1. Adomian, G. Nonlinear Stochastic Systems Theory and Applications to Physics, Kluwer Academic, Dordrecht, 1989.
2. Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Dordrecht, 1994.
3. Adomian, G. and Rach, R. On composite nonlinearities and the decomposition method, J. Math. Anal. Appl. 113 (1986) 504-509.
4. Cherruault, Y., Adomian, G., Abbaoui, K. and Rach R. Further remarks on convergence of decomposition method, International Journal of BioMedical Computing 38 (1995) 89-93.
5. Duan, J., Rach, R., Baleanu, D. and Wazwaz, A. A review of the Adomian decomposition method and its applications to fractional differential equations, Commun. Frac. Calc. 3 (2) (2012) 73-99.
6. Gabet, L. The Theoretical Foundation of the Adomian Method, Computers Math. Applic. 27 (1994) 41-52.
7. Ghorbani, A. Beyond Adomian polynomails: He polynomails, Chaos, Soliton and Fractals 39 (2009) 1486-1492.
8. Liao, S. J. Notes on the homotopy analysis method: Some deffnitions and theorems, Commun Nonlinear Sci Numer Simul 14 (2009) 983-997.
9. Molabahrami, A. Integral mean value method for solving a general nonlinear Fredholm integro-differential equation under the mixed conditions, Communications in Numerical Analysis 2013 (2013) 1-15. http://dx.doi.org/10.5899/2013/cna-00146.
10. Molabahrami, A. and Khani, F. The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal-Real 10 (2009) 589-600.
11. Ngarhasta, N., Some, B., Abbaoui, K. and Cherruault, Y. New numerical study of adomian method applied to a diffusion model, Kybernetes 31(2002) 61-75.
12. Rach, R. A convenient computational form for the Adomian polynomials, J. Math. Anal. Appl. 102 (1984) 415-419.
13. Rach, R. A new deffnition of the Adomian polynomials, Kybernetes 37 (2008) 910-955.