[1] Anh, P.K., Anh, T.V., and Muu, L.D. On bilevel split pseudomonotone variational inequality problems with applications, Acta Math. Vietnam, 42 (2017), 413–429.
[2] Anh, P.N., Kim, J.K., and Muu, L.D. An extragradient algorithm for solving bilevel pseudomonotone variational inequalities, J. Glob. Optim., 52 (2012), 627–639.
[3] Anh, T.V. A parallel method for variational inequalities with the multiple-sets split feasibility problem constraints, J. Fixed Point Theory Appl., 19 (2017), 2681–2696.
[4] Anh, T.V. A strongly convergent subgradient extragradient-Halpern method for solving a class of bilevel pseudomonotone variational in-equalities, Vietnam J. Math., 45 (2017), 317–332.
[5] Buong, N. Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces, Numer. Algorithms, 76 (2017), 783–798.
[6] Ceng, L.C., Ansari, Q.H., and Yao, J.C. Some iterative methods for finding fixed points and for solving constrained convex minimization problems, Nonlinear Anal., 74 (2011), 5286–5302.
[7] Ceng, L.C., Ansari, Q.H., and Yao, J.C. An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64 (2012), 633–642.
[8] Ceng, L.C., Ansari, Q.H., and Yao, J.C. Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem, Nonlinear Anal., 75 (2012), 2116–2125.
[9] Ceng, L.C., Coroian, I., Qin, X., and Yao, J.C. A general viscosity implicit iterative algorithm for split variational inclusions with hierarchical variational inequality constraints, Fixed Point Theory, 20 (2019), 469–482.
[10] Ceng, L.C., Liou, Y.C., and Sahu, D.R. Multi-step hybrid steepest-descent methods for split feasibility problems with hierarchical variational inequality problem constraints, J. Nonlinear Sci. Appl., 9 (2016), 4148–4166.
[11] Ceng, L.C., Wong, N.C., and Yao, J.C. Hybrid extragradient methods for finding minimum-norm solutions of split feasibility problems, J. Nonlinear Convex Anal., 16 (2015), 1965–1983.
[12] Censor, Y., Bortfeld, T., Martin, B., et al. A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353–2365.
[13] Censor, Y., and Elfving, T. A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221–239.
[14] Censor, Y., Elfving, T., Kopf, N. and Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Prob., 21 (2005), 2071–2084.
[15] Censor, Y., Gibali, A., and Reich, S. Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301–323.
[16] Censor, Y., and Segal, A. Iterative projection methods in biomedical inverse problems, in: Censor, Y., Jiang, M., and Louis, A.K., eds., Mathematical methods in biomedical imaging and intensity-modulated therapy, Edizioni della Norale, Pisa, Italy, IMRT, (2008) 65–96.
[17] Combettes, P.L. and Hirstoaga, S.A. Equilibrium Programming in Hilbert Spaces, J. Nonlinear Convex Anal., 6 (2005), 117–136.
[18] Cuong, T.L., Anh, T.V., and Van, L.H.M. A self-adaptive step size algorithm for solving variational inequalities with the split feasibility problem with multiple output sets constraints, Numer. Funct. Anal. Optim., 43(2022), 1009–1026.
[19] Daniele, P., Giannessi, F., and Maugeri, A. Equilibrium problems and variational models, Dordrecht, Kluwer Academic, 2003.
[20] Dempe, S. Foundations of bilevel programming, Dordrecht, Kluwer Academic Press, 2002.
[21] Facchinei, F., and Pang, J.S. Finite-dimensional variational inequalities and complementarity problems, Berlin, Springer, 2002.
[22] Giannessi, F., Maugeri, A., and Pardalos, P.M. Equilibrium problems: nonsmooth optimization and variational inequality models, Dordrecht, Kluwer Academic, 2004.
[23] He, S., Zhao, Z., and Luo, B. A relaxed self-adaptive CQ algorithm for the multiple-sets split feasibility problem, Optimization, 64 (2015), 1907–1918.
[24] Huy, P.V., Hien, N.D., and Anh, T.V. A strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problem, Vietnam J. Math., 48 (2020), 187–204.
[25] Huy, P.V., Van, L.H.M., Hien, N.D., and Anh, T.V. Modified Tseng’s extragradient methods with self-adaptive step size for solving bilevel split variational inequality problems, Optimization, 71 (2022), 1721–1748.
[26] Iyiola, O. S., and Shehu, Y. Convergence results of two-step inertial proximal point algorithm, Appl. Numer. Math., 182 (2022), 57–75.
[27] Izuchukwu, C., Aphane, M., and Aremu, K. O. Two-step inertial forward–reflected–anchored–backward splitting algorithm for solving monotone inclusion problems, Comput. Appl. Math., 42 (2023), 351.
[28] Kinderlehrer, D., and Stampacchia, G. An introduction to variational inequalities and their applications, New York, Academic,; 1980.
[29] Konnov, I.V. Combined Relaxation Methods for Variational Inequalities, Springer, Berlin (2000).
[30] Korpelevich, G.M. The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody, 12 (1976), 747–756.
[31] Maingé, P.E. A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499–1515.
[32] Okeke, C. C., Jolaoso, L. O., and Shehu, Y. Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces, Int. J. Nonlinear Sci. Numer. Simul., 24 (2021), 769–790.
[33] Polyak, B. T. Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17.
[34] Raeisi, M., Zamani Eskandani, G., and Eslamian, M. A general algorithm for multiple-sets split feasibility problem involving resolvents and Bregman mappings, Optimization, 67 (2018), 309–327.
[35] Rudin, W. Functiona l Analysis, 2nd ed., McGraw-Hill, New York, 1991.
[36] Shehu, Y. Strong convergence theorem for multiple sets split feasibility problems in Banach spaces, Numerical Funct. Anal. Optim., 37 (2016), 1021–1036.
[37] Solodov, M.V. An explicit descent method for bilevel convex optimization, J. Convex Anal., 14 (2007), 227–237.
[38] Thong, D.V., and Hieu, D.V. A strong convergence of modified subgradient extragradient method for solving bilevel pseudomonotone variational inequality problems, Optimization, 69 (2020), 1313–1334.
[39] Tseng, P. A modified forward–backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446.
[40] Uzor, V., Alakoya, T., and Mewomo, O. T. On split monotone variational inclusion problem with multiple output sets with fixed point constraints, Comput. Methods Appl. Math., 23 (2023), 729–749.
[41] Xu, H.K. Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256.
[42] Yao, Y., Marino, G., and Muglia, L. A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality, Optimization, 63 (2014), 559–569.
[43] Yao, Y., Postolache, M., and Zhu, Z. Gradient methods with selection technique for the multiple-sets split feasibility problem, Optimization, 69 (2020), 269–281.
[44] Zegeye, H., Shahzad, N., and Yao, Y. Minimum-norm solution of variational inequality and fixed point problem in Banach spaces, Optimization, 64 (2015), 453–471.