- Arun, B.S., Mariappan, V., & Maisotsenko, V. (2020). Experimental study on combined low temperature regeneration of liquid desiccant and evaporative cooling by ultrasonic atomization, International Journal of Refrigeration 112: 100-09. https://doi.org/10.1016/j.ijrefrig.2019.11.023.
- Bakshi, A.S., & Smith, D.E. (1984). Effect of fat content and temperature on viscosity in relation to pumping requirements of fluid milk products, Journal of Dairy Science 67(6): 1157-1160. https://doi.org/10.3168/jds.S0022-0302(84)81417-4.
- Berlin, E., & Pallansch, M.J. (1963). Influence of drying methods on density and porosity of milk powder granules, Journal of Dairy Science 46(8): 780-784. https://doi.org/10.3168/jds.S0022-0302(63)89148-1.
- Briceño-Gutierrez, D., Salinas-Barrera, V., Vargas-Hernández, Y., Gaete-Garretón, L., & Zanelli-Iglesias, C. (2015). On the ultrasonic atomization of liquids, Physics Procedia 63: 37-41. https://doi.org/10.1016/j.phpro.2015.03.006.
- Broniarz-Press, L., Sosnowski, T.R., Matuszak, M., Ochowiak, M., & Jabłczyńska, K. (2015). The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler, International Journal of Pharmaceutics 485: 41-49. https://doi.org/10.1016/j.ijpharm.2015.02.065.
- Candia-Muñoz, N., Ramirez-Bunster, M., Vargas-Hernández, Y., & Gaete-Garretón, L. (2015). Ultrasonic spray drying vs high vacuum and microwaves technology for blueberries, Physics Procedia 70: 867-71. https://doi.org/10.1016/j.phpro.2015.08.178.
- D’Addio, S.M., John G.C., Chi Lip Kwok Ph., Robert, K., Prud, H., & Hak-Kim, C. 2012. Constant size, variable density aerosol particles by ultrasonic spray freeze drying, International Journal of Pharmaceutics 427: 185-91. https://doi.org/10.1016/j.ijpharm.2012.01.048.
- Deepu, P., Chang P., & Moghaddam, S. (2018). Dynamics of ultrasonic atomization of droplets, Experimental Thermal and Fluid Science 92: 243-47. https://doi.org/10.1016/j.expthermflusci.2017.11.021.
- Faraday, M. (1831). On the forms and states assumed by fluids in contact with vibrating elastic surfaces, Trans. R. Soc. London 52: 319–340.
- Grasmeijer, N. (2019). Identifying critical process steps to protein stability during spray drying using a vibrating mesh or a two-fluid nozzle, European Journal of Pharmaceutical Sciences 128: 152-157. https://doi.org/10.1016/j.ejps.2018.11.027.
- Koumei, H., Takenaka, N., Nanzai, B., Okitsu, K., Bandow, H., & Maeda, Y. (2009). Influence of adding salt on ultrasonic atomization in an ethanol–water solution, Ultrasonics Sonochemistry 16: 150-54. https://doi.org/10.1016/j.ultsonch.2008.07.002.
- Isleroglu, H., Turker, I., Tokatli, M., & Koc, B. (2018). Ultrasonic spray-freeze drying of partially purified microbial transglutaminase, Food and Bioproducts Processing 111: 153-64. https://doi.org/10.1016/j.fbp.2018.08.003.
- Kim, H., Jaegeun, L., & You-Yeon, W. (2015). A simple derivation of the critical condition for the ultrasonic atomization of polymer solutions, Ultrasonics 61: 20-24. https://doi.org/10.1016/j.ultras.2015.04.007.
- Kirpalani, D.M., & Suzuki, K. (2011). Ethanol enrichment from ethanol–water mixtures using high frequency ultrasonic atomization, Ultrasonics Sonochemistry 18: 1012-17. https://doi.org/10.1016/j.ultsonch.2010.05.013.
- Kudo, T., Kazuhiko, S., Sankoda, K., Norikazu, N., & Nii, S. (2017). Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization, Ultrasonics Sonochemistry 37: 16-22. https://doi.org/10.1016/j.ultsonch.2016.12.019.
- Lang, R.J. (1962). Ultrasonic atomization of liquids, Journal Acoust. Soc. Am. 34: 6–8.
- Lebedev, E., Gordienko, M., Troyankin, A., & Menshutina, N. (2017). CFD Simulation of spray drying with ultrasonic dispersion in Antonio Espuña, Moisès Graells and Luis Puigjaner (eds.), Computer Aided Chemical Engineering (Elsevier). https://doi.org/10.1016/B978-0-444-63965-3.50006-4.
- Li, W., Pan, Y., Yao, Y., & Dong, M., (2018). Modeling and parametric study of the ultrasonic atomization regeneration of desiccant solution, International Journal of Heat and Mass Transfer 127: 687-702. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.001.
- Lisboa, H., Duarte, M.E., & Cavalcanti-Mata, M.E. (2018). Modeling of food drying processes in industrial spray dryers, Food and Bioproducts Processing 107: 49-60. https://doi.org/10.1016/j.fbp.2017.09.006.
- Naidu, H., Kahraman, O., & Feng, H. (2022). Novel applications of ultrasonic atomization in the manufacturing of fine chemicals, pharmaceuticals, and medical devices, Ultrasonics Sonochemistry 86: 105984. https://doi.org/10.1016/j.ultsonch.2022.105984.
- Peskin, R.L., & Raco, R.J. (1963). Ultrasonic atomization of liquids, Journal Acoust. Soc. Am. 35: 1378–1381.
- Rajan, R., & Pandit, A.B. (2001). Correlations to predict droplet size in ultrasonic atomization, Ultrasonics 39: 235–255. https://doi.org/10.1016/S0041-624X(01)00054-3.
- Ramisetty, K.A., Pandit, A.B., & Gogate, P.R. (2013). Investigations into ultrasound induced atomization, Ultrasonics Sonochemistry 20: 254-64. https://doi.org/10.1016/j.ultsonch.2012.05.001.
- Rayleigh, L. (1883). On the crispation of fluid resting upon a vibrating support, Phil. 15: 50–58.
- Samborska, K. (2022). Innovations in spray drying process for food and pharma industries, Journal of Food Engineering 321: 110960. https://doi.org/10.1016/j.jfoodeng.2022.110960.
- Tatar Turan, F., Cengiz, A., & Kahyaoglu, T. (2015). Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry's bioactive compounds, Innovative Food Science & Emerging Technologies 32: 136-45. https://doi.org/10.1016/j.ifset.2015.09.011.
- Tembely, M., Lecot, C., & Soucemarianadin, A. (2011). Prediction and evolution of drop-size distribution for a new ultrasonic atomizer, Applied Thermal Engineering 31: 656-67. https://doi.org/10.1016/j.applthermaleng.2010.09.027.
- Vehring, R. (2008). Pharmaceutical particle engineering via spray drying. Pharmaceutical Research 25(5): 999-1022.
- Walzel, P. (1993). Liquid atomisation, International Chemical Engineering 33: 46-60.
- Watson, P.D. (1956). Effect of variations in fat and temperature on the surface tension of various milks, Fifty-first Annual Meeting, American Dairy Science Association, Storrs, Connecticut, June 19-21.
- Wisutmethangoon, S., Plookphol, T., & Sungkhaphaitoon, P. (2011). Production of SAC305 powder by ultrasonic atomization, Powder Technology 209: 105-11. https://doi.org/10.1016/j.powtec.2011.02.016.
- Yang, Z., Lin, B., Zhang, K., & Lian, Z. (2015). Experimental study on mass transfer performances of the ultrasonic atomization liquid desiccant dehumidification system, Energy and Buildings 93: 126-36. https://doi.org/10.1016/j.enbuild.2015.02.035.
- Yang, Z., Zhang, K., Yunho, M., & Lian, (2016). Performance investigation on the ultrasonic atomization liquid desiccant regeneration system, Applied Energy 171: 12-25. https://doi.org/10.1016/j.apenergy.2016.03.008.
- Yang, Z., Zhang, K., Yunho, M., & Lian, (2014). Improvement of the ultrasonic atomization liquid desiccant dehumidification system, Energy and Buildings 85: 145-54. https://doi.org/10.1016/j.enbuild.2014.09.033.
- Yao, Ye., Wei, L., & Yixiong, H. (2020). Modeling and performance investigation on the counter-flow ultrasonic atomization liquid desiccant regenerator, Applied Thermal Engineering 165: 14573. https://doi.org/10.1016/j.applthermaleng.2019.114573.
- Ziaee, A. (2020). A rational approach towards spray drying of biopharmaceuticals: The case of lysozyme, Powder Technology 366: 206-215. https://doi.org/10.1016/j.powtec.2020.02.057.
- Zhang, K., Yang, Z., Lian, Z., & Li, X. (2017). Simulation on regeneration performance for the ultrasonic atomization liquid desiccant system, Procedia Engineering 205: 2925-32. https://doi.org/10.1016/j.proeng.2017.10.101.
|