1. Terzaghi, K., "Theoretical soil mechanics", John Wiley & Sons, New York, (1943).
2. Meyerhof, G.G., "Some recent research on the bearing capacity of foundations", Canadian Geotechnical Journal, vol. 1, pp. 16-26, (1963).
3. Hansen, J.B., "A revised and extended formula for bearing capacity", Geoteknisk Institut, (1970).
4. Vesic, A.S. "Analysis of ultimate loads of shallow foundations", Journal of The Soil Mechanics and Foundations Division, ASCE, vol. 91, pp. 45-73, (1974).
5. Silvestri, V., "A limit equilibrium solution for bearing capacity of strip foundations on sand", Canadian geotechnical journal, vol. 40, pp. 351-361, (2003).
6. Bolton, M. and Lau, C., "Vertical bearing capacity factors for circular and strip footings on Mohr-Coulomb soil", Canadian Geotechnical Journal, vol. 30, pp. 1024-1033, (1993).
7. Soubra, A.H., "Upper-bound solutions for bearing capacity of foundations", Journal of Geotechnical and Geoenvironmental Engineering, vol. 125, pp. 59-68, (1999).
8. Griffiths, D., "Computation of bearing capacity factors using finite elements", Geotechnique, vol. 32, pp. 195-202, (1982).
9. Kohestani, V.R. and Hassanlourad, M., "Modeling the Mechanical Behavior of Carbonate Sands Using Artificial Neural Networks and Support Vector Machines", International Journal of Geomechanics, vol. 16, pp.04015038, (2015).
10. Ardakani, A. and Kohestani, V.R., "Evaluation of liquefaction potential based on CPT results using C4.5 decision tree", Journal of AI and Data Mining, vol. 3(1), pp. 82-89, (2015).
11. Kohestani, V.R., Hassanlourad, M., and Ardakani, A., "Evaluation of liquefaction potential based on CPT data using random forest", Natural Hazards, pp. 1-11 (2015).
12. Kalinli, A., Acar, M.C., and Gündüz, Z., "New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization", Engineering Geology, vol. 117, pp. 29-38, (2011).
13. Padmini, D., Ilamparuthi, K., and Sudheer, K., "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Computers and Geotechnics, vol. 35, pp. 33-46, (2008).
14. Samui, P., "Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil", International Journal for Numerical and Analytical Methods in Geomechanics, vol. 36, pp. 100-110, (2012).
15. Tsai, H. C., et al., "Determining ultimate bearing capacity of shallow foundations using a genetic programming system", Neural Computing and Applications, vol. 23, pp. 2073-2084, (2013).
16. Bonakdar, L. and Etemad-Shahidi, A., "Predicting wave run-up on rubble-mound structures using M5 model tree", Ocean Engineering, vol. 38, pp. 111-118, (2011).
17. Etemad-Shahidi, A. and Mahjoobi, J., "Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior", Ocean Engineering, vol. 36, pp. 1175-1181, (2009).
18. Rahimikhoob, A., "Comparison between M5 Model Tree and Neural Networks for Estimating Reference Evapotranspiration in an Arid Environment", Water Resources Management, vol. 28, pp. 1-13, (2014).
19. Wolfs, V. and Willems, P., "Development of discharge-stage curves affected by hysteresis using time varying models, model trees and neural networks", Environmental Modelling & Software, vol. 55, pp. 107-119, (2014).
20. Larose, D.T., "Discovering knowledge in data: an introduction to data mining", John Wiley & Sons, (2005).
21. Quinlan, J.R., "Learning with continuous classes", in Proceedings of the 5th Australian joint Conference on Artificial Intelligence. Hobart: Singapore, (1992).
22. Wang, Y. and Witten, I.H., "Inducing model trees for continuous classes", in Proceedings of the Ninth European Conference on Machine Learning. Prague, Czech Republic: Springer, (1997).
23. Foye, K., Salgado, R., and Scott, B., "Assessment of variable uncertainties for reliability-based design of foundations", Journal of geotechnical and geoenvironmental engineering, vol. 132, pp. 1197-1207, (2006).
24. Gandhi, G., "Study of bearing capacity factors developed from lab. Experiments on shallow footings on cohesionless soils", Ph. D. Thesis, Shri GS Institute of Tech and Science, Indore (MP), (2003).
25. Shahin, M.A., Maier, H.R., and Jaksa, M.B., "Data division for developing neural networks applied to geotechnical engineering", Journal of Computing in Civil Engineering, vol. 18, pp. 105-114, (2004).
26. Witten, I.H. and Frank, E., "Data Mining: Practical machine learning tools and techniques", Morgan Kaufman, (2005).