- Amari, S. (1982). Differential geometry of curved exponential families-curvatures and information loss. The Annals of Statistics, 10, 357–387.
- Arashi, M. and Tabatabaey, S. M. M. (2010). A note on classical Stein-type estimators in elliptically contoured models. Journal of Statistical Planning and Inference, 140, 1206–1213.
- Baranchik, A. J. (1970). A family of minimax estimators of the mean of a multivariate normal distribution. The Annals of Mathematical Statistics, 41, 642–645.
- Brandwein, A. C. and Strawderman, W. E. (1980). Minimax estimators of location parameters for spherically symmetric distributions with concave loss. The Annals of Statistics, 8, 279–284.
- Casella, G. (1990). Estimators with nondecreasing risk: Application of a chi-square identity. Statistics and Probability Letters, 10, 107–109.
- Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society Series B: Statistical Methodology, 46, 440–464.
- Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors-An empirical Bayes approach. Journal of the American Statistical Association, 68, 117–130.
- Faith, R. E. (1978). Minimax Bayes estimators of a multivariate normal mean. Journal of Multivariate Analysis, 8, 372–379.
- Fourdrinier, D., Strawderman, W. E. and Wells, M. T. (2003). Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix. Journal of Multivariate Analysis, 85, 24–39.
- George, E. I. (1991). Shrinkage domination in a multivariate common mean problem. The Annals of Statistics, 19, 952–960.
- Ghosh, M., Mergel, V. and Datta, G. S. (2008). Estimation, prediction and the Stein phenomenon under divergence loss, Journal of Multivariate Analysis, 99, 1941–1961.
- Ghosh, M. and Mergel, V. (2009). On the Stein phenomenon under divergence loss and an unknown variance-covariance matrix. Journal of Multivariate Analysis, 100, 2331–2336.
- James, W. and Stein, C. (1961). Estimation of quadratic loss. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, 361–379.
- Maruyama, Y. (2004). Stein’s idea and minimax admissible estimation of a multivariate normal mean, Journal of Multivariate Analysis, 88, 320–334.
- Shao, P. Yi-Shi and Strawderman, W. E. (1994). Improving on the James-Stein positive-part estimator. The Annals of Statistics, 22, 1517–1538.
- Srivastava, M. S. and Kubokawa, T. (2005). Minimax multivariate empirical Bayes estimators under multicollinearity. Journal of Multivariate Analysis, 93, 394–416.
- Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. The Annals of Statistics, 9, 1135–1151.
Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate distribution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1, 197–206.
- Strawderman, W. E. (1971). Proper Bayes minimax estimators of the multivariate normal mean. The Annals of Mathematical Statistics, 42, 385–388.
- Wells, M. T. and Zhou, G. (2008). Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance. Journal of Multivariate Analysis, 99, 2208–2220.
|