Adams, R. E., Lee, C. C., Smith, E. T., & Sheridan, S. C. (2021). The relationship between atmospheric circulation patterns and extreme temperature events in North America, International Journal of Climatology, 41(1), 92-103. https://doi.org/10.1002/joc.6610
Asakereh, H., & Shahbaee Kotenaee, A. (2018). Synoptic Analysis of Productive Patterns of Winter Cold Waves in Iran. Journal of Geography and Environmental Hazards, 6(3), 109-124. [in Persian] https://doi.org/10.22067/geo.v6i3.59919
Di Capua, G., Sparrow, S., Kornhuber, K., Rousi, E., Osprey, S., Wallom, D., ... & Coumou, D. (2021). Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. NPJ Climate and Atmospheric Science, 4(1), 55. https://doi.org/10.1038/s41612-021-00211-9
Ehsan, M. A., Nicolì, D., Kucharski, F., Almazroui, M., Tippett, M. K., Bellucci, A., ... & Kang, I. S. (2020). Atlantic Ocean influence on Middle East summer surface air temperature. NPJ Climate and Atmospheric Science, 3(1), 5. https://doi.org/10.1038/s41612-020-0109-1
Eskandari Damaneh, H., Gholami, H., Mahdavi, R., Khoorani, A., & Li, J. (2019). Evaluation of land degradation trend using satellite imagery and climatic data (Case study: Fars province). Desert Ecosystem Engineering, 8(24), 49-64. [in Persian] https://doi.org/10.22052/deej.2018.7.24.35
Hewitson, B. C., & Crane, R. G. (2002). Self-organizing maps: applications to synoptic climatology. Climate Research, 22(1), 13-26. https://doi.org/10.3354/cr022013
Jiménez‐Esteve, B., & Domeisen, D. I. V. (2022). The role of atmospheric dynamics and large‐scale topography in driving heatwaves. Quarterly Journal of the Royal Meteorological Society, 148(746), 2344-2367. https://doi.org/10.1002/qj.4306
Kavyani, M., & Alijani, B. (2019). The Foundations of Climatology. 21nd Edn. Tehran: SAMT. [in Persian]
Kornhuber, K., Coumou, D., Vogel, E., Lesk, C., Donges, J. F., Lehmann, J., & Horton, R. M. (2020). Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nature Climate Change, 10(1), 48-53. https://doi.org/10.1038/s41558-019-0637-z
Liu, X., Xu, Z., Peng, D., & Wu, G. (2018). Influences of the North Atlantic Oscillation on extreme temperature during the cold period in China. International Journal of Climatology, 39(1), 43-49. https://doi.org/10.1002/joc.5779
Nygard, T., Papritz, L., Naakka, T., & Vihma, T. (2023). Cold wintertime air masses over Europe: where do they come from and how do they form? Weather and Climate Dynamics, 4, 943-961. https://doi.org/10.5194/wcd-4-943-2023
Park, T. W., Hong, J. G., & Park, D. S. R. (2020). Intra‐seasonal characteristics of wintertime extreme cold events over South Korea. International Journal of Climatology, 40(5), 2639-2658. https://doi.org/10.1002/joc.6356
Pazhoh, F. (2020). Identification of the effective jet stream patterns in the heavy Precipitation of the cold season in the southern half of Iran. Journal of Spatial Analysis Environmental Hazards, 7(1), 177-196. [in Persian] https://doi.org/10.29252/jsaeh.7.1.12
Perez, E., Ryan, S., Andres, M., Gawarkiewicz, G., Ummenhofer, C. C., Bane, J., & Haines, S. (2021). Understanding physical drivers of the 2015/16 marine heatwaves in the Northwest Atlantic. Scientific Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-97012-0
Ratna, S. B., Osborn, T. J., Joshi, M., & Luterbacher, J. (2020). The influence of Atlantic variability on Asian summer climate is sensitive to the pattern of the sea surface temperature anomaly. Journal of Climate, 33(17), 7567-7590. https://doi.org/10.1175/JCLI-D-20-0039.1
Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F., & Coumou, D. (2022). Accelerated western European heatwave trends linked to more-persistent doublejets over Eurasia. Nature Communications, 13, 3851. https://doi.org/10.1038/s41467-022-31432-y
Saligheh, M. (2017). Synoptic Climatology of Iran. 2nd Edn. Tehran: SAMT. [in Persian]
Sepadeh, D., Salahi, B., Alijani, B., & Zeynali, B. (2021). A study of the effect of the polar Jet stream on the precipitation of the cold season in Iran. Journal of Meteorology and Atmospheric Sciences, 4(3), 178-192. [in Persian] https://www.ims-jmas.net/article_161011.html
Shaw, T. A., & Miyawaki, O. (2024). Fast upper-level jet stream winds get faster under climate change. Nature Climate Change, 14, 61-67. https://doi.org/10.1038/s41558-023-01884-1
Sheridan, S. C., & Lee, C. C. (2011). The self-organizing map in synoptic climatological research. Progress in Physical Geography: Earth and Environment, 35(1), 109-119. https://doi.org/10.1177/0309133310397582
Stendel, M., Francis, J., White, R., Williams, P. D., & Woollings, T. (2021). The jet stream and climate change. In Climate change (pp. 327-357). Elsevier. https://doi.org/10.1016/B978-0-12-821575-3.00015-3
Trevisiol, A., Gilli, L., & Faggian, P. (2022). Short and long-term projections of Rossby wave packets and blocking events with particular attention to the northern hemisphere. Global and Planetary Change, 209, 103750. https://doi.org/10.1016/j.gloplacha.2022.103750
Tuel, A., & Martius, O. (2024). Persistent warm and cold spells in the Northern Hemisphere extratropics: regionalisation, synoptic-scale dynamics and temperature budget. Weather and Climate Dynamics, 5(1), 263-292. https://doi.org/10.5194/wcd-5-263-2024
Zenozi Alamdari, N., Sobhani, B., Islahi, M., & Mohammadi, M. (2025). Evaluating the consequences of climate change on the trend of extreme events and its impact on the phenology of almond trees, a case study: East Azarbaijan province. Iranian Journal of Soil and Water Research, 55(12), 2351-2371. [in Persian] https://doi.org/10.22059/ijswr.2024.375011.669697
Zhou, Y., Yuan, J., Wen, Z., Huang, S., Chen, X., Guo, Y., & Lin, Q. (2022). The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer. Atmospheric and Oceanic Science Letters, 15(5), 100212. https://doi.org/10.1016/j.aosl.2022.100212