1. Gleria, I., Neto, A.R. and Canabarro, A. Nonlinear models for the delayed immune response to a viral infection, Brazilian Journal of Physics, 45(4):450-456, 2015.
2. Guckenheimer, J. and Holmes, P. Nonlinear oscillation. Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, 1983.
3. Komarova, N.L., Barnes, E., Klenerman, P. and Wodarz, D. Boosting immunity by antiviral drug therapy: a simple relationship among timing, efficacy, and success, PNAS, 100:1855-1860, 2003.
4. Kuznetsov, Y.A. Elements of applied bifurcation theory, volume 112.Springer Science & Business Media, 2013.
5. Lenhart, S. and Workman, J.T. An introduction to optimal control ap plied to immunology, Modeling and Simulation of Biological Networks, 64:85, 2007.
6. Nowak, M. and May, R. Virus dynamics: mathematical principles of immunology and virology, Oxford University Press, Oxford, 2001.
7. Perko, L. Differential Equations and Dynamical Systems, (Texts in Applied Mathematics), volume Third edition of Texts in applied mathematics . Springer, 2006.
8. Shu, H., Wang, L. andWatmough, J. Sustained and transient oscillations and chaos inducedby delayed antiviral immune response in an immunosuppressive infection model, J. Math. Biol., 68:477-503, 2014.
9. Strogatz, S.H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Westview press, 2014.
10. Tang, B., Xiao, Y., Cheke, R.A. and Wang, N. Piecewise virus-immune dynamic model with hiv-1 rna-guided therapy, Journal of theoretical biology, 377:36-46, 2015.
11. Wiggins, S. Introduction to applied nonlinear dynamical systems and chaos, volume 2. Springer Science & Business Media, 2003.
12. Wodarz, D. Killer cell dynamics mathematical and computational apporoches to immunology, Interdisciplinary Applied Mathematics. Springer, 2007.
13. Wodarz, D., M.A., N., and C.R.M., B. The dynamics of htlv-i and the ctl response, Immunol Today, 20:220-227, 1999.