- AOAC (2000). AOAC Official Method 934.06: Moisture in dried fruits. In Official Methods of Analysis (17th ed.). Gaithersburg, MD: AOAC International.
- Atia, A., Teggar, M., & Laouer, A. (2024). Performance of various solar dryer types integrating latent heat storage for drying agricultural products: An up-to-date review. Journal of Energy Storage, 102, 114048. https://doi.org/10.1016/j.est.2024.114048
- Azadbakht, M., Torshizi, M. V., Aghili, H., & Ziaratban, A. (2018). Application of artificial neural network (ANN) in drying kinetics analysis for potato cubes. Carpathian Journal of Food Science & Technology, 10(2), 96-106.
- Benseddik, A., Azzi, A., & Allaf, K. (2018). Mathematical empirical models of thin-layer airflow drying kinetics of pumpkin slice. Engineering in Agriculture, Environment and Food, 11(4), 220-231. https://doi.org/10.1016/j.eaef.2018.07.003
- Chokphoemphun, S., Hongkong, S., & Chokphoemphun, S. (2024). Artificial neural network for drying behavior prediction of paddy in developed chamber fluidized–bed dryer. Computers and Electronics in Agriculture, 220, 108888. https://doi.org/10.1016/j.compag.2024.108888
- Chukwunonye, C. D., Nnaemeka, N. R., Chijioke, O. V., & Obiora, N. C. (2016). Thin layer drying modelling for some selected Nigerian produce: a review. American Journal of Food Science and Nutrition Research, 3(1), 1-15.
- Duffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons.
- Ertekin, C., & Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701-717. https://doi.org/10.1080/10408398.2014.910493
- Fartash Naeimi, E., Khoshtaghaza, M. H., Selvi, K. Ç., Ungureanu, N., & Abbasi, S. (2024). Optimization of the Drying Process for Gamma-Irradiated Mushroom Slices Using Mathematical Models and Machine Learning Algorithms. Agriculture, 14(12), 2351.https://doi.org/10.3390/agriculture14122351
- Fathi, M., Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2016). Thin-layer drying of tea leaves: Mass transfer modeling using semi-empirical and intelligent models. International Food Research Journal, 23(1), 40.
- Karaağaç, M. O., Ergün, A., Ağbulut, Ü., Gürel, A. E., & Ceylan, I. (2021). Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms. Solar Energy, 218, 57-67. https://doi.org/10.1016/j.solener.2021.02.028
- Karakaplan, N., Goz, E., Tosun, E., & Yuceer, M. (2019). Kinetic and artificial neural network modeling techniques to predict the drying kinetics of Mentha spicataJournal of Food Processing and Preservation, 43(10), e14142. https://doi.org/10.1111/jfpp.14142
- Kaveh, M., Abbaspour-Gilandeh, Y., & Emadi, B. (2020). Application of artificial intelligence methods for predicting drying kinetics of fruits and vegetables: A review. Journal of Food Process Engineering, 43(8), e13477. https://doi.org/10.1111/jfpe.13477
- Kelleher, J. D. (2019). Deep learning. MIT press.
- Kumar, R., Kumar, P., Hota, N. K., & Pandey, O. P. (2025). Semi-empirical thin-layer drying model for the agricultural products. Chemical Engineering Communications, 212(5), 728-738. https://doi.org/10.1080/00986445.2024.2432672
- Kutlu, N., İșcİ, A., & Demİrkol, Ö. Ș. (2015). Thin layer drying models in food systems.
- Lee, H. J., Lee, S. K., Kim, H., Kim, W., & Han, J. W. (2016). Thin-layer Drying Characteristics of Rapeseed. Journal of Biosystems Engineering, 41(3), 232-239.
- Lopes, S., Santos, S., Rodrigues, N., Pinho, P., & Viegas, D. X. (2023). Modelling sorption processes of 10-h dead Pinus pinaster branches. International Journal of Wildland Fire, 32(6), 903-912. https://doi.org/10.1071/WF22127
- Madhankumar, S., Viswanathan, K., Wu, W., & Taipabu, M. I. (2023). Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization. Solar Energy, 249, 667-683. https://doi.org/10.1016/j.solener.2022.12.009
- Mahesh, J. S., Rengaraju, B., & Selvakumarasamy, S. (2024). Effect of ANN and semi-empirical models on dried Annona muricata leaves. Biomass Conversion and Biorefinery, 1-13. https://doi.org/10.1007/s13399-024-05546-w
- Perazzini, H., Freire, F. B., & Freire, J. T. (2013). Drying kinetics prediction of solid waste using semi‐empirical and artificial neural network models. Chemical Engineering & Technology, 36(7), 1193-1201. https://doi.org/10.1002/ceat.201200593
- Pham, Q. T., Shrivastava, A., & Karim, M. A. (2021). Numerical modeling of food drying processes using computational fluid dynamics (CFD): A review. Journal of Food Engineering, 301, 110565. https://doi.org/10.1016/j.jfoodeng.2021.110565
- Poonia, S., Singh, A. K., & Jain, D. (2022). Performance evaluation of phase change material (PCM) based hybrid photovoltaic/thermal solar dryer for drying arid fruits. Materials Today: Proceedings, 52, 1302-1308. https://doi.org/10.1016/j.matpr.2021.11.058
- Rakshamuthu, S., Jegan, S., Benyameen, J. J., Selvakumar, V., Anandeeswaran, K., & Iyahraja, S. (2021). Experimental analysis of small size solar dryer with phase change materials for food preservation. Journal of Energy Storage, 33, 102095. https://doi.org/10.1016/j.est.2020.102095
- Rasooli Sharabiani, V., Kaveh, M., Abdi, R., Szymanek, M., & Tanaś, W. (2021). Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Scientific Reports, 11(1), 9155. https://doi.org/10.1038/s41598-021-88270-z
- Sabzevari, M., Behroozi‐Khazaei, N., & Darvishi, H. (2021). Real‐time evaluation of artificial neural network‐developed model of banana slice kinetics in microwave‐hot air dryer. Journal of Food Process Engineering, 44(9), e13796. https://doi.org/10.1111/jfpe.13796
- Saleem, M., & Ali, I. (2017, September). Machine learning based prediction of pyrolytic conversion for red sea seaweed. In Proceedings of the 7th International Conference on Biological, Chemical & Environmental Sciences (BCES-2017), Budapest, Hungary(pp. 6-7). https://doi.org/10.17758/EAP.C0917043
- Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., & Almonacid, S. (2017). Understanding the success of Page's model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science & Technology, 62, 194-201. https://doi.org/10.1016/j.tifs.2017.01.003
- Topal, M. E., Şahin, B., & Vela, S. (2024). Artificial Neural Network Modeling Techniques for Drying Kinetics of Citrus medica Fruit during the Freeze-Drying Process. Processes, 12(7), 1362. https://doi.org/10.3390/pr12071362
- Zhang, Q., Wang, M., & Zhu, Z. (2019). Machine learning models for predicting drying kinetics in food processing: A case study on apple slices. Drying Technology, 37(11), 1367-1379. https://doi.org/10.1080/07373937.2018.1535158
|