[1] Abdeljawad, T. and Al-Mdallal, Q.M. , Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality, J. Comput. Appl. Math. 339 (2018), 218–230.
[2] Abdeljawad, T.,Al-Mdallal, Q.M. , and Jarad, F. , Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Solitons Fractals 119 (2019), 94–101.
[3] Al-Mdallal, Q.M., An efficient method for solving fractional Sturm Liouville problems, Chaos Solitons Fractals 40 (1) (2009), 183–189.
[4] Al-Mdallal, Q.M., On the numerical solution of fractional Sturm Liouville problems, Int. J. Comput. Math. 87 (12) (2010), 2837–2845.
[5] Al-Mdallal, Q.M. and Abu Omer, A. S., Fractional-order Legendrecollocation method for solving fractional initial value problems,Appl. Math. Comput. 321 (2018), 74–84.
[6] Al-Mdallal, Q.M., On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems, Chaos Solitons Fractals 116 (2018),261–267.
[7] Al-Mdallal Q.M., Abro K.A., and Khan I., Analytical solutions of fractional Walter’s B fluid with applications, Complexity, (2018), Article ID 8131329, 10 pages.
[8] El-Sayed, A.M.A., El-Raheem, Z.F.A., and Buhalima, N.A.O., Eigenvalues and Eigenfunctions of non-local boundary value problems of the Sturm–Liouville equation, Electron. J. Math. Anal. Appl. 5 (2017), 179–
186.
[9] Bouchaud, J.P., and Georges, A., Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep. 195(4-5), (1990) 127–293.
[10] Erturk, V.S., Computing eigenelements of Sturm Liouville Problems of fractional order via fractional differential transform method, Math. Com put. Appl. 16 (3) (2011) 712–720.
[11] Hajji, M.A., Al-Mdallal, Q.M., and Allan, F.M., An efficient algorithm for solving higher order fractional Sturm–Liouville eigenvalue problems, J. Comput. Phys. 272 (2014), 550–558.
[12] Klimek, M., Odzijewicz, T., and Malinowska, A.B., Variational methods for the fractional Sturm Liouville problem, J. Math. Anal. Appl. 416 (2014), 402–426.
[13] Liao, S.J., homotopy analysis method in nonlinear differential equations. Springer & Higher Education Press, Heidelberg, 2012.
[14] Luchko, Y., Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal. 15 (1) (2012), 141–160.
[15] Metzler, R. and Nonnenmacher, T. F., Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations and physical motivations, Chem. Phys., 284(1-2), (2000) 1–77.
[16] Miller, K.S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc, New York, 1993.
[17] Neamaty, A., Darzi, R., Dabbaghian, A., andGolipoor, J., Introducing an iterative method for solving a special FDE, Int. Math. Forum 4 (30) (2009), 1449–1456.
[18] Oldham, K.B. and Spanier, J., The Fractional Calculus, Academic Press, New York, 1974.
[19] Podlubny, I., Fractional Differential Equations, Academic Press, New York, 1999.
[20] Rashidi, M., Ashraf, M., Rostami, B., Rastegari, T., and Bashir S., Mixed convection boundary-layer flow of a micropolar fluid towards a heated shrinking sheet by the homotopy analysis method,Thermal Science 20 (1), 12 (2016), 21–34.