- Ali, H., & Ghaffar, A.A. (2017). Preparation and effect of gamma radiation on the properties and biodegradability of poly (styrene/starch) blends. Radiation Physics and Chemistry, 130, 411-420. https://doi.org/10.1016/j.radphyschem.2016.09.006
- Almasi, H., Ghanbarzadeh, B., & Entezami, A.A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules, 46(1), 1-5. https://doi.org/10.1016/j.ijbiomac.2009.10.001
- Babaei-Ghazvini, A., Shahabi-Ghahfarrokhi, I., & Goudarzi, V. (2018). Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization. Food Packaging and Shelf Life, 16, 103-111. https://doi.org/10.1016/j.fpsl.2018.01.008
- Bastos, D.C., Santos, A.E., da Silva, M.L., & Simão, R.A. (2009). Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy, 109(8), 1089-1093. https://doi.org/10.1016/j.ultramic.2009.03.031
- Bayanloo, A.H., Shahabi‐Ghahfarrokhi, I., & Hagh Nazari, S. (2024). Modification and characterization of starch‐based food‐packaging material by cold plasma as a green approach. Starch‐Stärke, 76(5-6), 2300077. https://doi.org/10.1002/star.202300077
- Bulbul, V., Bhushette, P.R., Zambare, R.S., Deshmukh, R., & Annapure, U.S. (2019). Effect of cold plasma treatment on Xanthan gum properties. Polymer Testing, 79, 106056. https://doi.org/10.1016/j.polymertesting.2019.106056
- Cassie, A., & Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546-551. https://doi.org/10.1039/TF9444000546
- Chen, G., Chen, Y., Jin, N., Li, J., Dong, S., Li, S., & Chen, Y. (2020). Zein films with porous polylactic acid coatings via cold plasma pre-treatment. Industrial Crops and Products, 150, 112382. https://doi.org/10.1016/j.indcrop.2020.112382
- Cheng, H., Chen, L., McClements, D.J., Yang, T., Zhang, Z., Ren, F., & Jin, Z. (2021). Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science & Technology, 114, 70-82. https://doi.org/10.1016/j.tifs.2021.05.017
- De Geyter, N., Morent, R., Leys, C., Gengembre, L., & Payen, E. (2007). Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface and Coatings Technology, 201(16-17), 7066-7075. https://doi.org/10.1016/j.surfcoat.2007.01.008
- Dimitrakellis, P., & Gogolides, E. (2018). Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Advances in Colloid and Interface Science, 254, 1-21. https://doi.org/10.1016/j.cis.2018.03.009
- Dong, S., Guo, P., Chen, Y., Chen, G.-y., Ji, H., Ran, Y., & Chen, Y. (2018). Surface modification via atmospheric cold plasma (ACP): Improved functional properties and characterization of zein film. Industrial Crops and Products, 115, 124-133. https://doi.org/10.1016/j.indcrop.2018.01.080
- El Fawal, G., Hong, H., Song, X., Wu, J., Sun, M., He, C., & Wang, H. (2020). Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packaging and Shelf Life, 23, 100462. https://doi.org/10.1016/j.fpsl.2020.100462
- Ghanbarzadeh, B., & Oromiehi, A. (2009). Thermal and mechanical behavior of laminated protein films. Journal of Food Engineering, 90(4), 517-524. https://doi.org/10.1016/j.jfoodeng.2008.07.018
- Ghasemlou, M., Khodaiyan, F., Jahanbin, K., Gharibzahedi, S.M.T., & Taheri, S. (2012). Structural investigation and response surface optimisation for improvement of kefiran production yield from a low-cost culture medium. Food Chemistry, 133(2), 383-389. https://doi.org/10.1016/j.foodchem.2012.01.046
- Goiana, M.L., de Brito, E.S., Alves Filho, E.G., de Castro Miguel, E., Fernandes, F.A.N., de Azeredo, H.M.C., & de Freitas Rosa, M. (2021). Corn starch based films treated by dielectric barrier discharge plasma. International Journal of Biological Macromolecules, 183, 2009-2016. https://doi.org/10.1016/j.ijbiomac.2021.05.210
- Goudarzi, V., & Shahabi-Ghahfarrokhi, I. (2018a). Development of photo-modified starch/kefiran/TiO2 bio-nanocomposite as an environmentally-friendly food packaging material. International Journal of Biological Macromolecules, 116, 1082-1088. https://doi.org/10.1016/j.ijbiomac.2018.05.138
- Goudarzi, V., & Shahabi-Ghahfarrokhi, I. (2018b). Photo-producible and photo-degradable starch/TiO2 bionanocomposite as a food packaging material: Development and characterization. International Journal of Biological Macromolecules, 106, 661-669. https://doi.org/10.1016/j.ijbiomac.2017.08.058
- Goudarzi, V., Shahabi-Ghahfarrokhi, I., & Babaei-Ghazvini, A. (2017). Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. International Journal of Biological Macromolecules, 95, 306-313. https://doi.org/10.1016/j.ijbiomac.2016.11.065
- Hassannia-Kolaee, M., Khodaiyan, F., Pourahmad, R., & Shahabi-Ghahfarrokhi, I. (2016). Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO2. International Journal of Biological Macromolecules, 86, 139-144. https://doi.org/10.1016/j.ijbiomac.2016.01.032
- Hassannia-Kolaee, M., Khodaiyan, F., & Shahabi-Ghahfarrokhi, I. (2016). Modification of functional properties of pullulan–whey protein bionanocomposite films with nanoclay. Journal of Food Science and Technology, 53(2), 1294-1302. https://doi.org/10.1007/s13197-015-1778-3
- Heidemann, H.M., Dotto, M.E., Laurindo, J.B., Carciofi, B.A., & Costa, C. (2019). Cold plasma treatment to improve the adhesion of cassava starch films onto PCL and PLA surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, 123739. https://doi.org/10.1016/j.colsurfa.2019.123739
- Honarvar, Z., Farhoodi, M., Khani, M.R., Mohammadi, A., Shokri, B., Ferdowsi, R., & Shojaee-Aliabadi, S. (2017). Application of cold plasma to develop carboxymethyl cellulose-coated polypropylene films containing essential oil. Carbohydrate Polymers, 176, 1-10. https://doi.org/10.1016/j.carbpol.2017.08.054
- Hosseini, S.F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172-182. https://doi.org/10.1016/j.foodhyd.2014.09.004
- Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., & Leng, X. (2011). Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(5), 1098-1104. https://doi.org/10.1016/j.foodhyd.2010.10.006
- Liu, J., Huang, J., Hu, Z., Li, G., Hu, L., Chen, X., & Hu, Y. (2021). Chitosan-based films with antioxidant of bamboo leaves and ZnO nanoparticles for application in active food packaging. International Journal of Biological Macromolecules, 189, 363-369. https://doi.org/10.1016/j.ijbiomac.2021.08.136
- Maniglia, B.C., Castanha, N., Rojas, M.L., & Augusto, P.E. (2021). Emerging technologies to enhance starch performance. Current Opinion in Food Science, 37, 26-36. https://doi.org/10.1016/j.cofs.2020.09.003
- Mohammadi-Alamuti, M., Shahabi-Ghahfarrokhi, I., & Shaterian, M. (2023). Photo–degradable and recyclable starch/Fe3O4/TiO2 nanocomposites: feasibility of an approach to reduce the recycling labor cost in plastic waste management. Environmental Science and Pollution Research, 30(2), 2740-2753. https://doi.org/10.1007/s11356-022-22049-1
- Momeni, M., Tabibiazar, M., Khorram, S., Zakerhamidi, M., Mohammadifar, M., Valizadeh, H., & Ghorbani, M. (2018). Pectin modification assisted by nitrogen glow discharge plasma. International Journal of Biological Macromolecules, 120, 2572-2578. https://doi.org/10.1016/j.ijbiomac.2018.09.033
- Moosavi, M.H., Khani, M.R., Shokri, B., Hosseini, S.M., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. (2020). Modifications of protein-based films using cold plasma. International Journal of Biological Macromolecules, 142, 769-777. https://doi.org/10.1016/j.ijbiomac.2019.10.017
- Moradi, E., Moosavi, M.H., Hosseini, S.M., Mirmoghtadaie, L., Moslehishad, M., Khani, M.R., & Shojaee-Aliabadi, S. (2020). Prolonging shelf life of chicken breast fillets by using plasma-improved chitosan/low density polyethylene bilayer film containing summer savory essential oil. International Journal of Biological Macromolecules, 156, 321-328. https://doi.org/10.1016/j.ijbiomac.2020.03.226
- Pankaj, S., Bueno-Ferrer, C., Misra, N., O’neill, L., Tiwari, B., Bourke, P., & Cullen, P. (2015). Characterization of dielectric barrier discharge atmospheric air cold plasma treated gelatin films. Food Packaging and Shelf Life, 6, 61-67. https://doi.org/10.1016/j.fpsl.2015.09.002
- Pankaj, S., & Thomas, S. (2016). Cold plasma applications in food packaging. In Cold plasma in food and agriculture (pp. 293-307): Elsevier. https://doi.org/10.1016/b978-0-12-801365-6.00012-3
- Pankaj, S.K., Bueno-Ferrer, C., Misra, N., O'Neill, L., Tiwari, B., Bourke, P., & Cullen, P. (2015). Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films. LWT-Food Science and Technology, 63(2), 1076-1082. https://doi.org/10.1016/j.lwt.2015.04.027
- Romani, V.P., Olsen, B., Collares, M.P., Oliveira, J.R.M., Prentice-Hernández, C., & Martins, V.G. (2019). Improvement of fish protein films properties for food packaging through glow discharge plasma application. Food Hydrocolloids, 87, 970-976. https://doi.org/10.1016/j.foodhyd.2018.09.022
- Romani, V.P., Olsen, B., Collares, M.P., Oliveira, J.R.M., Prentice, C., & Martins, V.G. (2020). Cold plasma and carnauba wax as strategies to produce improved bi-layer films for sustainable food packaging. Food Hydrocolloids, 108, 106087. https://doi.org/10.1016/j.foodhyd.2020.106087
- Salarbashi, D., Mortazavi, S.A., Noghabi, M.S., Bazzaz, B.S.F., Sedaghat, N., Ramezani, M., & Shahabi-Ghahfarrokhi, I. (2016). Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydrate Polymers, 140, 220-227. https://doi.org/10.1016/j.carbpol.2015.12.043
- Salarbashi, D., Noghabi, M.S., Bazzaz, B.S.F., Shahabi-Ghahfarrokhi, I., Jafari, B., & Ahmadi, R. (2017). Eco-friendly soluble soybean polysaccharide/nanoclay Na+ bionanocomposite: Properties and characterization. Carbohydrate Polymers, 169, 524-532. https://doi.org/10.1016/j.carbpol.2017.04.011
- Seo, K., & Kim, M. (2015). Re-derivation of Young’s equation, Wenzel equation, and Cassie-Baxter equation based on energy minimization. In Surface energy: IntechOpen. https://doi.org/10.5772/61066
- Shahabi-Ghahfarrokhi, I., Almasi, H., & Babaei-Ghazvini, A. (2020). Characteristics of biopolymers from natural resources. In Processing and development of polysaccharide-based biopolymers for packaging applications (pp. 49-95): Elsevier. https://doi.org/10.1016/b978-0-12-818795-1.00003-4
- Shahabi-Ghahfarrokhi, I., & Babaei-Ghazvini, A. (2019). Using photo-modification to compatibilize nano-ZnO in development of starch-kefiran-ZnO green nanocomposite as food packaging material. International Journal of Biological Macromolecules, 124, 922-930. https://doi.org/10.1016/j.ijbiomac.2018.11.241
- Shahabi-Ghahfarrokhi, I., Goudarzi, V., & Babaei-Ghazvini, A. (2019). Production of starch based biopolymer by green photochemical reaction at different UV region as a food packaging material: Physicochemical characterization. International Journal of Biological Macromolecules, 122, 201-209. https://doi.org/10.1016/j.ijbiomac.2018.10.154
- Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., & Yousefi, H. (2015a). Effect of γ-irradiation on the physical and mechanical properties of kefiran biopolymer film. International Journal of Biological Macromolecules, 74, 343-350. https://doi.org/10.1016/j.ijbiomac.2014.11.038
- Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., & Yousefi, H. (2015b). Preparation of UV-protective kefiran/nano-ZnO nanocomposites: physical and mechanical properties. International Journal of Biological Macromolecules, 72, 41-46. https://doi.org/10.1016/j.ijbiomac.2014.07.047
- Sharma, S. (2020). Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends in Food Science & Technology, 102, 30-36. https://doi.org/10.1016/j.tifs.2020.05.013
- Sheikhi, Z., Mirmoghtadaie, L., Abdolmaleki, K., Khani, M.R., Farhoodi, M., Moradi, E., & Shojaee‐Aliabadi, S. (2021). Characterization of physicochemical and antimicrobial properties of plasma‐treated starch/chitosan composite film. Packaging Technology and Science, 34(7), 385-392. https://doi.org/10.1002/pts.2559
- Souza, V.G.L., & Fernando, A.L. (2016). Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packaging and Shelf Life, 8, 63-70. https://doi.org/10.1016/j.fpsl.2016.04.001
- Standard, A. (1989). Standard test methods for water vapor transmission of materials. In: Annual book of ASTM standards, Designation E96-E80.
- Standard, A. (2004). Annual book of ASTM standards. American Society for Testing and Materials Annual, Philadelphia, PA, USA, 4(04.08).
- Ulbin-Figlewicz, N., Zimoch-Korzycka, A., & Jarmoluk, A. (2014). Antibacterial activity and physical properties of edible chitosan films exposed to low-pressure plasma. Food and Bioprocess Technology, 7(12), 3646-3654. https://doi.org/10.1007/s11947-014-1379-6
- Venkateshaiah, A., Havlíček, K., Timmins, R.L., Röhrl, M., Wacławek, S., Nguyen, N.H., Agarwal, S. (2021). Alkenyl succinic anhydride modified tree-gum kondagogu: A bio-based material with potential for food packaging. Carbohydrate Polymers, 266, 118126. https://doi.org/10.1016/j.carbpol.2021.118126
- Wenzel, R.N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988-994. https://doi.org/10.1021/ie50320a024
- Wiącek, A.E., Jurak, M., Gozdecka, A., & Worzakowska, M. (2017). Interfacial properties of PET and PET/starch polymers developed by air plasma processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 323-331. https://doi.org/10.1016/j.colsurfa.2017.04.074
- Wihodo, M., & Moraru, C.I. (2013). Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. Journal of Food Engineering, 114(3), 292-302. https://doi.org/10.1016/j.jfoodeng.2012.08.021
- Wu, X., Liu, Q., Luo, Y., Murad, M. S., Zhu, L., & Mu, G. (2020). Improved packing performance and structure-stability of casein edible films by dielectric barrier discharges (DBD) cold plasma. Food Packaging and Shelf Life, 24, 100471. https://doi.org/10.1016/j.fpsl.2020.100471
- Yang, L., Chen, J., Guo, Y., & Zhang, Z. (2009). Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma. Applied Surface Science, 255(8), 4446-4451. https://doi.org/10.1016/j.apsusc.2008.11.048
|