[1] Abbasbandy, S., Azarnavid, B., Hashim, I. and Alsaedi, A.Approximation of backward heat conduction problem using Gaussian radial basis functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 76 (2014), 67–76.
[2] Abbasbandy, S., Ghehsareh, H.R. and Hashim, I. Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function, Eng. Anal. Bound.
Elem. 36(12) (2012), 1811–1818.
[3] Abbasbandy, S., Ghehsareh, H.R. and Hashim, I. A meshfree method for the solution of two-dimensional cubic nonlinear Schrödinger equation, Eng. Anal. Bound. Elem. 37(6) (2013), 885–898.
[4] Ablowitz, M.J., Ablowitz, M., Clarkson, P. and Clarkson P.A. Solitons, nonlinear evolution equations and inverse scattering, Cambridge university press, 1991.
[5] Azarnavid, B. and Parand, K. Imposing various boundary conditions on radial basis functions, arXiv:1611.07292, (2016).
[6] Bahouri, H. and Shatah, J. Decay estimates for the critical semilinear wave equation, in Annales de l’IHP Analyse non lineaire, 1998.
[7] Beatson, R.K. and Dyn, N. Multiquadric B-splines, J. Approx. Theory. 87(1) (1996), 1–24.
[8] Beatson, R.K. and Powell, M.J. Univariate multiquadric approximation: quasi-interpolation to scattered data, Constructive approximation, 8(3)(1992), 275–288.
[9] Bratsos, A.G. A fourth order numerical scheme for the one-dimensional sine-Gordon equation,Int. J. Comput. Math. 85(7) (2008), 1083–1095.
[10] Chen, W., Fu, Z.-J. and Chen, C.-S. Recent advances in radial basis function collocation methods, Heidelberg: Springer, 2014.
[11] Christiansen P.L. and Lomdahl P.S. Numerical study of 2+1 dimensional sine-Gordon solitons, Phys. D 2(3)(1981), 482–494.
[12] Debnath, L. Nonlinear Klein–Gordon and Sine-Gordon equations, in Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser Boston, MA., 1997, 453–499.
[13] Dehghan, M. and Shokri, A. Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions, J. Comput. Appl. Math. 230(2) (2009), 400-410.
[14] Drazin, P.G. and Johnson, R.S. Solitons: an introduction,Cambridge university press, Vol. 2, 1989.
[15] Emamjome, M., Azarnavid, B. and Roohani Ghehsareh, H. A reproducing kernel Hilbert space pseudospectral method for numerical investigation of a two-dimensional capillary formation model in tumor angiogenesis
problem, Neural Comput. Applic. (2017), 1–9.
[16] Encinasa, A.H., Martin-Vaqueroa, J., Queiruga-Diosa, A. and Gayoso Martinezb, V. Efficient high-order finite difference methods for nonlinear Klein–Gordon equation, I: Variants of the phi-four model and the form-I
of the nonlinear Klein–Gordon equation, Nonlinear Anal. Model. Control, 20(2)(2015), 274–290.
[17] Fasshauer, G.E. RBF collocation methods as pseudospectral methods,Boundary elements XXVII, 47–56, WIT Trans. Model. Simul., 39,WIT Press, Southampton, 2005.
[18] Franke, R. Scattered data interpolation: tests of some methods, Math. Comp. 38(157) (1982), 181–200.
[19] Gao, W. and Wu, Z.Quasi-interpolation for linear functional data, Journal of Computational and Applied Mathematics, 236(13) (2012), 3256–3264.
[20] Gao, W. and Wu, Z. A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines, J. Comput. Appl. Math. 271 (2014), 20–30.
[21] Gao, W. and Wu, Z. Approximation orders and shape preserving proper ties of the multiquadric trigonometric B-spline quasi-interpolant, Comput. Math. Appl. 69(7) (2015), 696–707.
[22] Gao, W. and Wu, Z. Solving time-dependent differential equations by multiquadric trigonometric quasi-interpolation, Appl. Math. Comput. 253 (2015), 377–386.
[23] Ghehsareh, H.R., Bateni, S.H. and Zaghian, A. A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation, Eng. Anal. Bound. Elem.61 (2015), 52–60.
[24] Grella, G. and Marinaro, M. Special solutions of the sine-Gordon equation in 2+ 1 dimensions, Lettere al Nuovo Cimento. 23(12) (1978), 459–464.
[25] Hardy, R.L. Multiquadric equations of topography and other irregular surfaces, Journal of geophysical research, 76(8) (1971), 1905–1915.
[26] Hon, Y,.C. and Mao, X.Z. An efficient numerical scheme for Burgers’ equation, Appl. Math. Comput. 95(1) (1998), 37–50.
[27] Hosseini, V.R., Shivanian, E. and Chen, W. Local integration of 2-Dfractional telegraph equation via local radial point interpolation approximation, Eur. Phys. J. Plus. 130(2) (2015), 33.
[28] Kansa, E.J., Aldredge, R.C. and Ling, L. Numerical simulation of two dimensional combustion using mesh-free methods, Eng. Anal. Bound. Elem. 33(7) (2009), 940–950.
[29] Komech, A. and Komech, A. Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincare Anal. Non Lineaire, 26 (2009), no. 3, 855–868.
[30] Lin, J., Chen, W. and Chen, C.S. A new scheme for the solution of reaction diffusion and wave propagation problems, Appl. Math. Model. 38(23)(2014), 5651–5664.
[31] Ling, L. Multivariate quasi-interpolation schemes for dimension-splitting multiquadric Appl. Math. Comput.161(1) (2005), 195–209.
[32] Min Lu, X.,Ren Hong, W., and Chun Gang, Z.Applying multiquadric quasi-interpolation to solve KdV equation,J. Math. Res. Exposition 31(2)(2011), 191–201.
[33] Myers, D.E., De Iaco, S., Posa, D. and De Cesare, L. Space-time radial basis functions, Comput. Math. Appl. 43(3) (2002), 539–549.
[34] Parand, K., Abbasbandy, S., Kazem, S. and Rezaei, A.R.Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium, Commun. Nonlinear Sci. Numer. Simul. 16(3) (2011), 1396–407.
[35] Powell, M.J.D. Univariate multiquadric approximation: reproduction of linear polynomials, Multivariate approximation and interpolation (Duisburg, 1989), 227–240, Internat. Ser. Numer. Math., 94, Birkhäuser, Basel,
1990.
[36] Rostamy, D., Emamjome, M. and Abbasbandy, S. A meshless technique based on the pseudospectral radial basis functions method for solving the two-dimensional hyperbolic telegraph equation, Eur. Phys. J. Plus 132(6)
(2017), 263.
[37] Sarboland, M. and Aminataei, A. Numerical solution of the nonlinear Klein–Gordon equation using multiquadric quasi-interpolation scheme, Univ. J. Appl. Math. 3(3) (2015), 40–49.
[38] Schaback, R. Convergence of Unsymmetric Kernel-Based Meshless Col location Methods, SIAM J. Numer. Anal. 45(1) (2007), 333–351.
[39] Shivanian, E. Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations, Ocean Eng. 1(89) (2014), 173–188.
[40] Shivanian, E. A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms, Eng. Anal. Bound. Elem. 31(54)(2015), 1–2.
[41] Shokri, A. and Habibirad, A. A moving Kriging-based MLPG method for nonlinear Klein–Gordon equation Math. Methods Appl. Sci. 39(18) (2016), 5381–5394.
[42] Trefethen, L.N. Spectral methods in MATLAB. Software, Environments, and Tools, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
[43] Uddin, M., Hussain, A., Sirajul, H.A. and Amjad A.L. RBF meshless method of lines for the numerical solution of nonlinear sine-Gordon equation. Walailak J. Sci. Tech. (WJST), 11(4) (2013), 349–360.
[44] Wang, Q. and Cheng, D. Numerical solution of damped nonlinear Klein–Gordon equations using variational method and finite element approach, Appl. Math. Comput. 162(1) (2005), 381–401.
[45] Wendland, H. Scattered data approximation, Cambridge university press, (17) 2004.
[46] Wu, Z. and Schaback, R. Shape preserving properties and convergence of univariate multiquadric quasi-interpolation, Acta Math. Appl. Sinica (English Ser.) 10 (1994), 441–446.
[47] Yin, F., Tian, T., Song, J. and Zhu, M. Spectral methods using Legendre wavelets for nonlinear Kleinff Sine-Gordon equations, J. Comput. Appl. Math. 275 (2015), 321–334.
[48] Zhang, Y., Liang, X.Z. and Li, Q. A further research on the convergence of Wu-Schaback’s multi-quadric quasi-interpolation, J. Appl. Computat. Math. 2(4) (2013), 2–4