[1] Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M. and Gandomi, A. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng., 376 (2021) 113609.
[2] Akashah, F. A review of optimization techniques application for building performance analysis. Civ. Eng. J., 8(4) (2022) 823–842.
[3] Bansal, J., Joshi, S. and Sharma, H. Modified global best artificial bee colony for constrained optimization problems. Comput. Electr. Eng., 67 (2018) 365–382.
[4] Bertsimas, D. and Tsitsiklis, J. Simulated annealing. Stat. Sci., 8 (1) (1993) 10–15.
[5] Brajevic, I. Crossover-based artificial bee colony algorithm for con-strained optimization problems. Neural Comput. Appl., 26 (6) (2015) 1587–1601.
[6] Brajević, I. and Ignjatović, J. An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems. J. Intell. Manuf., 30 (7) (2019) 2545–2574.
[7] Brajevic, I. and Tuba, M. An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. J. Intell. Manuf., 24 (4) (2013) 729–740.
[8] Cheng, Z., Song, H., Wang, J., Zhang, H., Chang, T. and Zhang, M. Hybrid firefly algorithm with grouping attraction for constrained optimization problem. Knowl.-Based Syst., 220 (2021) 106937.
[9] Cui, L., Deng, J., Zhang, Y., Tang, G. and Xu, M. Hybrid differential artificial bee colony algorithm for multi-item replenishment-distribution problem with stochastic lead-time and demands. J. Clean. Prod., 254
(2020) 119873.
[10] D’Angelo, G. and Palmieri, F. GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimization problems. Inf. Sci., 547 (2021) 136–162.
[11] Das, R., Das, K. and Mallik, S. An improved quadratic approximation-based Jaya algorithm for two-echelon fixed-cost transportation problem under uncertain environment. Soft Comput., 26 (2022) 10301–10320.
[12] Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng., 186 (2000) 311–338.
[13] Dorigo, M. and Di Caro, G. Ant colony optimization: a new meta-heuristic. Proc. Congr. Evol. Comput. (CEC99), 2 (1999) 1470–1477.
[14] Duong, H., Nguyen, Q., Nguyen, D. and Van Nguyen, L. PSO based hybrid PID-FLC Sugeno control for excitation system of large synchronous motor. Emerg. Sci. J., 6(2) (2022) 201–216.
[15] Fu, X., Pace, P., Aloi, G., Yang, L. and Fortino, G. Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm. Comput. Netw., 177 (2020) 107327.
[16] Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci., 478 (2019) 499–523.
[17] Gu, X. Application research for multiobjective low-carbon flexible jobshop scheduling problem based on hybrid artificial bee colony algorithm. IEEE Access, 9 (2021) 135899–135914.
[18] Guermoui, M., Gairaa, K., Boland, J. and Arrif, T. A novel hybrid model for solar radiation forecasting using support vector machine and bee colony optimization algorithm: review and case study. J. Sol. Energy
Eng., 143 (2021) 020801.
[19] Gupta, S. and Deep, K. Enhanced leadership-inspired grey wolf optimizer for global optimization problems. Eng. Comput., 36 (2020) 1777–1800.
[20] Jabeen, S.D. Vibration optimization of a passive suspension system via genetic algorithm. Int. J. Model. Simul. Sci. Comput., 4 (2013) 1250022.
[21] Jabeen, S.D. Vehicle vibration and passengers comfort. Int. Conf. Comput. Intell., vol 509. Springer, Singapore (2015) 357–372.
[22] Javaheri, D., Gilani, A. and Ghaffari, A. Energy-efficient routing in IoT networks with ABC optimization and machine learning for smart city infrastructure. Front. Collaborative Res., 2 (2024) 1–13.
[23] Jiao, L., Li, L., Shang, R., Liu, F. and Stolkin, R. A novel selection evolutionary strategy for constrained optimization. Inf. Sci., 239 (2013) 122–141.
[24] Karaboga, D. An idea based on honey bee swarm for numerical optimization. Tech. Rep. TR06, Erciyes Univ., Fac. Eng. Comput., 2005.
[25] Karaboga, D. and Akay, B. A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl. Soft Comput., 11 (2011) 3021–3031.
[26] Karaboga, D. and Basturk, B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim., 39 (2007) 459–471.
[27] Kennedy, J. and Eberhart, R. Particle swarm optimization. Proc. Int. Conf. Neural Netw. (ICNN’95), 4 (1995) 1942–1948.
[28] Li, X. and Yin, M. Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput. Appl., 24 (2014) 723–734.
[29] Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello, C. and Deb, K. Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. J. Appl. Mech., 41 (2006) 8–31.
[30] Liang, R., Wu, C., Chen, Y. and Tseng, W. Multi-objective dynamic optimal power flow using improved artificial bee colony algorithm based on Pareto optimization. Int. Trans. Electr. Energy Syst., 26 (2016) 692–
712.
[31] Liu, F., Sun, Y., Wang, G. and Wu, T. An artificial bee colony algorithm based on dynamic penalty and Lévy flight for constrained optimization problems. Arab. J. Sci. Eng., 43 (2018) 7189–7208
[32] Liu, H., Cai, Z. and Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput., 10 (2010) 629–640.
[33] Liu, H., Xu, B., Lu, D. and Zhang, G. A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm. Appl. Soft Comput., 68 (2018) 360–376.
[34] Liu, J., Teo, K., Wang, X. and Wu, C. An exact penalty function-based differential search algorithm for constrained global optimization. Soft Comput., 20 (2016) 1305–1313.
[35] Liu, J., Wu, C., Wu, G. and Wang, X. A novel differential search algorithm and applications for structure design. Appl. Math. Comput., 268 (2015) 246–269.
[36] Liu, M., Yuan, Y., Xu, A., Deng, T. and Jian, L. A learning-based artificial bee colony algorithm for operation optimization in gas pipelines. Inf. Sci., 690 (2025) 121593.
[37] Long, W., Liang, X., Cai, S., Jiao, J. and Zhang, W. An improved artificial bee colony with modified augmented Lagrangian for constrained optimization. Soft Comput., 22 (2018) 4789–4810.
[38] Mani, A. and Patvardhan, C. A novel hybrid constraint handling tech-nique for evolutionary optimization. Proc. IEEE Congr. Evol. Comput., (2009) 2577–2583.
[39] M’Dioud, M., Bannari, A., Er-Rays, Y., Bannari, R. and El Kafazi, I. A Modified ABC Algorithm For The Best Placement Of DG Units. Proc. Glob. Power, Energy Commun. Conf. (GPECOM), (2025) 392–399.
[40] Mezura-Montes, E. and Cetina-Domínguez, O. Empirical analysis of a modified artificial bee colony for constrained numerical optimization. Appl. Math. Comput., 218 (2012) 10943–10973.
[41] Mirjalili, S., Mirjalili, S. and Lewis, A. Grey wolf optimizer. Adv. Eng. Softw., 69 (2014) 46–61.
[42] Mitchell, M., Holland, J. and Forrest, S. When will a genetic algorithm outperform hill climbing. Adv. Neural Inf. Process. Syst., 6 (1993) 51–58.
[43] Oubbati, O., Khan, A. and Liyanage, M. Blockchain-enhanced secure routing in FANETs: Integrating ABC algorithms and neural networks for attack mitigation. Synthesis, 2 (2024) 1–11.
[44] Patra, J., Yadav, A., Verma, R., Pal, N., Samantaray, S., Sahu, K., Singh, P., Parihar, R. and Panda, A. Efficient multi-objective approach using ABC algorithm for minimizing generation fuel cost and transmis-
sion loss through FACTS controllers placement and sizing. Iran. J. Sci. Technol. Trans. Electr. Eng., 49 (2025) 1313–1335.
[45] Peng, C., Liu, H. and Gu, F. A novel constraint-handling technique based on dynamic weights for constrained optimization problems. Soft Comput., 22 (2018) 3919–3935.
[46] Phoemphon, S. Grouping and reflection of the artificial bee colony algorithm for high-dimensional numerical optimization problems. IEEE Access, 12 (2024) 91426–91446.
[47] Pramanik, P. and Maiti, M. An inventory model for deteriorating items with inflation induced variable demand under two level partial trade credit: A hybrid ABC-GA approach. Eng. Appl. Artif. Intell., 85 (2019)
194–207.
[48] Price, K. Differential evolution vs. the functions of the 2/sup nd/ICEO. Proc. IEEE Int. Conf. Evol. Comput., (1997) 153–157.
[49] Pu, Q., Xu, C., Wang, H. and Zhao, L. A novel artificial bee colony clustering algorithm with comprehensive improvement. Vis. Comput., 38 (2022) 1395–1410.
[50] Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. GSA: a gravitational search algorithm. Inf. Sci., 179 (2009) 2232–2248.
[51] Rathod, V., Gumaste, S., Guttula, R., Zade, S. and Singh, R. Optimization of energy consumption in mobile Ad-Hoc networks with a swarm intelligence-based ABC algorithm. Discov. Appl. Sci., 7 (2025) 805.
[52] Rezaee Jordehi, A. A chaotic-based big bang–big crunch algorithm for solving global optimisation problems. Neural Comput. Appl., 25 (2014) 1329–1335.
[53] Runarsson, T. and Yao, X. Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput., 4 (2000) 284–294.
[54] Satapathy, S. and Naik, A. Data clustering based on teaching-learning-based optimization. Proc. Int. Conf. Swarm, Evol. Memetic Comput., (2011) 148–156.
[55] Şenel, F., Gökçe, F., Yüksel, A. and Yiğit, T. A novel hybrid PSO–GWO algorithm for optimization problems. Eng. Comput., 35 (2019) 1359–1373.
[56] Sharma, D. and Jabeen, S. Hybridizing interval method with a heuristic for solving real-world constrained engineering optimization problems. Struct., 56 (2023) 104993.
[57] Shi, Y. Brain storm optimization algorithm. Proc. Int. Conf. Swarm Intell., (2011) 303–309.
[58] Surono, S., Goh, K., Onn, C., Nurraihan, A., Siregar, N., Saeid, A. and Wijaya, T. Optimization of Markov weighted fuzzy time series forecasting using genetic algorithm (GA) and particle swarm optimization (PSO).
Emerg. Sci. J., 6 (2022) 1375–1393.
[59] Takahama, T. and Sakai, S. Efficient constrained optimization by the ε constrained adaptive differential evolution. Proc. IEEE Congr. Evol. Comput., (2010) 1–8.
[60] Tessema, B. and Yen, G. An adaptive penalty formulation for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. A, 39 (2009) 565–578.
[61] Tran, S., Vu, H., Pham, T. and Hoang, D. Constrained Pareto-Based Weighted-Sum ABC Algorithm for Efficient Sensor Networks Deployment. Proc. Int. Conf. Green Technol. Sustain. Dev., (2024) 310–321.
[62] Wang, Y., Cai, Z., Guo, G. and Zhou, Y. Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. IEEE Trans. Syst. Man Cybern. B, 37 (2007) 560–575.
[63] Wang, Z. and Kong, X. An enhanced artificial bee colony algorithm for constraint optimization. Eng. Lett., 32 (2024) 276.
[64] Yeniay, O. Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl., 10 (2005) 45–56.
[65] Yesodha, K., Krishnamurthy, M., Selvi, M. and Kannan, A. Intrusion detection system extended CNN and artificial bee colony optimization in wireless sensor networks. Peer-to-Peer Netw. Appl., 17 (2024) 1237–
1262.
[66] Zhang, X., Lou, Y., Yuen, S., Wu, Z., He, Y. and Zhang, X. Hybrid artificial bee colony with covariance matrix adaptation evolution strategy for economic load dispatch. Proc. IEEE Congr. Evol. Comput. (CEC),
(2019) 204–209.
[67] Zhang, Z., Ding, S. and Jia, W. A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng. Appl. Artif. Intell., 85 (2019) 254–268.
[68] Zhu, G. and Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput., 217 (2010) 3166–3173.