- Altıntaş, O., Aksoy, M., Ünal, E., Akgöl, O., & Karaaslan, M. (2019). Artificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricant. Measurement, 145, 678-686. https://doi.org/10.1016/j.measurement.2019.05.087
- Ashtiani, S.-H. M., Rohani, A., & Aghkhani, M. H. (2020). Soft computing-based method for estimation of almond kernel mass from its shell features. Scientia Horticulturae, 262, 109071. https://doi.org/10.1016/j.scienta.2019.109071
- Bhattacharya, A., & Dan, P. K. (2014). Recent trend in condition monitoring for equipment fault diagnosis. International Journal of System Assurance Engineering and Management, 5, 230-244. https://doi.org/10.1007/s13198-013-0151-z
- Cardoso, D., & Ferreira, L. (2020). Application of predictive maintenance concepts using artificial intelligence tools. Applied Sciences, 11(1), 18. https://doi.org/10.3390/app11010018
- Chamkalani, A., Mohammadi, A. H., Eslamimanesh, A., Gharagheizi, F., & Richon, D. (2012). Diagnosis of asphaltene stability in crude oil through “two parameters” SVM model. Chemical Engineering Science, 81, 202-208. https://doi.org/10.1016/j.ces.2012.06.060
- Chaudhry, A. A., Buchwald, J., & Nagel, T. (2021). Local and global spatio-temporal sensitivity analysis of thermal consolidation around a point heat source. International Journal of Rock Mechanics and Mining Sciences, 139, 104662. https://doi.org/10.1016/j.ijrmms.2021.104662
- Chun, S.-M. (2006). Study on Mutual Relation between the Level of Deterioration Influenced by the Changes of Chemical and Physical Properties and the Change of Dielectric Constant for Engine Oil-Diesel Engine Oil. Tribology and Lubricants, 22(5), 290-300. https://doi.org/10.9725/kstle.2006.22.5.290
- Duchowski, J. K., & Mannebach, H. (2006). A novel approach to predictive maintenance: a portable, multi-component MEMS sensor for on-line monitoring of fluid condition in hydraulic and lubricating systems. Tribology Transactions, 49(4), 545-553. https://doi.org/10.1080/10402000600885183
- Eslamimanesh, A., Gharagheizi, F., Illbeigi, M., Mohammadi, A. H., Fazlali, A., & Richon, D. (2012). Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+ water soluble organic promoters using Support Vector Machine algorithm. Fluid Phase Equilibria, 316, 34-45. https://doi.org/10.1016/j.fluid.2011.11.029
- Fayazi, A., Arabloo, M., Shokrollahi, A., Zargari, M. H., & Ghazanfari, M. H. (2014). State-of-the-art least square support vector machine application for accurate determination of natural gas viscosity. Industrial & Engineering Chemistry Research, 53(2), 945-958. https://doi.org/10.1021/ie402829p
- Gerhardt, R. A. (2022). What is Impedance and Dielectric Spectroscopy? IEEE Instrumentation & Measurement Magazine, 25(4), 14-20. https://doi.org/10.1109/MIM.2022.9777776
- Glagolev, M. (2012). Sensitivity analysis of the model. Environmental Dynamics and Global Climate Change, 3(3), 31-53. https://doi.org/10.17816/edgcc3331-53
- Gomółka, L., & Augustynowicz, A. (2019). Evaluation of applicability of dielectric constant in monitoring aging processes in engine oils. Eksploatacja i Niezawodność, 21(2), 177-185. https://doi.org/10.17531/ein.2019.2.1
- Guan, L., Feng, X., Xiong, G., & Xie, J. (2011). Application of dielectric spectroscopy for engine lubricating oil degradation monitoring. Sensors and Actuators A: Physical, 168(1), 22-29. https://doi.org/10.1016/j.sna.2011.03.033
- Heidari, P., Rezaei, M., & Rohani, A. (2020). Soft computing-based approach on prediction promising pistachio seedling base on leaf characteristics. Scientia Horticulturae, 274, 109647. https://doi.org/10.1016/j.scienta.2020.109647
- Heredia-Cancino, J., Ramezani, M., & Álvarez-Ramos, M. (2018). Effect of degradation on tribological performance of engine lubricants at elevated temperatures. Tribology International, 124, 230-237. https://doi.org/10.1016/j.triboint.2018.04.015
- Hong, S.-H., & Jeon, H.-G. (2022). Monitoring the conditions of hydraulic oil with integrated oil sensors in construction equipment. Lubricants, 10(11), 278. https://doi.org/10.3390/lubricants10110278
- Iooss, B., & Lemaître, P. (2015). A review on global sensitivity analysis methods. Uncertainty management in simulation-optimization of complex systems: algorithms and applications, 101-122. https://doi.org/10.1007/978-1-4899-7547-8_5
- Kim, H.-J., Seo, K.-J., Kang, K. H., & Kim, D.-E. (2016). Nano-lubrication: A review. International Journal of Precision Engineering and Manufacturing, 17, 829-841. https://doi.org/10.1007/s12541-016-0102-0
- Król, A., Gocman, K., & Giemza, B. (2015). Neural networks as a tool to characterise oil state after porous bearings prolonged tests. Materials Science, 21(3), 466-472. https://doi.org/10.5755/j01.ms.21.3.7506
- Lazakis, I., Raptodimos, Y., & Varelas, T. (2018). Predicting ship machinery system condition through analytical reliability tools and artificial neural networks. Ocean Engineering, 152, 404-415. https://doi.org/10.1016/j.oceaneng.2017.11.017
- Li, L., Chang, W., Zhou, S., & Xiao, Y. (2017). An identification and prediction model of wear-out fault based on oil monitoring data using PSO-SVM method. Paper presented at the 2017 Annual Reliability and Maintainability Symposium (RAMS). https://doi.org/10.1109/RAM.2017.7889670
- Li, Z., Fei, F., & Zhang, G. (2022). Edge-to-Cloud IIoT for Condition Monitoring in Manufacturing Systems with Ubiquitous Smart Sensors. Sensors, 22(15), 5901. https://doi.org/10.3390/s22155901
- Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J. (2016). Random synaptic feedback weights support error backpropagation for deep learning. Nature communications, 7(1), 13276. https://doi.org/10.1038/ncomms13276
- Macián, V., Tormos, B., Olmeda, P., & Montoro, L. (2003). Analytical approach to wear rate determination for internal combustion engine condition monitoring based on oil analysis. Tribology International, 36(10), 771-776. https://doi.org/10.1016/S0301-679X(03)00060-4
- Mondelin, A., Claudin, C., Rech, J., & Dumont, F. (2011). Effects of lubrication mode on friction and heat partition coefficients at the tool–work material interface in machining. Tribology Transactions, 54(2), 247-255. https://doi.org/10.1080/10402004.2010.538489
- Mosher, P. (2007). Predicting failure–condition monitoring in action. World Pumps, 2007(484), 24-28. https://doi.org/10.1016/S0262-1762(06)71208-1
- Mumby, S. J. (1989). An overview of laminate materials with enhanced dielectric properties. Journal of Electronic Materials, 18(2), 241-250. https://doi.org/10.1007/BF02657415
- Newell, G. E. (1999). Oil analysis cost‐effective machine condition monitoring technique. Industrial Lubrication and tribology, 51(3), 119-124. https://doi.org/10.1108/00368799910268066
- Nüchter, M., Ondruschka, B., Bonrath, W., & Gum, A. (2004). Microwave assisted synthesis–a critical technology overview. Green Chemistry, 6(3), 128-141. https://doi.org/10.1039/B310502D
- Pourramezan, E., Omidvar, M., Motavalizadehkakhky, A., Zhiani, R., & Darzi, H. H. (2024). Enhanced adsorptive removal of methylene blue using ternary nanometal oxides in an aqueous solution. Biomass Conversion and Biorefinery, 1-13. https://doi.org/10.1007/s13399-023-05225-2
- Pourramezan, M.-R., & Rohani, A. (2024). Improved Monitoring and Classification of Engine Oil Condition through Two Machine Learning Techniques. SAE International Journal of Fuels and Lubricants, 18(04-18-01-0005). https://doi.org/10.4271/04-18-01-0005
- Pourramezan, M.-R., Rohani, A., & Abbaspour-Fard, M. H. (2023a). Comparative Analysis of Soft Computing Models for Predicting Viscosity in Diesel Engine Lubricants: An Alternative Approach to Condition Monitoring. ACS omega. https://doi.org/10.1021/acsomega.3c07780
- Pourramezan, M.-R., Rohani, A., & Abbaspour-Fard, M. H. (2023b). Unlocking the Potential of Soft Computing for Predicting Lubricant Elemental Spectroscopy. Lubricants, 11(9), 382. https://doi.org/10.3390/lubricants11090382
- Pourramezan, M.-R., Rohani, A., & Abbaspour-Fard, M. H. (2024). Machine Learning-Based Predictions of Metal and Non-Metal Elements in Engine Oil Using Electrical Properties. Lubricants, 12(12), 411. https://doi.org/10.3390/lubricants12120411
- Pourramezan, M.-R., Rohani, A., & Abbaspour-Fard, M. H. (2025). Comprehensive Review of Dielectric, Impedance, and Soft Computing Techniques for Lubricant Condition Monitoring and Predictive Maintenance in Diesel Engines. Lubricants, 13(8), 328. https://doi.org/10.3390/lubricants13080328
- Pourramezan, M.-R., Rohani, A., Keramat Siavash, N., & Zarein, M. (2022). Evaluation of lubricant condition and engine health based on soft computing methods. Neural Computing and Applications, 1-13. https://doi.org/10.1007/s00521-021-06688-y
- Raadnui, S., & Kleesuwan, S. (2005). Low-cost condition monitoring sensor for used oil analysis. Wear, 259(7-12), 1502-1506. https://doi.org/10.1016/j.wear.2004.11.009
- Rahimi, M., Pourramezan, M.-R., & Rohani, A. (2022). Modeling and classifying the in-operando effects of wear and metal contaminations of lubricating oil on diesel engine: A machine learning approach. Expert Systems with Applications, 203, 117494. https://doi.org/10.1016/j.eswa.2022.117494
- Rezaei, M., Rohani, A., Heidari, P., & Lawson, S. (2021). Using soft computing and leaf dimensions to determine sex in immature Pistacia vera genotypes. Measurement, 174, 108988. https://doi.org/10.1016/j.measurement.2021.108988
- Rohani, A., Abbaspour-Fard, M. H., & Abdolahpour, S. (2011). Prediction of tractor repair and maintenance costs using Artificial Neural Network. Expert Systems with Applications, 38(7), 8999-9007. https://doi.org/10.1016/j.eswa.2011.01.118
- Sangha, M. S., Gomm, J. B., & Yu, D. (2008). Neural network fault classification of transient data in an automotive engine air path. International Journal of Modelling, Identification and Control, 3(2), 148-155. https://doi.org/10.1504/IJMIC.2008.019352
- Sapotta, B., Schwotzer, M., Wöll, C., & Franzreb, M. (2022). On the Integration of Dielectrometry into Electrochemical Impedance Spectroscopy to Obtain Characteristic Properties of a Dielectric Thin Film. Electroanalysis, 34(3), 512-522. https://doi.org/10.1002/elan.202100484
- Shi, Y., Song, X., & Song, G. (2021). Productivity prediction of a multilateral-well geothermal system based on a long short-term memory and multi-layer perceptron combinational neural network. Applied Energy, 282, 116046. https://doi.org/10.1016/j.apenergy.2020.116046
- Siavash, N. K., Ghobadian, B., Najafi, G., Rohani, A., Tavakoli, T., Mahmoodi, E., & Mamat, R. (2021). Prediction of power generation and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression. Environmental Research, 196, 110434. https://doi.org/10.1016/j.envres.2020.110434
- Soltanali, H., Rohani, A., Abbaspour-Fard, M. H., & Farinha, J. T. (2021). A comparative study of statistical and soft computing techniques for reliability prediction of automotive manufacturing. Applied Soft Computing, 98, 106738. https://doi.org/10.1016/j.asoc.2020.106738
- Woodley, B. (1978). Failure prediction by condition monitoring (part 1). International Journal of Materials in Engineering Applications, 1(1), 19-26. https://doi.org/10.1016/0141-5530(78)90004-3
- You, M., Liu, F., & Meng, G. (2011). Benefits from condition monitoring techniques: a case study on maintenance scheduling of ball grid array solder joints. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 225(3), 205-215. https://doi.org/10.1177/2041300910393426
- Yu, S., Zhao, D., Chen, W., & Hou, H. (2016). Oil-immersed power transformer internal fault diagnosis research based on probabilistic neural network. Procedia Computer Science, 83, 1327-1331. https://doi.org/10.1016/j.procs.2016.04.276
- Zarein, M., Khoshtaghaza, M. H., & Ameri Mahabadi, H. (2019). Dielectric Properties of Castor-based Biodiesel Using Microwave. Fuel and Combustion, 12(1), 1-12. https://doi.org/10.22034/jfnc.2019.87991
- Zeng, Y., Zhang, H., Zhang, H., & Hu, Z. (2010). Effective permittivity calculation of composites with interpenetrating phases. Journal of Electronic Materials, 39, 1351-1357. https://doi.org/10.1007/s11664-010-1229-x
- Zhu, B., Wang, X., Luo, L., Zhang, N., & Liu, X. (2022). Influence of lubricant supply on thermal and efficient performances of a gear reducer for electric vehicles. Journal of Tribology, 144(1), 011202. https://doi.org/10.1115/1.4052681
- Zhu, X., Zhong, C., & Zhe, J. (2017). Lubricating oil conditioning sensors for online machine health monitoring–A review. Tribology International, 109, 473-484. https://doi.org/10.1016/j.triboint.2017.01.015
- Zzeyani, S., Mikou, M., & Naja, J. (2018). Physicochemical Characterization of the Synthetic Lubricating Oils Degradation under the Effect of Vehicle Engine Operation. Eurasian Journal of Analytical Chemistry, 13(4). https://doi.org/10.29333/ejac/90761
|