[1] Abdeljawad, T. On Riemann and Caputo fractional difference, Comput. Math. Appl., 62 (2011), 1602–1611.
[2] Abdelouahab, M.S. and Hamri, N. The Grünwald–Letnikov fractional-order derivative with fixed memory length, Mediterr. J. Math., 13(2) (2016), 557–572.
[3] Abdlaziz, M.A.M., Ismail, A. I., Abdullah, F.A. and Mohd, H.M. Bifur-cations and chaos in a discrete SI epidemic model with fractional order, Adv. Differ. Equ., 2018 (2018), 1–19.
[4] Almatrafi, M.B. and Berkal, M. Stability and bifurcation analysis of predator-prey model with Allee effect using conformable derivatives, J. Math. Comput. Sci., 36(3) (2025), 299–316.
[5] Baleanu, D., Jajarmi, A., Defterli, O., Wannan, R., Sajjadi, S.S. and Asad, J.H. Fractional investigation of time-dependent mass pendulum, J. Low Freq. Noise Vib. Act. Control, 43(1) (2024), 196–207.
[6] Baleanu, D., Jajarmi, A., Sajjadi, S.S. and Mozyrska, D. A new frac-tional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29(8) (2019).
[7] Baleanu, D., Shekari, P., Torkzadeh, L., Ranjbar, H., Jajarmi, A. and Nouri, K. Stability analysis and system properties of Nipah virus trans-mission: A fractional calculus case study, Chaos Solitons Fractals, 166 (2023), 112990.
[8] Bellout, A., Bououden, R., Houmor, T. and Berkal, M. Nonlinear dynamics and chaos in fractional-order cardiac action potential duration mapping model with fixed memory length, Gulf J. Math., 19(2) (2025), 369–383.
[9] Bemporad, A. and Morari, M. Control of systems integrating logic, dynamics, and constraints, Automatica, 35(3) (1999), 407–427.
[10] Berkal, M. and Almatrafi, M.B. Bifurcation and stability of two-dimensional activator-inhibitor model with fractional-order derivative, Fractal Fract., 7(5) (2023), 344.
[11] Berkal, M. and Navarro, J.F. Qualitative behavior of a chemical reaction system with fractional derivatives, Rocky Mt. J. Math., 55(1) (2025), 11–24.
[12] Bischi, G.I., Gardini, L. and Kopel, M. Analysis of global bifurcations in a market share attraction model, J. Econ. Dyn. Control, 24 (2000), 855–879.
[13] Bououden, R. and Abdelouahab, M.S. On efficient chaotic optimization algorithm based on partition of data set in global research step, Nonlinear Dyn. Syst. Theory, 18 (2018), 42–52.
[14] Bououden, R. and Abdelouahab, M.S. Chaos in new 2-d discrete mapping and its application in optimisation, Nonlinear Dyn. Syst. Theory, 20 (2020), 144–152.
[15] Bououden, R. and Abdelouahab, M.S. Chaotic optimization algorithm based on the modified probability density function of Lozi map, Bol. da Soc. Parana. de Mat., 39 (2021), 9–22.
[16] Bououden, R., Abdelouahab, M.S. and Jarad, F. Non linear dynamics and chaos in a new 2D piecewise linear map and its fractional version, Electron. Res. Arch., 28 (2020), 505–525.
[17] Bououden, R., Abdelouahab, M.S., Jarad, F. and Hammouch, Z. A novel fractional piecewise linear map regular and chaotic dynamics, Int. J. General Syst., 50 (2021), 501–526.
[18] Bourafa, S., Abdelouahab, M.S. and Lozi, R. On Periodic Solutions of Fractional-Order Differential Systems with a Fixed Length of Sliding Memory, J. Innov. Appl. Math. Comput. Sci., 1(1) (2021), 64–78.
[19] Bouzeraa, S.E.I., Bououden, R. and Abdelouahab, M.S. Fractional logistic map with fixed memory length, Int. J. Gen. Syst., 52 (2023), 653–663.
[20] Chen, F., Luo, X. and Zhou, Y. Existence Results for Nonlinear Fractional Difference Equation, Adv. Differ. Equ., 2011 (2011), 1–12.
[21] Crampin, M. and Heal, B. On the chaotic behaviour of the Tent map, An Inter. J. of IMA, 13 (1994), 83–89.
[22] Dai, W., Zhou, R., Lin, Y. and Liu, Y. Lightweight cryptography for embedded systems—A survey, Sensors, 23(2) (2023).
[23] Donato, C. and Grassi, G. Bifurcation and chaos in the fractional-ordre Chen system via a time-domain approach, Int. J. Bifurcat. Chaos, 10 (2008), 1845–1863.
[24] Ebrahimzadeh, A., Jajarmi, A. and Baleanu, D. Enhancing water pollution management through a comprehensive fractional modeling frame-work and optimal control techniques, J. Nonlinear Math. Phys., 31(1) (2024), 48.
[25] Gümüş, M. and Türk, K. Dynamical behavior of a hepatitis B epidemic model and its NSFD scheme, J. Appl. Math. Comput., 70(4) (2024), 3767–3788.
[26] Gümüş, M. and Teklu, S.W. Cost-Benefit and dynamical investigation of a fractional-order corruption population dynamical system, Fractal Fract., 9(4) (2025) 207.
[27] Gümüş, M. and Türk, K. Global analysis of a monkey-pox virus model considering government interventions, Phys. Scr., 100(4) (2025), 045216.
[28] Hénon, M. A two dimensional mapping with a strange attractor, Com-mun. Math. Phys., 50 (1976), 69–77.
[29] Hilborn, R.C. Chaos and nonlinear dynamics: an introduction for scientists and engineers, Oxford Univ. Press, New York, 2011.
[30] Hu, T. Discrete chaos in fractional Henon map, Appl. Math., 5 (2014), 2243–2248.
[31] Jan, C. and Nechvatel, L. Local bifurcations and chaos in the fractional Rossler system, Int. J. Bifurcat. Chaos, 28 (2018), 1850–098.
[32] Jianping, S., He, K. and Fang, H. Chaos, Hopf bifurcation and control of a fractional-order delay financial system, Math. Comput. Simulat., 194 (2022), 348–364.
[33] Khennaoui, A.A., Ouannas, A., Bendoukha, S., Wang, X. and Pham, V.T. On chaos in the fractional-order discrete-time unified system and its control synchronization, Entropy, 20 (2018), 530–540.
[34] Li, T.Y. and Ismail, J.A. Period three implies chaos, Am. Math. Mon., 82 (1975), 985–992.
[35] Lozi, R. Un attracteur étrange du type attracteur de Hénon, J. Phys., 39 (1978), 9–10.
[36] Magin, R.L. Fractional calculus in bioengineering, Begell House Publishers, 2006.
[37] May, R. Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–467.
[38] Miller, K.S. and Ross, B. Fractional difference calculus, Proc. of the In-ternational Symposium on Univalent Functions, Koriyama, Japan, 1989, 139–152.
[39] Sarmah, H.K., Das, M.C., Baishya, T.K. and Paul, R. Chaos in Gaussian map, Int. J. Adv. Sci. Techn. Res., 6 (2016), 160–172.
[40] Sun, H., Chen, W. and Chen, Y. Variable-order fractional differential models of cardiac action potential, Commun. Nonlinear Sci. Numer., 69 (2019), 354–370.
[41] Wu, G.C. and Baleanu, D. Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287.