- Agarwal, M., Gupta, S. K., & Biswas, K. (2020). Development of Efficient CNN model for Tomato crop disease identification. Sustainable Computing: Informatics and Systems, 28, 100407. https://doi.org/10.1016/j.suscom.2020.100407
- Ahmed, F. (2018). An IoT-big data based machine learning technique for forecasting water requirement in irrigation field. In Research and Practical Issues of Enterprise Information Systems: 11th IFIP WG 8.9 Working Conference, CONFENIS 2017, Shanghai, China, October 18-20, 2017, Revised Selected Papers 11(pp. 67-77). Springer International Publishing. https://doi.org/10.1007/978-3-319-94845-4_7
- Ahmed, S., Basu, N., Nicholson, C. E., Rutter, S. R., Marshall, J. R., Perry, J. J., & Dean, J. R. (2024). Use of machine learning for monitoring the growth stages of an agricultural crop. Sustainable Food Technology, 2(1), 104-125. https://doi.org/10.1039/D3FB00101F
- Ai, Y., Sun, C., Tie, J., & Cai, X. (2020). Research on recognition model of crop diseases and insect pests based on deep learning in harsh environments. IEEE Access, 8, 171686-171693. https://doi.org/10.1109/ACCESS.2020.3025325
- Alam, M. Z., Haque, M. M., Islam, M. S., Hossain, E., Hasan, S. B., Hasan, S. B., & Hossain, M. S. (2016). Comparative study of integrated pest management and farmers practices on sustainable environment in the rice ecosystem. International Journal of Zoology, 2016. https://doi.org/10.1155/2016/7286040
- Alves, L., Silva, R. R., & Bernardino, J. (2018). System to Predict Diseases in Vineyards and Olive Groves using Data Mining and Geolocation. In ICSOFT, (pp. 713-721). https://doi.org/10.5220/0006914306790687
- Balikai, R., Venkatesh, H., & Sagar, D. (2021). Development of models to predict insect pest populations-an eco-friendly tactic for pest management. Journal of Farm Sciences, 32(1), 1-13.
- Barbedo, J. G. A. (2020). Detecting and classifying pests in crops using proximal images and machine learning: A review. Ai, 1(2), 312-328. https://doi.org/10.3390/ai1020021
- Battisti, A., & Larsson, S. (2015). Climate change and insect pest distribution range. In Climate change and insect pests (pp. 1-15). CABI Wallingford UK.
- Bebber, D. P., Ramotowski, M. A., & Gurr, S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nature climate change, 3(11), 985-988. https://doi.org/10.1038/nclimate1990
- Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), 3758. https://doi.org/10.3390/s21113758
- Bestelmeyer, B. T., Marcillo, G., McCord, S. E., Mirsky, S., Moglen, G., Neven, L. G., Peters, D., Sohoulande, C., & Wakie, T. (2020). Scaling up agricultural research with artificial intelligence. IT Professional, 22(3), 33-38. https://doi.org/10.1109/MITP.2020.2986062
- Bhatia, A., Chug, A., & Singh, A. P. (2020). Hybrid SVM-LR classifier for powdery mildew disease prediction in tomato plant. In 2020 7th International conference on signal processing and integrated networks (SPIN) (pp. 218-223). IEEE. https://doi.org/10.1109/SPIN48934.2020.9071202
- Boulent, J., Foucher, S., Théau, J., & St-Charles, P.-L. (2019). Convolutional neural networks for the automatic identification of plant diseases. Frontiers in Plant Science, 10, 941. https://doi.org/10.3389/fpls.2019.00941
- Brahimi, M., Boukhalfa, K., & Moussaoui, A. (2017). Deep learning for tomato diseases: classification and symptoms visualization. Applied Artificial Intelligence, 31(4), 299-315. https://doi.org/10.1080/08839514.2017.1315516
- Brahmi, W., Jdey, I., & Drira, F. (2024). Exploring the role of Convolutional Neural Networks (CNN) in dental radiography segmentation: A comprehensive Systematic Literature Review. Engineering Applications of Artificial Intelligence, 133, 108510. https://doi.org/10.1016/j.engappai.2024.108510
- Brasier, C. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57(5), 792-808. https://doi.org/10.1111/j.1365-3059.2008.01886.x
- Chattopadhyay, C., Agrawal, R., Kumar, A., Bhar, L., Meena, P., Meena, R., Khan, S., Chattopadhyay, A., Awasthi, R., & Singh, S. (2005a). Epidemiology and forecasting of Alternaria blight of oilseed brassica in India-a case study/Epidemiologie und Prognose von Alternaria brassicae an Brassica-Ölfrüchten in Indien-Eine Fallstudie. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 112(4) 351-365. http://www.jstor.org/stable/43215636
- Chattopadhyay, C., Agrawal, R., Kumar, A., Singh, Y., Roy, S., Khan, S., Bhar, L., Chakravarthy, N., Srivastava, A., & Patel, B. (2005b). Forecasting of Lipaphis erysimi on oilseed Brassicas in India—a case study. Crop Protection, 24(12), 1042-1053. https://doi.org/10.1016/j.cropro.2005.02.010
- Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61-69. https://doi.org/10.1016/j.compag.2018.05.012
- Cintra, M. E., Meira, C. A., Monard, M. C., Camargo, H. A., & Rodrigues, L. H. (2011). The use of fuzzy decision trees for coffee rust warning in Brazilian crops. 11th International conference on intelligent systems design and applications, Cordoba, Spain, pp. 1347-1352. https://doi.org/10.1109/ISDA.2011.6121847
- Collier, R. H. (2017). Pest and disease prediction models. In: Thomas, Brian and Murray, Brian G. and Murphy, Denis J., (eds.) Encyclopedia of Applied Plant Sciences: second edition. Waltham, MA: Academic Press, pp. 120-123. https://doi.org/10.1016/B978-0-12-394807-6.00058-7
- Corrales, D. C., Corrales, J. C., & Figueroa-Casas, A. (2015). Towards Detecting Crop Diseases and Pest by Supervised Learning. Ingeniería y Universidad, 19(13), 207-228. https://doi.org/11144/Javeriana.iyu19-1.tdcd
- David, D. (2023). Weather Based Prediction Models for Disease and Pest Using Machine Learning: A Review. Asian Journal of Agricultural Extension, Economics & Sociology, 41(11), 334-345. https://doi.org/10.9734/ajaees/2023/v41i112290
- de Souza, W. D., Remboski, T. B., de Aguiar, M. S., & Júnior, P. R. F. (2017). A model for pest infestation prediction in crops based on local meteorological monitoring stations. Sixteenth Mexican International Conference on Artificial Intelligence (MICAI), Ensenada, Mexico, pp. 39-45. https://doi.org/10.1109/MICAI-2017.2017.00015
- Desai, A., Chattopadhyay, C., Agrawal, R., Kumar, A., Meena, R., Meena, P., Sharma, K., Rao, M. S., Prasad, Y., & Ramakrishna, Y. (2004). Brassica juncea powdery mildew epidemiology and weatherbased forecasting models for India—a case study/Die Krankheitsentwicklung des Echten Mehltaus (Erysiphe cruciferarum) auf Brassica juncea und wetterbasierende Modelle zur Vorausschätzung seiner epidemiologischen Entwicklung in Indien—Eine Fallstudie. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 111(5), 429-438. https://www.jstor.org/stable/43216277
- Dhawan, A. (2016). Integrated pest management in cotton. Integrated Pest Management in the Tropics, 499-575.
- Domingues, T., Brandão, T., & Ferreira, J. C. (2022). Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey. Agriculture, 12(9), 1350. https://doi.org/10.3390/agriculture12091350
- Du, J. (2018). Understanding of object detection based on CNN family and YOLO. Journal of Physics: Conference Series, 2nd International Conference on Machine Vision and Information Technology (CMVIT 2018), Hong Kong, 1004, 012029. https://doi.org/10.1088/1742-6596/1004/1/012029
- Early, R., Bradley, B. A., Dukes, J. S., Lawler, J. J., Olden, J. D., Blumenthal, D. M., Gonzalez, P., Grosholz, E. D., Ibañez, I., & Miller, L. P. (2016). Global threats from invasive alien species in the twenty-first century and national response capacities. Nature communications, 7(1), 12485. https://doi.org/10.1038/ncomms12485
- Emebo, O., Fori, B., Victor, G., & Zannu, T. (2019). Development of tomato septoria leaf spot and tomato mosaic diseases detection device using raspberry Pi and deep convolutional neural networks. Journal of Physics: Conference Series, 1299, https://doi.org/1088/1742-6596/1299/1/012118
- Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 17(9), 2022. https://doi.org/10.3390/s17092022
- Gauriau, O., Galárraga, L., Brun, F., Termier, A., Davadan, L., & Joudelat, F. (2024). Comparing machine-learning models of different levels of complexity for crop protection: A look into the complexity-accuracy tradeoff. Smart Agricultural Technology, 7, 100380. https://doi.org/10.1016/j.atech.2023.100380
- Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 580-587.
- Gonzalez-Huitron, V., León-Borges, J. A., Rodriguez-Mata, A., Amabilis-Sosa, L. E., Ramírez-Pereda, B., & Rodriguez, H. (2021). Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4. Computers and Electronics in Agriculture, 181, 105951. https://doi.org/10.1016/j.compag.2020.105951
- Gurle, A. S., Barathe, S. N., Gangule, R. S., Jagtap, S. D., & Patankar, T. (2019). Survey paper on tomato crop disease detection and pest management. International Journal of Applied Evolutionary Computation (IJAEC), 10(3), 10-18. https://doi.org/10.4018/IJAEC.2019070102
- Halstead, M., McCool, C., Denman, S., Perez, T., & Fookes, C. (2018). Fruit quantity and ripeness estimation using a robotic vision system. IEEE robotics and automation LETTERS, 3(4), 2995-3002. https://doi.org/10.1109/LRA.2018.2849514
- Heeb, L., Jenner, E., & Cock, M. J. (2019). Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. Journal of Pest Science, 92(3), 951-969. https://doi.org/10.1007/s10340-019-01083-y
- Hernandez-Espinoza, L. H., & Barrios-Masias, F. H. (2020). Physiological and anatomical changes in tomato roots in response to low water stress. Scientia Horticulturae, 265, 109208. https://doi.org/10.1016/j.scienta.2020.109208
- Hu, W., Hong, W., Wang, H., Liu, M., & Liu, S. (2023). A Study on Tomato Disease and Pest Detection Method. Applied Sciences, 13(18), 10063. https://doi.org/10.3390/app131810063
- Hughes, D., & Salathé, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv,1511.08060. https://doi.org/10.48550/arXiv.1511.08060
- Hunt, E. R., Jr. Daughtry, C. S. T., Walthall, C. L., McMurtrey, J. E., & Dulaney, W. P. (2004). Agricultural remote sensing using radio-controlled model aircraft. Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology. ASA Special Publication no. 66. https://doi.org/10.2134/asaspecpub66.c15
- Ifft, J., Kuhns, R., & Patrick, K. (2018). Can machine learning improve prediction–an application with farm survey data. International Food and Agribusiness Management Review, 21(8), 1083-1098. https://doi.org/10.22434/IFAMR2017.0098
- Ilic, M., Ilic, S., Jovic, S., & Panic, S. (2018). Early cherry fruit pathogen disease detection based on data mining prediction. Computers and electronics in agriculture, 150, 418-425. https://doi.org/10.1016/j.compag.2018.05.008
- Isard, S. A., Russo, J. M., Magarey, R. D., Golod, J., & VanKirk, J. R. (2015). Integrated pest information platform for extension and education (iPiPE): progress through sharing. Journal of Integrated Pest Management, 6(1), 15. https://doi.org/10.1093/jipm/pmv013
- Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15-30. https://doi.org/10.1016/j.aac.2022.10.001
- Jawade, P., Chaugule, D., Patil, D., & Shinde, H. (2020). Disease prediction of mango crop using machine learning and IoT. Advances in Decision Sciences, Image Processing, Security and Computer Vision: International Conference on Emerging Trends in Engineering (ICETE), 1, Springer, Cham. https://doi.org/10.1007/978-3-030-24322-7_33
- Jia, S., Gao, H., & Hang, X. (2020). Tomato Pests and Diseases Classification Model Based on Optimized Convolutional Neural Network. Journal of Physics: Conference Series, 1437. https://doi.org/10.1088/1742-6596/1437/1/012052
- Junjing, L., Leigang, S., & Wenjiang, H. (2019). Research Progress in Monitoring and Forecasting of Crop Diseases and Pests by Remote Sensing. Remote Sensing Technology and Application, 34(1), 21-32. https://doi.org/10.11873/j.issn.1004-0323.2019.1.0021
- Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). A review of the use of convolutional neural networks in agriculture. The Journal of Agricultural Science, 156(3), 312-322. https://doi.org/10.1017/S0021859618000436
- Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24-49. https://doi.org/10.1016/j.isprsjprs.2020.12.010
- Kaur, K., & Kaur, M. (2018). Prediction of plant disease from weather forecasting using data mining. International Journal on Future Revolution in Computer Science & Communication Engineering, 4, 685-688. http://www.ijfrcsce.org/index.php/ijfrcsce/article/view/1591.
- Kenis, M., Rabitsch, W., Auger-Rozenberg, M. A., & Roques, A. (2007). How can alien species inventories and interception data help us prevent insect invasions? Bulletin of Entomological Research, 97(5), 489-502. https://doi.org/10.1017/S0007485307005184
- Kim, J. A., Sung, J. Y., & Park, S. H. (2020). Comparison of Faster-RCNN, YOLO, and SSD for real-time vehicle type recognition. 2020 IEEE international conference on consumer electronics-Asia (ICCE-Asia). https://doi.org/10.1109/ICCE-Asia49877.2020.9277040
- Lee, Y. S., & Liu, W. Y. (2014). Forecasting value of agricultural imports using a novel two-stage hybrid model. Computers and Electronics in Agriculture, 104, 71-83. https://doi.org/10.1016/j.compag.2014.03.011
- Li, C., Liu, J., Bai, W., Wu, S., Zheng, P., Zhang, J., Pan, Z., & Zhai, J. (2022). Superior energy storage performance in (Bi5Na0.5) TiO3-based lead-free relaxor ferroelectrics for dielectric capacitor application via multiscale optimization design. Journal of Materials Chemistry A, 10(17), 9535-9546. https://doi.org/10.1039/D2TA00380E
- Liebhold, A. M., Brockerhoff, E. G., Garrett, L. J., Parke, J. L., & Britton, K. O. (2012). Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Frontiers in Ecology and the Environment, 10(3), 135-143. https://doi.org/10.1890/110198
- Lima, M. C. F., de Almeida Leandro, M. E. D., Valero, C., Coronel, L. C. P., & Bazzo, C. O. G. (2020). Automatic detection and monitoring of insect pests—A review. Agriculture, 10(5), 161. https://doi.org/10.3390/agriculture10050161
- Lin, T. L., Chang, H. Y., & Chen, K. H. (2020). The pest and disease identification in the growth of sweet peppers using faster R-CNN and mask R-CNN. Journal of Internet Technology, 21(2), 605-614. https://doi.org/3966/160792642020032102027
- López-Morales, V., López-Ortega, O., Ramos-Fernandez, J., & Munoz, L. (2008). JAPIEST: An integral intelligent system for the diagnosis and control of tomatoes diseases and pests in hydroponic greenhouses. Expert Systems with Applications, 35(4), 1506-1512. https://doi.org/10.1016/j.eswa.2007.08.098
- Machekano, H., Mutamiswa, R., Mvumi, B. M., Nyabako, T., Shaw, S., & Nyamukondiwa, C. (2019). Disentangling factors limiting diamondback moth, Plutella xylostella (L.), spatio‐temporal population abundance: A tool for pest forecasting. Journal of Applied Entomology, 143(6), 670-682. https://doi.org/10.1111/jen.12636
- Maduranga, M., & Abeysekera, R. (2020). Machine learning applications in IoT based agriculture and smart farming: A review. International Journal of Engineering Applied Sciences and Technology, 4(12), 24-27. https://doi.org/10.33564/IJEAST.2020.v04i12.004
- Mahapatra, S. K., & Dash, A. (2020). ARIMA Model for Forecasting of Black Gram Productivity in Odisha. Asiatic Society for Social Science Research (ASSSR), 131-136. https://www.asssr.in/index.php/home/article/view/105
- Malicdem, A. R., & Fernandez, P. L. (2015). Rice blast disease forecasting for northern Philippines. WSEAS Transactions on Information Science and Applications, 12, 120-129. https://wseas.com/journals/isa/2015/a225709-430.pdf
- Mehta, S., Agrawal, R., & Kumar, A. (2005). Forewarning crop pests and diseases: IASRI methodologies. IASRI Publication, New Delhi.
- Mehta, S., Agrawal, R., Shukla, R., & Sharma, S. (2001). A Statistical model for prediction of mangofruitfly outbreak. National Seminar on Agrometeorological Research for Sustainable Agricultural Production.
- Mrisho, L. M., Mbilinyi, N. A., Ndalahwa, M., Ramcharan, A. M., Kehs, A. K., McCloskey, P. C., Murithi, H., Hughes, D. P., & Legg, J. P. (2020). Accuracy of a smartphone-based object detection model, PlantVillage Nuru, in identifying the foliar symptoms of the viral diseases of cassava–CMD and CBSD. Frontiers in Plant Science, 11, 590889. https://doi.org/10.3389/fpls.2020.590889
- Musolin, D. L. (2007). Insects in a warmer world: ecological, physiological and life‐history responses of true bugs (Heteroptera) to climate change. Global Change Biology, 13(8), 1565-1585. https://doi.org/10.1111/j.1365-2486.2007.01395.x
- Nagar, H., & Sharma, R. S. (2020). A comprehensive survey on pest detection techniques using image processing. 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 43-48. https://doi.org/1109/ICICCS48265.2020.9120889
- Ngugi, L. C., Abelwahab, M., & Abo-Zahhad, M. (2021). Recent advances in image processing techniques for automated leaf pest and disease recognition–A review. Information Processing in Agriculture, 8(1), 27-51. https://doi.org/10.1016/j.inpa.2020.04.004
- Nihar, F., Khanom, N. N., Hassan, S. S., & Das, A. K. (2021). Plant disease detection through the implementation of diversified and modified neural network algorithms. Journal of Engineering Advancements, 2(01), 48-57. https://doi.org/10.38032/jea.2021.01.007
- Pak, M., & Kim, S. (2017). A review of deep learning in image recognition. 4th international conference on computer applications and information processing technology (CAIPT), Kuta Bali, Indonesia, pp. 1-3. https://doi.org/10.1109/CAIPT.2017.8320684
- Pandit, P., Krishnamurthy, K., & Bakshi, B. (2022). Prediction of crop yield and pest-disease infestation. In AI, Edge and IoT-based Smart Agriculture, pp. 375-393. https://doi.org/10.1016/B978-0-12-823694-9.00021-9
- Patel, D., & Bhatt, N. (2021). Improved accuracy of pest detection using augmentation approach with Faster R-CNN. IOP Conference Series: Materials Science and Engineering, 1042, 012020. https://doi.org/10.1088/1757-899X/1042/1/012020
- Pawara, S., Nawale, D., Patil, K., & Mahajan, R. (2018). Early detection of pomegranate disease using machine learning and internet of things. 3rd International Conference for Convergence in Technology (I2CT). Pune, India, pp. 1-4. https://doi.org/10.1109/I2CT.2018.8529583
- Paymode, A. S., Magar, S. P., & Malode, V. B. (2021). Tomato leaf disease detection and classification using convolution neural network. International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, pp. 564-570. https://doi.org/1109/ESCI50559.2021.9397001
- Petrellis, N. (2017). A smart phone image processing application for plant disease diagnosis. 6th international conference on modern circuits and systems technologies (MOCAST), Thessaloniki, Greece, pp. 1-4. https://doi.org/10.1109/MOCAST.2017.7937683
- Prajwala, T. M., Pranathi, A., SaiAshritha, K., Chittaragi, N. B., & Koolagudi, S. G. (2018). Tomato leaf disease detection using convolutional neural networks. Eleventh international conference on contemporary computing (IC3), Noida, India, pp. 1-5. https://doi.org/10.1109/IC3.2018.8530532
- Prashar, N., & Sangal, A. (2022). Plant disease detection using deep learning (convolutional neural networks). Second International Conference on Image Processing and Capsule Networks: ICIPCN, 2021, 2. Lecture Notes in Networks and Systems, vol 300. Springer, Cham. https://doi.org/10.1007/978-3-030-84760-9_54
- Priya, R., & Ramesh, D. (2020). ML based sustainable precision agriculture: A future generation perspective. Sustainable Computing: Informatics and Systems, 28, 100439. https://doi.org/10.1016/j.suscom.2020.100439
- Qi, F., Wang, Y., Tang, Z., & Chen, S. (2023). Real-time and effective detection of agricultural pest using an improved YOLOv5 network. Journal of Real-Time Image Processing, 20(2), 33. https://doi.org/10.1007/s11554-023-01264-0
- Qiang, Z., Shihao, S., Yulin, W., Mengying, L., Hongkai, L., & Qiang, N. (2020). Research on load distribution control technology for parallel operation of power source with different rated capacity. 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, pp. 1-5. https://doi.org/10.1109/APPEEC48164.2020.9220582
- Rajni, J., Sonajharia, M., & Ramasubramanian, V. (2009). Machine learning for forewarning crop diseases. Journal of the Indian Society of Agricultural Statistics, 63(1), 97-107.
- Rawat, N., Karnatak, A. K., & Srivastava, R. M. (2020). Population dynamics of okra shoot and fruit borer (Earias vittella) of okra in agro-climatic condition of Pantnagar. International Journal of Chemical Studies, 8(1), 2131-2134. https://doi.org/10.22271/chemi.2020.v8.i1af.8584
- Rehman, T. U., Mahmud, M. S., Chang, Y. K., Jin, J., & Shin, J. (2019). Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics in Agriculture, 156, 585-605. https://doi.org/10.1016/j.compag.2018.12.006
- Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28. https://doi.org/10.1109/TPAMI.2016.2577031
- Roques, A., Auger-Rozenberg, M.-A., Blackburn, T. M., Garnas, J., Pyšek, P., Rabitsch, W., Richardson, D. M., Wingfield, M. J., Liebhold, A. M., & Duncan, R. P. (2016). Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biological Invasions, 18, 907-920. https://doi.org/10.1007/s10530-016-1080-y
- Saeed, H., Ehetisham-ul-Haq, M., Atiq, M., Kamran, M., Idrees, M., Ali, S., Burhan, M., Mohsan, M., Iqbal, M., & Nazir, S. (2018). Prediction of cotton leaf curl virus disease and its management through resistant germplasm and bio-products. Archives of Phytopathology and Plant Protection, 51(3-4), 170-186. https://doi.org/10.1080/03235408.2018.1443602
- Santini, A., Ghelardini, L., De Pace, C., Desprez‐Loustau, M.-L., Capretti, P., Chandelier, A., Cech, T., Chira, D., Diamandis, S., & Gaitniekis, T. (2013). Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist, 197(1), 238-250. https://doi.org/10.1111/j.1469-8137.2012.04364.x
- Santini, A., Liebhold, A., Migliorini, D., & Woodward, S. (2018). Tracing the role of human civilization in the globalization of plant pathogens. The ISME journal, 12(3), 647-652. https://doi.org/10.1038/s41396-017-0013-9
- Sarukhán, J., Whyte, A., Hassan, R., Scholes, R., Ash, N., Carpenter, S., Pingali, P., Bennett, E., Zurek, M., & Chopra, K. (2005). Millenium ecosystem assessment: Ecosystems and human well-being. http://www.millenniumassessment.org/en/products.aspx
- Setiyowati, S., Nugraha, R. F., & Mukhaiyar, U. (2015). Non-stationary time series modeling on caterpillars pest of palm oil for early warning system. AIP Conference Proceedings, 1692, 020011. https://doi.org/10.1063/1.4936439
- Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1-48. https://doi.org/10.1186/s40537-019-0197-0
- Siddiqua, A., Kabir, M. A., Ferdous, T., Ali, I. B., & Weston, L. A. (2022). Evaluating plant disease detection mobile applications: Quality and limitations. Agronomy, 12(8), 1869. https://doi.org/10.3390/agronomy12081869
- Singh, B., Singh, R., Tiwari, P., & Kumar, N. (2019). Climate based factor analysis and epidemiology prediction for potato late blight using machine learning approaches. Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE), Dehradun, India, pp. 113-122. https://doi.org/10.1109/WITCONECE48374.2019.9092914
- Singh, J., Das, D., Vennila, S., & Rawat, K. (2018). Weather based forewarning of pest and disease: An important adaptation strategies under the impact of climate change scenario: A brief review. International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR), 1, 6-21. https://doi.org/10.31426/ijamsr.2018.1.10.1012
- Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2016/3289801
- Srivastava, R., Gupta, C., Gupta, H., Singh, N., & Kumar, N. (2015). Mathematical Modelling of Crop Yield Forecasting and Forewarning of Pests/Diseases. In International Conference of Advance Research and Innovation,(ICARI), pp 417-19.
- Sudduth, K. A., Woodward-Greene, M. J., Penning, B. W., Locke, M. A., Rivers, A. R., & Veum, K. S. (2020). AI down on the farm. IT Professional, 22(3), 22-26. https://doi.org/10.1109/MITP.2020.2986104
- Sykes, J. R., Denby, K. J., & Franks, D. W. (2023). Computer vision for plant pathology: A review with examples from cocoa agriculture. Applications in Plant Sciences, e11559. https://doi.org/10.1002/aps3.11559
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Boston, MA, USA, pp. 1-9. https://doi.org/10.1109/CVPR.2015.7298594
- Trebicki, P., & Finlay, K. (2019). Pests and diseases under climate change; its threat to food security. Food Security and Climate Change, 229-249. https://doi.org/10.1002/9781119180661.ch11
- Veeragandham, S., & Santhi, H. (2020). A review on the role of machine learning in agriculture. Scalable Computing: Practice and Experience, 21(4), 583-589. https://doi.org/10.12694/scpe.v21i4.1699
- Verma, S., & Zhang, Z. L. (2018). Graph capsule convolutional neural networks. arXiv preprint arXiv:1805.08090. https://doi.org/10.48550/arXiv.1805.08090
- Vishwa Dhar, V. D., Singh, S., Kumar, M., Agrawal, R., & Amrender Kumar, A. K. (2007). Prediction of pod-borer (Helicoverpa armigera) infestation in short-duration pigeonpea (Cajanus cajan) in central Uttar Pradesh. Indian Journal of Agricultural Sciences, 77(10), 701-704.
- Wang, X., Yan, Y., & Li, Z. (2022). Machine Learning for Detection and Prediction of Crop Diseases and Pests: A Comprehensive Survey. Agriculture, 12(9), 1350. https://doi.org/10.3390/agriculture12091350
- Wiesner-Hanks, T., Stewart, E. L., Kaczmar, N., DeChant, C., Wu, H., Nelson, R. J., Lipson, H., & Gore, M. A. (2018). Image set for deep learning: field images of maize annotated with disease symptoms. BMC Research Notes, 11(1), 1-3. https://doi.org/10.1186/s13104-018-3548-6
- Yang, Z., Xu, C., Wang, M., Zhao, H., Zheng, Y., Huang, H., Vuguziga, F., & Umutoni, M. (2019). Enhancing the thermotolerance of tomato seedlings by heat shock treatment. Photosynthetica, 57(4). https://doi.org/10.32615/ps.2019.127
- Zhao, Y., Liu, L., Xie, C., Wang, R., Wang, F., Bu, Y., & Zhang, S. (2020). An effective automatic system deployed in agricultural Internet of Things using Multi-Context Fusion Network towards crop disease recognition in the wild. Applied Soft Computing, 89, 106128. https://doi.org/10.1016/j.asoc.2020.106128
- Zhaoxin, G., Han, L., Zhijiang, Z., & Libo, P. (2022). Design a robot system for tomato picking based on YOLO v5. IFAC-PapersOnLine, 55(3), 166-171. https://doi.org/10.1016/j.ifacol.2022.05.029
- Zheng, Y. Y., Kong, J. L., Jin, X. B., Wang, X. Y., Su, T. L., & Zuo, M. (2019). CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Sensors, 19(5), 1058. https://doi.org/10.3390/s19051058
|