1. Hoffmann, A. C., M. De Groot, W. Peng, H. W. A. Dries, and J. Kater. 2001. Advantages and risks in increasing cyclone separator length, American Institute of Chemical Engineers Journal 47: 2452-2460.
2. Alahmadi, Y. H., A. F. Nowakowski. 2016. Modified shear stress transport model with curvature correction for the prediction of swirling flow in a cyclone separator, Chemical Engineering Science 147: 150-165.
3. Alexander, R. M. 1949. Fundamentals of cyclone design and operation, Australasian Institute of Mining and Metallurgy 152: 152-153.
4. Elsayed, K., and C. Lacor. 2010. Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations. Chemical Engineering Science 65: 6048-6058.
5. Gimbun, J., T. G. Chuah, A. Fakhru’l-Razi, and T. S. Y. Choong. 2005b. The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study.Chemical Engineering and Processing 44: 7-12.
6. Gimbun, J., T. G. Chuah, T. S. Y. Choong, and A. Fakhru’l-Razi. 2005a. A CFD study on the prediction of cyclone collection efficiency. International Journal for Computational Methods in Engineering Science and Mechanics 6: 161-168.
7. Gimbun, J., T. G. Chuah, T. S. Y. Choong, and A. Fakhru’l-Razi. 2005c. Prediction of the effects of cone tip diameter on the cyclone performance, Journal of Aerosol Science 1056-1065.
8. Griffiths, W. D., and F. Boysan. 1996. Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers. Journal of Aerosol Science 27: 281- 304.
9. Hoekstra, A. J., J. J. Derksen, and H. E. A. Van Den Akker. 1999. An experimental and numerical
study of turbulent swirling flow in gas cyclones, Chemical Engineering Science 54: 2055-2065.
10. Inc. ANSYS. 2013. ANSYS FLUENT Theory Guide. Release 182 15317: 373-464.
11. Naddi, F., S. A, Mehdizadeh, U. N. Zonuz. 2017. Comparing between predicted output temperature of flat-plate solar collector and experimental results: computational fluid dynamics and artificial neural network: Journal of Agricultural Machinery 7 (1): 298-311. (In Farsi).
12. Rezvanivandefanayi, A., and A. M. Nikbakht. 2015. A CFD Study of the Effects of Feed Diameter on the Pressure Drop in Acyclone Separator: International Journal of Food Engineering 11: 71-77.
13. Rezvanivandefanayi, A., A. Hasanpour, and A. M. Nikbakht. 2019. Study of the vapor thermos-compressor to reduce energy consumption in the sugar production line using Computational Fluid Dynamics: Journal of Agricultural Machinery 10 (2). (In Farsi).
14. Rezvanivandefanayi, A., A. M. Nikbakht, and A. Modarres Motlagh. 2013a. Modeling of material conveying in cyclone separators using Computational fluid Dynamics: The 6th Agricultural Research Findings Conference. University of Kurdistan, Sanandaj, Iran.
15. Rezvanivandefanayi, A., A. M. Nikbakht, and A. Modarres Motlagh. 2013b. Investigating the effect of mass flow rate on velocity fields of cyclone separators using computational fluid dynamics: The second national congress of organic and conventional agriculture, University of Mohaghegh Ardabili, Ardabil, Iran.
16. Rezvanivandefanayi, A., A. M. Nikbakht, and A. Modarres Motlagh. 2013c. Investigating the effect of mass flow rate on the friction of the wall of cyclone separators using computational fluid dynamics: The second national congress of organic and conventional agriculture, University of Mohaghegh Ardabili, Ardabil, Iran.
17. Rezvanivandefanayi, A., A. M. Nikbakht, and A. Modarres Motlagh. 2013d. Investigating the effect of mass flow rate on Pressure drop of cyclone separators using computational fluid dynamics: The second national congress of organic and conventional agriculture, University of Mohaghegh Ardabili, Ardabil, Iran.
18. Zhao, B., Y. Su, and J. Zhang. 2006. Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration. Chemical Engineering Research and Design 84: 1158-1165.