1. Ascher, U. M. and Petzold, L. R. Computer methods for ordinary differential equations and differential-algebraic equations, SIAM, Philadelphia, 2008.
2. Butcher, J. C. Numerical methods for ordinary differential equations, 2nd Edition, Wiley, 2008.
3. Cao, Y. and Petzold, L. A posteriori error estimation and global error control for ordinary differential equations by the adjoint method, SIAM J. Sci. Comput. 26 (2004), 359-374.
4. Gottlieb, S., Ketcheson, D. I. and Shu, C. W. High order strong stability preserving time discretizations, J. Sci. Comput. 38 (2009) 251-289.
5. Hadjimichael, Y., Ketcheson, D., Loczi, L. and Nemeth, A. Strong stability preserving explicit linear multistep methods with variable step size, Submitted.
6. Henrici, P. Discrete variable methods in ordinary differential equations, Wiley, New York, 1962.
7. Henrici, P. Error propagation for difference methods, Wiley, New York, 1963.
8. Iserles, A. A First course in the numerical analysis of differential equations, Cambridge University Press, 1996.
9. Lambert, J. D., Numerical methods for ordinarry differential systems: The initial value problem, Wiley, 1993.
10. Press, W.H., Teukolsky, S.A. and Vetterling, W.T., Flannery, BP. Numerical recipes: The art of scientific computing, 3rd ed., New York: Cambridge University Press, 2007.
11. Ruuth, S. J. and Hundsdorfer, W. High-order linear multistep methods with general monotonicity and boundedness properties, Journal of Computational Physics, 209 (2005) 226-248.
12. Suli, E., and Mayers, D. An Introduction to numerical analysis, Cambridge University Press, 2003.