friedman [17], laid the groundwork for this ap-
proach by focusing on the dynamics of the tumor and its vascular support.
However, many existing models simplify the representation of treatment im-
pact on a patient’s overall health. They primarily focus on reducing tumor
volume without explicitly and in detail integrating the dynamics of healthy
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tissues, which is a crucial factor for a patient’s quality of life and treatment
tolerance.

The novelty of our paper lies in the development of an extended optimal
control model that rigorously integrates the dynamics of healthy cells. By
adding a dedicated equation for the healthy cell population, our work stands
out by proposing a therapeutic strategy that not only minimizes tumor size
and drug quantity but also explicitly and weightedly rewards the preservation
of non-cancerous tissue health. This approach allows for a more clinically rel-
evant optimization problem, as it seeks to find the best compromise between
treatment effectiveness and patient well-being.

The remainder of this paper is structured as follows. Section 2 presents
the extended mathematical model and defines the cost functional. Section 3
is dedicated to the theoretical analysis of the existence and uniqueness of the
problem’s solution, using Pontryagin’s maximum principle [20] to establish
the necessary optimality conditions. Section 4 describes the numerical res-
olution method, which combines a forward-backward sweep approach with
4th-order Runge–Kutta and gradient descent methods, to simulate and an-
alyze the optimal control profiles. A conclusion and future perspectives will
mark the end of this work.

2 Mathematical model and optimal-control formulation

This section introduces the mathematical framework used to model the dy-
namics of cancer and its response to combined therapy. We define the state
variables representing the tumor, its vascular support, and healthy tissue,
along with the control variables for the therapeutic agents. The section con-
cludes with the precise formulation of the optimal control problem and its
associated cost functional.
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1713 Mathematical modeling of an optimal control problem for combined ...

2.1 State variables and system dynamics

This subsection specifies the controlled state system used throughout the pa-
per and fixes the notation for the dynamics of the tumor, the endothelial vas-
cular support, and the healthy-tissue population over a finite horizon T > 0.

Tumor dynamics.

The tumor follows a Gompertz-type law modulated by vascular support and
directly impacted by both drugs [8, 23]:

ṗ(t) = −β p(t) ln
[p(t)
q(t)

]
− F p(t) v(t) − ε u(t) p(t), (1)

where

• p(t) is the tumor burden and q(t) the vascular support;

• u(t) is the anti-angiogenic (inhibitor) dose and v(t) the cytotoxic (chemother-
apy) dose (both measurable on [0, T ]);

• β > 0 is the Gompertz sensitivity (feedback ln(p/q));

• F ≥ 0 quantifies the direct cytotoxic efficacy on the tumor (term F p v);

• ε ≥ 0 measures the direct anti-angiogenic pressure on the tumor (term
ε u p).

Endothelial vasculature dynamics.

The vascular compartment responds to tumor signaling, has intrinsic loss, and
is depleted by both agents [8, 23]:

q̇(t) = b p(t) +
(
−µ+ d p(t)2/3

)
q(t) − Gu(t) q(t) − Λ v(t) q(t), (2)

where

• b ≥ 0 is the tumor-driven angiogenic stimulation;

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1710–1729
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• µ ≥ 0 is the baseline vascular decay and d ≥ 0 scales the p2/3 coupling
in vascular kinetics;

• G ≥ 0 and Λ ≥ 0 quantify depletion of vasculature by the inhibitor and
the cytotoxic drug (terms Guq and Λ v q).

Healthy-tissue dynamics.

Healthy tissue obeys logistic homeostasis with drug-dependent depletion:

ṡ(t) =
(
r(1− s(t))− αu u(t)− αv v(t)

)
s(t)

= r s(t)− r s(t)2 −
(
αu u(t) + αv v(t)

)
s(t),

(3)

where

• r > 0 is the homeostatic (logistic) growth rate around the baseline;

• αu, αv ≥ 0 are toxicity coefficients on healthy tissue for the inhibitor
and the cytotoxic drug.

Bounds and initial data.

Pointwise safety constraints and baseline levels are

0 ≤ u(t) ≤ umax, 0 ≤ v(t) ≤ vmax for a.e. t ∈ [0, T ], (4)

where umax, vmax > 0 are the maximal admissible doses, and

p(0) = p0 > 0, q(0) = q0 > 0, s(0) = s0 ≥ 0,

where p0, q0, s0 are prescribed (scaled) baselines.
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2.2 Optimal-control problem and cost functional

This subsection formulates the optimal dosing problem. The aim is to bal-
ance antitumor effect, vascular modulation, dose sparing, and preservation of
healthy tissue over the full horizon [0, T ].

We minimize the following cost functional:

J(p, q, s, u, v) = α1 p(T ) + α2 q(T )− α3 s(T )

+
1

2

∫ T

0

(
β1 u(t)

2 + β2 v(t)
2
)
dt

− γs

∫ T

0

s(t) dt + γlow

∫ T

0

φ
(
s(t)

)2
dt,

(5)

where

• α1, α2, α3 ≥ 0 are terminal weights on p(T ), q(T ), and s(T );

• β1, β2 > 0 penalize large doses of u and v (quadratic regularization);

• γs ≥ 0 weights a trajectory reward promoting healthy tissue along the
horizon;

• γlow ≥ 0 weights a smooth penalty that discourages s falling below a
clinical threshold.

The below-threshold penalty uses a smooth softplus of the margin smin−s:

φ(s) =
1

κ
log

(
1 + eκ (smin−s)

)
, smin ∈ (0, 1], κ > 0, (6)

where

• smin is the clinically acceptable lower target for s (scaled units);

• κ controls the transition sharpness: large κ approaches a hinge while φ

remains C∞ [18].

Thus φ(s) ≈ 0 when s ≥ smin and φ(s) ≈ (smin − s)+ when s < smin, which
preserves differentiability for gradient-based schemes and avoids nonsmooth
state constraints.
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Admissible controls and problem statement.

Define admissible controls set as follows:

Uad =
{
(u, v) ∈ L2(0, T )2 : 0 ≤ u(t) ≤ umax, 0 ≤ v(t) ≤ vmax a.e. on [0, T ]

}
.

The optimal control problem is

(P) : min
(u,v)∈Uad

J(p, q, s, u, v) subject to (1)− (3), (4).

3 Analytical results and necessary optimality conditions

This section sets the analytic framework for the optimal control problem.
Our goals are twofold: (i) to establish well-posedness of the controlled state
system on a finite horizon, and (ii) to derive first-order necessary conditions
for optimality via Pontryagin’s maximum principle (PMP).

Functional setting.

Throughout, T > 0 denotes the fixed treatment horizon. The state triple
(p, q, s) is sought in the Sobolev product space

K = H1(0, T )×H1(0, T )×H1(0, T ),

where H1(0, T ) consists of (equivalence classes of) functions with square-
integrable first derivatives. In one space-time dimension, the Sobolev em-
bedding H1(0, T ) ↪→ C([0, T ]) holds; hence each state component admits a
continuous representative on [0, T ]. This regularity ensures that the differen-
tial equations are satisfied in the classical sense almost everywhere and that
pointwise sign constraints are meaningful.
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Admissible states set.

Because the tumor equation involves the logarithmic feedback ln
(
p/q

)
, we

must enforce strict positivity of p(t) and q(t) on [0, T ]. The healthy-tissue
surrogate s(t) is required to remain nonnegative. We therefore define the
admissible state set

Kad =
{
(p, q, s) ∈ K : p(t) > 0, q(t) > 0, s(t) ≥ 0 for all t ∈ [0, T ]

}
,

with the understanding that initial data satisfy p(0) = p0 > 0, q(0) = q0 >

0, and s(0) = s0 ≥ 0. This choice guarantees the well-definedness of the
dynamics and provides the continuity and regularity needed for the subsequent
analysis and the application of PMP.

3.1 Existence and uniqueness of the state system

Define the components of the vector field f = (fp, fq, fs) by

fp(p, q, s;u, v) := −β p ln
(p
q

)
− F p v − ε u p, (7)

fq(p, q, s;u, v) := b p+ (−µ+ d p2/3) q −Guq − Λ v q, (8)

fs(p, q, s;u, v) :=
(
r(1− s)− αuu− αvv

)
s. (9)

Let a compact box Ω = [δp,Mp]× [δq,Mq]× [δs,Ms] ⋐ (0,∞)×(0,∞)× [0,∞)

be fixed, with 0 < δp ≤ Mp, 0 < δq ≤ Mq, 0 ≤ δs ≤ Ms, and let (u, v) ∈ Uad

be essentially bounded by (umax, vmax).

To prove the existence and uniqueness of our system dynamics (1)–(3), we
formulate the following result.

Proposition 1. For every (p, q, s) ∈ Ω and (u, v) ∈ Uad, the partial deriva-
tives ∂fi/∂xj (i ∈ {p, q, s}, xj ∈ {p, q, s}) exist and are bounded on Ω. Con-
sequently, f is locally Lipschitz in (p, q, s) on Ω (uniformly in (u, v) ∈ Uad),
and the Cauchy problem associated with equations (1)–(3) admits a unique
solution on a (possibly short) time interval.
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Proof. Compute the partial derivatives explicitly.
From (7):

∂fp
∂p

= −β

(
ln
(p
q

)
+ 1

)
− F v − ε u,

∂fp
∂q

= β
p

q
,

∂fp
∂s

= 0.

On Ω we have p ∈ [δp,Mp], q ∈ [δq,Mq] with δp, δq > 0, hence∣∣∣∣∂fp∂p

∣∣∣∣ ≤ β
(∣∣ln(Mp/δq)

∣∣+ 1
)
+ F vmax + ε umax,

∣∣∣∣∂fp∂q

∣∣∣∣ ≤ β
Mp

δq
.

From (8),

∂fq
∂p

= b+ 2
3 d p

−1/3q,
∂fq
∂q

= −µ+ d p2/3 −Gu− Λ v,
∂fq
∂s

= 0.

Since p ≥ δp > 0 and q ≤ Mq, we obtain∣∣∣∣∂fq∂p

∣∣∣∣ ≤ b+ 2
3d δ

−1/3
p Mq,

∣∣∣∣∂fq∂q

∣∣∣∣ ≤ µ+ dM2/3
p +Gumax + Λ vmax.

From (9),

∂fs
∂s

= r(1− 2s)− αuu− αvv,
∂fs
∂p

= 0,
∂fs
∂q

= 0,

whence ∣∣∣∣∂fs∂s

∣∣∣∣ ≤ r (1 + 2Ms) + αuumax + αvvmax.

All bounds are finite and depend only on (Ω, umax, vmax). Thus the Jaco-
bian ∂f/∂(p, q, s) is bounded on Ω, which implies local Lipschitz on Ω. The
Cauchy–Lipschitz theorem yields existence and uniqueness on a local inter-
val.

3.2 Existence and uniqueness of the optimal controls

Since the controlled state system (1)–(3) is well-posed, we now show that the
optimal control problem (P) admits a unique minimizer in Uad.
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The argument relies on the coercivity and strict convexity of the cost
functional J on Uad.

Coercivity:

Write the objective as

J(p, q, s, u, v) = 1
2

∫ T

0

(
β1u(t)

2 + β2v(t)
2
)
dt︸ ︷︷ ︸

quadratic in the controls

+R(p, q, s),

where

R(p, q, s) = α1p(T )+α2q(T )−α3s(T ) − γs

∫ T

0

s(t) dt + γlow

∫ T

0

φ(s(t))2 dt,

with α1, α2, α3, γs, γlow ≥ 0 and β1, β2 > 0.

Using (3)

ṡ(t) =
(
r(1− s(t))− αuu(t)− αvv(t)

)
s(t) ≤ r (1− s(t)) s(t),

the comparison principle yields the uniform bound

0 ≤ s(t) ≤ smax := max{1, s0} for all t ∈ [0, T ].

Hence

−α3s(T ) ≥ −α3smax, −γs

∫ T

0

s(t) dt ≥ −γsT smax,

while α1p(T ) ≥ 0, α2q(T ) ≥ 0 and γlow
∫ T

0
φ(s)2 dt ≥ 0.

Therefore,

R(p, q, s) ≥ C0 with C0 := −α3 smax − γs T smax , smax = max{1, s0}.

Discarding the nonnegative terms in R gives the coercivity bound

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1710–1729



Mahaman Nouri and Bisso 1720

J(p, q, s, u, v) ≥ β1

2
‖u‖2L2(0,T ) +

β2

2
‖v‖2L2(0,T ) + C0.

This implies that J is coercive on Uad.

Stricte convexity:

The running Lagrangian given by

L(u, v, s) = 1
2 (β1u

2 + β2v
2)− γss+ γlowφ(s)

2

is strictly convex in (u, v) for every fixed s a.e. on [0, T ]. Therefore (u, v) 7→∫ T

0
1
2 (β1u

2 +β2v
2) dt is strictly convex on U , and J is strictly convex in (u, v)

for fixed (p, q, s).

Remark 1. Because (p, q, s) depend nonlinearly on (u, v) through the equa-
tions (1)–(3), the reduced functional (u, v) 7→ J(p(u, v), q(u, v), s(u, v), u, v)

is generally not globally convex. Nevertheless, strict convexity in (u, v) at the
running level guarantees uniqueness of the PMP pointwise minimizers and
well-posedness of the projected forward–backward updates on the convex set
Uad.

For a fixed, positive treatment duration T > 0, a unique optimal control
exists under these conditions.

3.3 Characterization of the optimal controls

To characterize the optimal control, we derive first-order necessary conditions
via Pontryagin’s maximum principle [5, 14, 20]. Specifically, we construct the
Hamiltonian, obtain the adjoint (costate) differential equations, and state the
pointwise minimization conditions that define the optimal controls.

Let λp, λq, λs denote the adjoint variables. The Hamiltonian H associated
with our optimal control problem (P) is given by

H(p, q, s, u, v, λp, λq, λs) =
1
2 (β1u

2 + β2v
2) − γs s + γlow φ(s)2

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1710–1729



1721 Mathematical modeling of an optimal control problem for combined ...

+ λp

(
−β p ln(pq )− F p v − ε u p

)
+ λq

(
b p+ (−µ+ d p2/3) q −Guq − Λ v q

)
+ λs

(
(r(1− s)− αu u− αv v) s

)
. (10)

A direct computation gives the adjoint system (backward in time) as

λ̇p = −dH
dp

=
(
β(ln(pq ) + 1) + Fv + εu

)
λp −

(
b+ 2

3d p
−1/3q

)
λq, (11)

λ̇q = −dH
dq

= −β p
q λp −

(
−µ+ d p2/3 −Gu− Λv

)
λq, (12)

λ̇s = −dH
ds

= −
(
r(1− 2s)− αuu− αvv

)
λs + γs

− 2 γlow φ(s)σ
(
κ(smin − s)

)
, (13)

λp(T ) = α1, λq(T ) = α2, λs(T ) = −α3, (14)

where σ(ξ) = 1/(1+e−ξ) is the logistic function and d
dsφ(s) = −σ

(
κ(smin−s)

)
.

The strict convexity of H in (u, v) yields the unique stationary controls

u♯ =
ε p λp +Gq λq + αu s λs

β1
, v♯ =

F pλp + Λ q λq + αv s λs

β2
,

which are then projected onto the admissible box:

u∗(t) = Π[0,umax]

(
u♯(t)

)
, v∗(t) = Π[0,vmax]

(
v♯(t)

)
for a.e. t ∈ [0, T ].

Here Π[a,b](z) = min{max{z, a}, b } denotes the Euclidean projection onto
the box; see also the gradient-projection method [21].

4 Numerical methods and analysis of optimal profiles

This section describes the computational approach used to solve the optimal
control problem and discusses the expected outcomes.
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4.1 Numerical algorithm

The PMP yields a two-point boundary value problem involving the state and
adjoint equations. Since the state equations are solved forward in time and
the adjoint equations are solved backward, we use an iterative method known
as the forward-backward sweep method (FBSM).

The algorithm proceeds as follows:

1. Initialization: Make an initial guess for the optimal controls, typically
u(0)(t) = 0 and v(0)(t) = 0.

2. Forward sweep: Using the current guess for the controls, solve the
state equations (1)–(3) forward in time from t = 0 to t = T with the
initial conditions p0, q0, s0. We use a 4th-order Runge–Kutta method
for this step.

3. Backward sweep: Using the state variables calculated in the forward
sweep, solve the adjoint equations backward in time from t = T to t = 0

using the transversality conditions. Again, a 4th-order Runge–Kutta
method is employed.

4. Control update: Update the controls u and v using a projected-
gradient step (with relaxation) that enforces the box constraints (4);
see the classical gradient–projection method [21].

5. Convergence check: Repeat the forward and backward sweeps until
a convergence criterion is met. This criterion is typically a small change
in the controls or states between successive iterations.

4.2 Simulation results

This subsection reports numerical experiments designed to illustrate the qual-
itative behavior of the optimized schedules and to assess their clinical plausi-
bility. Unless otherwise stated, simulations use the baseline parameter values
listed in Tables 1–3, a time horizon of T = 30 and T = 60 days, and a uniform

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1710–1729
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time step ∆t = 0.1 day. The forward problem is integrated with a fourth-
order Runge–Kutta method, the adjoint system is solved backward with the
same scheme, and the controls are updated by projected gradients with relax-
ation (relaxation factor 0.6). Iterations stop when the relative change of the
objective falls below a preset tolerance or upon reaching the iteration cap.

Table 1: Dynamic parameters used in the simulations

Symbol Value
β 0.18
F 0.06
ε 0.045
b 0.02
µ 0.03
d 0.022
G 0.022
Λ 0.018
r 0.010
αu 0.004
αv 0.005

Table 2: Objective weights and penalty parameters

Symbol Value
α1 1.00
α2 0.15
α3 1.00
β1 0.06
β2 0.06
γs 0.005
γlow 0.15
smin 0.85
κ 25.0

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1710–1729
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Table 3: Time grid, control bounds, and initial conditions

Symbol Value
T (days) 60.0
∆t (days) 0.1

umax 0.7
vmax 0.7
p0 1.0
q0 1.0
s0 1.0

Figure 1: Optimal dose profiles over 30 days.

Figure 2: State profiles under optimal controls (30-day horizon).

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1710–1729
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Figure 3: Optimal dose profiles over 60 days.

Figure 4: State profiles under optimal controls (60-day horizon).

4.3 Interpretation of the results

Figures 1 and 3 depict the time courses of the optimal controls over the 30- and
60-day horizons, respectively. In both panels, the anti-angiogenic dose u(t) is
front-loaded: It rises early to prune vascular support and then tapers as the
system improves. The chemotherapy dose v(t) follows a de-escalating pattern
as well, with smoother modulation and no bang–bang switching. Both controls
remain within their admissible bounds throughout, a direct consequence of
quadratic regularization and projection of the pointwise PMP minimizers.
The net effect is an aggressive but time-limited push on vasculature and tumor
burden, followed by maintenance-level dosing that limits cumulative toxicity.
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Figures 2 and 4 show the corresponding state trajectories across 30- and
60-day horizons, respectively. The vasculature volume q(t) falls rapidly at
treatment onset, reflecting the early emphasis on u(t). The tumor volume
p(t) then declines in a near-monotone fashion across the horizon, consistent
with reduced vascular supply and the direct cytotoxic action of v(t). The
healthy-tissue surrogate s(t) exhibits a clinically plausible pattern: a moderate
early nadir followed by gradual recovery. Importantly, the recovery remains
above the prescribed threshold smin (dashed reference), which indicates that
the softplus penalty and the running reward on s effectively prevent deep or
prolonged suppression of healthy tissue. Overall, the pairing of early vascular
pruning with controlled chemotherapy explains the observed tumor regression
while the logistic healthy-tissue dynamics, shaped by the penalty terms, keep
toxicity within acceptable limits.

5 Conclusion

We presented an optimal-control framework for combined chemotherapy and
anti-angiogenic therapy that links a Gompertz tumor model to a vasculature
compartment and a logistic healthy-tissue surrogate with drug-dependent de-
pletion. The objective balances terminal targets, quadratic dose regulariza-
tion, and trajectory-level toxicity control via a running reward on healthy tis-
sue and a smooth softplus penalty below a clinical threshold. We proved well-
posedness on compact sets, derived PMP-based first-order conditions with ex-
plicit pointwise minimizers, and implemented a stable RK4 forward–backward
solver with projected-gradient updates.

Numerical results showed rapid vascular pruning, near-monotone tumor
decline, and a realistic healthy-tissue profile, an early nadir followed by slow
recovery that stays above the threshold, while the softplus term and quadratic
costs prevent overly aggressive dosing. These patterns persist under moderate
parameter perturbations, indicating robustness.
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