- Adhikary, R., Barnes, C.A., Trampel, R.L., Wallace, S.J., Kee, T.W., & Petrich, J.W. (2011). Photoinduced trans-to-cis isomerization of cyclocurcumin. The Journal of Physical Chemistry B 115(36): 10707-10714. https://doi.org/10.1021/jp200080s.
- Ahmed, K., Li, Y., McClements, D.J., & Xiao, H. (2012). Nanoemulsion-and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry 132(2): 799-807. https://doi.org/10.1016/j.foodchem.2011.11.039.
- Anand, P., Kunnumakkara, A.B., Newman, R.A., & Aggarwal, B.B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics 4(6): 807-818. https://doi.org/10.1021/mp700113r.
- Anderson, M., & Omri, A. (2004). The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Delivery11(1): 33-39. https://doi.org/10.1080/10717540490265243.
- Balanč, B., Trifković, K., Đorđević, V., Marković, S., Pjanović, R., Nedović, V., & Bugarski, B. (2016). Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. Food Hydrocolloids 61: 832-842. https://doi.org/10.1016/j.foodhyd.2016.07.005.
- Basnet, P., Hussain, H., Tho, I., & Skalko-Basnet, N. (2012). Liposomal delivery system enhances anti-inflammatory properties of curcumin. Journal of Pharmaceutical Sciences101(2): 598-609. https://doi.org/10.1002/jps.22785.
- Chavhan, S.S., Petkar, K.C., & Sawant, K. (2011). Nanosuspensions in drug delivery: recent advances, patent scenarios, and commercialization aspects. Critical Reviews™ in Therapeutic Drug Carrier Systems 28(5).
- Chen, H.W., & Chang, Y.W. (2020). Encapsulation of Clitoria ternatea extract in liposomes by synergistic combination of probe‐type ultrasonication and high‐pressure processing. Journal of Food Safety 40(6): e12859. https://doi.org/10.1111/jfs.12859.
- Chen, L., Bai, G., Yang, S., Yang, R., Zhao, G., Xu, C., & Leung, W. (2014). Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Research International 62: 1147-1153. https://doi.org/10.1016/j.foodres.2014.05.054.
- Chen, S., Li, Q., McClements, D.J., Han, Y., Dai, L., Mao, L., & Gao, Y. (2020). Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion. Food Hydrocolloids 99: https://doi.org/10.1016/j.foodhyd.2019.105334.
- Chen, W., Zou, M., Ma, X., Lv, R., Ding, T., & Liu, D. (2019). Co‐encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity. Journal of Food Science 84(1): 111-120. https://doi.org/10.1111/1750-3841.14405
- Cheng, C., Peng, S., Li, Z., Zou, L., Liu, W., & Liu, C. (2017). Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances 7(42): 25978-25986. https://doi.org/10.1039/C7RA02861J.
- Cheng, C., Wu, Z., McClements, D.J., Zou, L., Peng, S., Zhou, W., & Liu, W. (2019). Improvement on stability, loading capacity and sustained release of rhamnolipids modified curcumin liposomes. Colloids and Surfaces B: Biointerfaces 183: https://doi.org/10.1016/j.colsurfb.2019.110460.
- Chi, J., Ge, J., Yue, X., Liang, J., Sun, Y., Gao, X., & Yue, P. (2019). Preparation of nanoliposomal carriers to improve the stability of anthocyanins. LWT, 109, 101-107. https://doi.org/10.1016/j.lwt.2019.03.070.
- Darandale, S.S., & Vavia, P.R. (2013). Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. Journal of Inclusion Phenomena and Macrocyclic Chemistry 75(3-4): 315-322. https://doi.org/10.1007/s10847-012-0186-9.
- El Khoury, E. D., & Patra, D. (2013). Ionic liquid expedites partition of curcumin into solid gel phase but discourages partition into liquid crystalline phase of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine liposomes. The Journal of Physical Chemistry B, 117(33), 9699-9708. https://doi.org/10.1021/jp4061413
- El-Samaligy, M. S., Afifi, N. N., & Mahmoud, E. A. (2006). Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. International journal of pharmaceutics, 319(1-2), 121-129. https://doi.org/10.1016/j.ijpharm.2006.04.023
- Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in food science & technology, 23(1), 13-27. https://doi.org/10.1016/j.tifs.2011.08.003
- Hasan, M., Belhaj, N., Benachour, H., Barberi-Heyob, M., Kahn, C. J. F., Jabbari, E., ... & Arab-Tehrany, E. (2014). Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. International journal of pharmaceutics, 461(1-2), 519-528. https://doi.org/10.1016/j.ijpharm.2013.12.007
- Hasan, M., Messaoud, G. B., Michaux, F., Tamayol, A., Kahn, C. J., Belhaj, N., ... & Arab-Tehrany, E. (2016). Chitosan-coated liposomes encapsulating curcumin: Study of lipid–polysaccharide interactions and nanovesicle behavior. RSC advances, 6(51), 45290-45304. https://doi.org/10.1039/C6RA05574E
- Huh, N. W., Porter, N. A., McIntosh, T. J., & Simon, S. A. (1996). The interaction of polyphenols with bilayers: conditions for increasing bilayer adhesion. Biophysical journal, 71(6), 3261-3277. https://doi.org/10.1016/S0006-3495(96)79519-X
- Jahanshahi, M., & Mehravar, R. (2009). Protein Nanoparticles as a Novel System for Food Science and Technology. Dynam Biochem Process Biotechnol Mol Biol, 3(2), 1-11.
- Jain, S., Kumar, D., Swarnakar, N. K., & Thanki, K. (2012). Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials, 33(28), 6758-6768. https://doi.org/10.1016/j.biomaterials.2012.05.026
- Jin, H. H., Lu, Q., & Jiang, J. G. (2016). Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. Journal of dairy science, 99(3), 1780-1790. https://doi.org/10.3168/jds.2015-10391
- Karewicz, A., Bielska, D., Gzyl-Malcher, B., Kepczynski, M., Lach, R., & Nowakowska, M. (2011). Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids and Surfaces B: Biointerfaces, 88(1), 231-239. https://doi.org/10.1016/j.colsurfb.2011.06.037
- Klang, V., Matsko, N.B., Valenta, C., and Hofer, F. 2012. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron, 43, 43(2-3), 85–103. https://doi.org/10.1016/j.micron.2011.07.014
- Lähdesmäki, K., Ollila, O. S., Koivuniemi, A., Kovanen, P. T., & Hyvönen, M. T. (2010). Membrane simulations mimicking acidic pH reveal increased thickness and negative curvature in a bilayer consisting of lysophosphatidylcholines and free fatty acids. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1798(5), 938-946. https://doi.org/10.1016/j.bbamem.2010.01.020
- Laouini, A., Jaafar-Maalej, C., Sfar, S., Charcosset, C., & Fessi, H. (2011). Liposome preparation using a hollow fiber membrane contactor—application to spironolactone encapsulation. International journal of pharmaceutics, 415(1-2), 53-61. https://doi.org/10.1016/j.ijpharm.2011.05.034
- Li, R., Deng, L., Cai, Z., Zhang, S., Wang, K., Li, L., ... & Zhou, C. (2017). Liposomes coated with thiolated chitosan as drug carriers of curcumin. Materials science and engineering: C, 80, 156-164. https://doi.org/10.1016/j.msec.2017.05.136
- Li, Z. L., Peng, S. F., Chen, X., Zhu, Y. Q., Zou, L. Q., Liu, W., & Liu, C. M. (2018). Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food research international, 108, 246-253. https://doi.org/10.1016/j.foodres.2018.03.048
- Lin, C. C., Lin, H. Y., Chen, H. C., Yu, M. W., & Lee, M. H. (2009). Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions. Food Chemistry, 116(4), 923-928. https://doi.org/10.1016/j.foodchem.2009.03.052
- Liu, Y., Liu, D., Zhu, L., Gan, Q., & Le, X. (2015). Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food research international, 74, 97-105. https://doi.org/10.1016/j.foodres.2015.04.024
- Lu, Q., Li, D. C., & Jiang, J. G. (2011). Preparation of a tea polyphenol nanoliposome system and its physicochemical properties. Journal of agricultural and food chemistry, 59(24), 13004-13011. https://doi.org/10.1021/jf203194w
- Lu, Q., Lu, P. M., Piao, J. H., Xu, X. L., Chen, J., Zhu, L., & Jiang, J. G. (2014). Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. LWT-Food science and technology, 57(2), 686-695. https://doi.org/10.1016/j.lwt.2014.01.044
- Madane, R.G., & Mahajan, H.S. (2016). Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Delivery 23(4): 1326-1334. https://doi.org/10.3109/10717544.2014.975382.
- Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Geny, D., & Linder, M. (2013). Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Biochimie 95(11): 2018-2033. https://doi.org/10.1016/j.biochi.2013.07.006.
- Makino, , Yamada, T., Kimura, M., Oka, T., Ohshima, H., & Kondo, T. (1991). Temperature and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophys Chemistry 41: 75-183. https://doi.org/10.1016/0301-4622(91)80017-L.
- Mohammadi, M., Ghanbarzadeh, B., Hamishehkar, H., Rezayi Mokarram, R., & Mohammadifar, M.A. (2014). Physical properties of vitamin D3-loaded nanoliposomes prepared by thin layer hydration-sonication. Iranian Journal of Nutrition Sciences & Food Technology 8(4): 175-188.
- Mosca, M., Ceglie, A., & Ambrosone, L. (2011). Effect of membrane composition on lipid oxidation in liposomes. Chemistry and Physics of Lipids 164(2): 158-165. https://doi.org/10.1016/j.chemphyslip.2010.12.006.
- Mozafari, M.R., Khosravi-Darani, K., Borazan, G.G., Cui, J., Pardakhty, A., & Yurdugul, S. (2008). Encapsulation of food ingredients using nanoliposome technology. International Journal of Food Properties 11(4): 833-844. https://doi.org/10.1080/10942910701648115.
- Nahr, F.K., Ghanbarzadeh, B., Hamishehkar, H., Kafil, H.S., Hoseini, M., & Moghadam, B.E. (2019). Investigation of physicochemical properties of essential oil loaded nanoliposome for enrichment purposes. LWT 105: 282-289. https://doi.org/10.1016/j.lwt.2019.02.010.
- Nakajima, M., Wang, Z., Chaudhry, Q., Park, H.J., & Juneja, L.R. (2015). Nano-science-engineering-technology applications to food and nutrition. Journal of Nutritional Science and Vitaminology 61(Supplement): S180-S182.
- Ng, Z.Y., Wong, J.Y., Panneerselvam, J., Madheswaran, T., Kumar, P., Pillay, V., & Chellappan, D.K. (2018). Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids and Surfaces B: Biointerfaces 172: 51-59. https://doi.org/10.1016/j.colsurfb.2018.08.027.
- Olbrich, K., Rawicz, W., Needham, D., & Evans, E. (2000). Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophysical Journal 79(1): 321-327. https://doi.org/10.1016/S0006-3495(00)76294-1.
- Paini, M., Daly, S.R., Aliakbarian, B., Fathi, A., Tehrany, E.A., Perego, P., & Valtchev, P. (2015). An efficient liposome based method for antioxidants encapsulation. Colloids and Surfaces B: Biointerfaces 136: 1067-1072. https://doi.org/10.1016/j.colsurfb.2015.10.038.
- Peng, S., Zou, L., Liu, W., Liu, C., & McClements, D.J. (2018). Fabrication and characterization of curcumin-loaded liposomes formed from sunflower lecithin: impact of composition and environmental stress. Journal of Agricultural and Food Chemistry 66(46): 12421-12430. https://doi.org/10.1021/acs.jafc.8b04136.
- Qazi, H.J., Ye, A., Acevedo-Fani, A., & Singh, H. (2021). In vitro digestion of curcumin-nanoemulsion-enriched dairy protein matrices: Impact of the type of gel structure on the bioaccessibility of curcumin. Food Hydrocolloids 117: 106692. https://doi.org/10.1016/j.foodhyd.2021.106692.
- Rafiee, Z., Barzegar, M., Sahari, M.A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food Chemistry 220: 115-122. https://doi.org/10.1016/j.foodchem.2016.09.207.
- Ravichandran, R. (2013). Studies on dissolution behaviour of nanoparticulate curcumin formulation. https://doi.org/10.4236/anp.2013.21010.
- Reza Mozafari, M., Johnson, C., Hatziantoniou, S., & Demetzos, C. (2008). Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research 18(4): 309-327. https://doi.org/10.1080/08982100802465941.
- Schubert, M.A., Harms, M., & Müller-Goymann, C.C. (2006). Structural investigations on lipid nanoparticles containing high amounts of lecithin. European Journal of Pharmaceutical Sciences 27(2-3): 226-236. https://doi.org/10.1016/j.ejps.2005.10.004.
- Shaikh, J., Ankola, D.D., Beniwal, V., Singh, D., & Kumar, M.R. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Sciences 37(3-4): 223-230. https://doi.org/10.1016/j.ejps.2009.02.019.
- Sulkowski, W.W., Pentak, D., Nowak, K., & Sułkowska, A. (2005). The influence of temperature, cholesterol content and pH on liposome stability. Journal of Molecular Structure 744: 737-747. https://doi.org/10.1016/j.molstruc.2004.11.075.
- Sun, M., Su, X., Ding, B., He, X., Liu, X., Yu, A., & Zhai, G. (2012). Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine 7(7): 1085-1100. https://doi.org/10.2217/nnm.12.80.
- Tai, K., Rappolt, M., Mao, L., Gao, Y., & Yuan, F. (2020). Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chemistry 326: 126973. https://doi.org/10.1016/j.foodchem.2020.126973.
- Takahashi, M., Uechi, S., Takara, K., Asikin, Y., & Wada, K. (2009). Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. Journal of Agricultural and Food Chemistry 57(19): 9141-9146. https://doi.org/10.1021/jf9013923.
- Tan, C., Xue, J., Lou, X., Abbas, S., Guan, Y., Feng, B., & Xia, S. (2014). Liposomes as delivery systems for carotenoids: comparative studies of loading ability, storage stability and in vitro release. Food & Function 5(6): 1232-1240. https://doi.org/10.1039/C3FO60498E.
- Taylor, T.M., Davidson, P.M., Bruce B.D., & Weiss, J. (2005). Ultrasonic spectroscopy and differential scanning calorimetry of liposomal-encapsulated Nisin. Journal of Agricultural and Food Chemistry 53(22): 8722-8728. https://doi.org/10.1021/jf050726k.
- van Ruth, S.M., & Roozen, J.P. (2000). Influence of mastication and saliva on aroma release in a model mouth system. Food Chemistry 71: 339-345. https://doi.org/10.1016/S0308-8146(00)00186-2.
- Wijiani, N., Isadiartuti, D., Rijal, M. A. S., & Yusuf, H. (2020). Characterization and dissolution study of micellar curcumin-spray dried powder for oral delivery. International Journal of Nanomedicine 15: 1787.
- Wink, M. (2010). Functions and biotechnology of plant secondary metabolites. (Second ed.).UK: Blackwell Publishing Ltd, PP. 433.
- Xia, S., & Xu, S. (2005). Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Research International 38: 289-296. https://doi.org/10.1016/j.foodres.2004.04.010.
- Zhi, K., Wang, R., Wei, J., Shan, Z., Shi, C., & Xia, X. (2021). Self-assembled micelles of dual-modified starch via hydroxypropylation and subsequent debranching with improved solubility and stability of curcumin. Food Hydrocolloids 118: 106809. https://doi.org/10.1016/j.foodhyd.2021.106809.
- Zou, L., Q., Peng, S.F., Liu, W., Gan, L., Liu, W.L., Liang, R.H., & Chen, X. (2014). Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation. Food Research International 64: 492-499. https://doi.org/10.1016/j.foodres.2014.07.042.
|